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Abstract

Parsing discourse is a challenging natural
language processing task. In this paper
we take a data driven approach to iden-
tify arguments of explicit discourse con-
nectives. In contrast to previous work
we do not make any assumptions on the
span of arguments and consider parsing
as a token-level sequence labeling task.
We design the argument segmentation task
as a cascade of decisions based on con-
ditional random fields (CRFs). We train
the CRFs on lexical, syntactic and seman-
tic features extracted from the Penn Dis-
course Treebank and evaluate feature com-
binations on the commonly used test split.
We show that the best combination of fea-
tures includes syntactic and semantic fea-
tures. The comparative error analysis in-
vestigates the performance variability over
connective types and argument positions.

1 Introduction

Automatic discourse processing is considered one
of the most challenging NLP tasks due to its de-
pendency on lexical and syntactic features and on
the inter-sentential relations. While automatic dis-
course processing of structured documents or free
text is still in its infancy, a number of applications
of this technology in practical NLP systems have
been proposed. For instance, Somasundaran et al.
(2009) describe the use of discourse structure for
opinion analysis. Other applications include con-
versational analysis and dialog systems (Tonelli et
al., 2010).

In this work we divide the whole task of
discourse parsing into two sub-tasks: connec-
tive classification and argument segmentation and
classification. Several successful attempts have
already been made in the direction of automatic

classification of connectives, while token-level
argument segmentation has not been explored.
Therefore in this paper we will focus on the seg-
mentation and labeling of discourse arguments
(Arg1 and Arg2) with full spans, as defined
in the annotation protocol of the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008).

We present a methodology that, given explicit
discourse connectives, automatically extracts dis-
course arguments by identifying Arg1 and Arg2
including the corresponding text spans. We call
this approach shallow following Prasad et al.
(2010) as opposed to tree-like representations
of discourse, as in Rhetorical Structure Theory
(Mann and Thompson, 1988). Indeed, we provide
a flat chunk classification of discourse relations,
building a non-hierarchical representation of the
relations in a text.

The discourse parser is designed as a cascade of
argument-specific CRFs trained on different sets
of lexical, syntactic and semantic features. The
evaluation is made in terms of exact and partial
match of arguments. The partial match condition
may be useful in the case of noisy input or for ap-
plications that do not require exact alignment.

The paper is structured as follows: in Section 2
we present related work to discourse parsing. In
Section 3 we detail argument annotation in PDTB
and we report some statistics about the PDTB cor-
pus. In Section 4 the pipeline implemented for the
argument segmentation and classification task is
presented while in Section 5 two different feature
sets used for classification are detailed and com-
pared. In Section 6 the experimental setup is de-
scribed, together with an extensive evaluation and
error analysis. Finally, we draw some conclusions
in Section 7.

2 Related Work

The task that we address in this paper – automatic
extraction of discourse arguments for given ex-
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plicit discourse connectives – has been attempted
a number of times. Soon after the initial release of
the PDTB, it was realized that sentence-internal
arguments may be located and classified using
techniques similar to semantic role detection and
classification methods. Wellner and Pustejovsky
(2007) were the first to carry out such an exper-
iment on the PDTB, and Elwell and Baldridge
(2008) later improved over their results. However,
their task was limited to retrieving the argument
heads. In contrast, we integrate discourse segmen-
tation in the parsing pipeline because we believe
that spans are necessary when using the discourse
arguments as input to applications such as opin-
ion mining, where attributions need to be explic-
itly marked. Besides, no gold data are available for
head-based discourse parsing evaluation and they
have to be automatically derived from parse trees
with a further processing step. With our approach,
instead, we can directly use PDTB argument spans
both for training and for testing.

Dinesh et al. (2005) extracted complete argu-
ments with boundaries, but only for a restricted
class of connectives. The recent work by Prasad et
al. (2010) is also limited, since their system only
extracts the sentences containing the arguments.

In our work, we assume that explicit discourse
connectives are given beforehand, either taken di-
rectly from a gold standard or automatically iden-
tified. The second task based on PDTB was tack-
led among others by Pitler et al. (2008) and Pitler
and Nenkova (2009).

In addition to the work on finding explicit con-
nectives and their arguments, there has been recent
work on classification of implicit discourse rela-
tions, see for instance Lin et al. (2009). In a sim-
ilar classification experiment, Pitler et al. (2009)
investigated features ranging from low-level word
pairs to high-level linguistic cues, and demon-
strated that it is useful to model the sequence of
discourse relations using a sequence labeler. Al-
though they both outperformed their respective
baselines, this task is very difficult and perfor-
mances are still very low.

3 The Penn Discourse Treebank (PDTB)

The Penn Discourse Treebank (Prasad et al., 2008)
is a resource including one million words from the
Wall Street Journal (Marcus et al., 1993), anno-
tated with discourse relations.

Based on the observation that “no discourse

connective has yet been identified in any lan-
guage that has other than two arguments” (Web-
ber et al. (2010), p. 15), connectives in the PTDB
are treated as discourse predicates taking two text
spans as arguments, i.e. parts of the text that de-
scribe events, propositions, facts, situations. Such
two arguments in the PDTB are just called Arg1
and Arg2 and are chosen according to syntactic
criteria: Arg2 is the argument syntactically bound
to the connective, while Arg1 is the other one.
This means that the numbering of the arguments
does not necessarily correspond to their order of
appearance in text.

In the PDTB, discourse relations can be overtly
expressed either by explicit connectives, or by
alternative lexicalizations (AltLex). The first
group of connectives corresponds primarily to a
few well-defined syntactic classes, while alterna-
tive lexicalizations are generally non-connective
phrases used to express discourse relations, such
that the insertion of an explicit connective would
lead to redundancy. There is also a third type of re-
lations - the implicit ones - which can be inferred
between adjacent sentences, even if no discourse
connective is overtly realized.

Every kind of relation (i.e. explicit, implicit
and AltLex) in the PDTB is assigned a sense la-
bel based on a three-layered hierarchy: the top-
level classes are the most generic ones and in-
clude EXPANSION, CONTINGENCY, COMPARI-
SON and TEMPORAL labels (see below resp. ex-
amples from a to d). Then, each class is fur-
ther specified at type and subtype level. Since the
state of the art in automatic surface-sense classifi-
cation (at class level) has already reached the up-
per bound of inter-annotator agreement (Pitler and
Nenkova, 2009), we do not include this task in our
pipeline. Instead, we use the class label as one
of our features, because we can expect to achieve
similar performance both with gold standard and
with automatically assigned classes.

As for the relations considered, we focus here
exclusively on explicit connectives and the iden-
tification of their arguments, including the exact
spans. This kind of classification is very complex,
since Arg1 and Arg2 can occur in many different
configurations. Consider for example the follow-
ing explicit relations annotated in the PDTB1:

1In all examples of this paper, Arg1 is reported in italics,
Arg2 appears in bold and discourse connectives are under-
lined. At the end of the sentence we specify the class label

1072



(a) I never gamble too far. In particular I quit af-
ter one try, whether I win or lose. [EXPAN-
SION]

(b) Since McDonald’s menu prices rose this
year, the actual deadline may have been
more. [CONTINGENCY]

(c) As an indicator of the tight grain supply situa-
tion in the U.S., market analysts said that late
Tuesday the Chinese government, which
often buys U.S. grains in quantity, turned
instead to Britain to buy 500,000 metric
tons of wheat. [COMPARISON]

(d) When Mr. Green won a $240,000 ver-
dict in a land condemnation case against
the State in June 1983, he says, Judge
O’Kicki unexpectedly awarded him an addi-
tional $100,000. [TEMPORAL]

An explicit connective can occur between two
arguments (a) or before them (b). It can also ap-
pear inside the argument as shown in (c), where
Arg2 is composed of three discontinuous text
spans and Arg1 is interpolated. Furthermore,
Arg1 and Arg2 need not to be adjacent, as shown
in (d), where “he says” does not belong to any ar-
gument span. The latter case is annotated as an At-
tribution in the PDTB, because it ascribes the as-
sertion in text to the agent making it. Attributions
occur in 34% of all explicit relations in the PDTB,
and represent one of the major challenges in iden-
tifying exact argument spans, especially for Arg2.
However, given the fact that Arg2 is syntactically
bound to the connective, its identification is gener-
ally considered an easier task than the detection of
Arg1 (Prasad et al., 2010). As shown in Table 1,
the position of Arg1 w.r.t. the discourse connec-
tive is highly variable and, when it does not occur
in the same sentence of the connective, it can be
very distant from Arg2, even in a preceding para-
graph.

Explicit connectives (tokens) 18, 459
Explicit connectives (types) 100

Arg1 in same sentence as connective 60.9%
Arg1 in previous, adjacent sentence 30.1%
Arg1 in previous, non adjacent sentence 9.0%

Table 1: Statistics about PDTB annotation from Prasad et
al. (2008).

Another element increasing the complexity of
Arg1 and Arg2 identification is the fact that dis-

course connectives can be expressed by subordi-
nating and coordinating conjunctions as well as
by discourse adverbials, and each type is subject
to different discourse constraints. Furthermore, ar-
gument spans range from clauses, even single verb
phrases, to multiple sentences, and they do not
necessarily match single constituents in the syntax
because they can be discontinuous. For all these
reasons, the identification of Arg1 has been only
partially addressed in previous works (see for in-
stance Prasad et al. (2010).

The PDTB achieved high-valued inter-
annotator agreement. Overall agreement for
identifying both the arguments (Arg1 and Arg2)
of explicit connectives reached 90.2%, with a
general tendency of lower scores for Arg1 and
higher scores for Arg2. When considering a
matching technique that gives credit also to partial
overlap, the agreement reaches 94.5% for explicit
connectives (Wellner, 2009).

4 Processing pipeline

We show that discourse annotation can be per-
formed in a pipeline handling all types of explicit
connectives and argument positions. The funda-
mental idea is to divide the whole complex task
into several small and simpler independent sub-
tasks, in order to feed the output of each step into
the following one. An overview of the pipeline is
given in Fig. 1. Note that, this representation in-
cludes data pre-processing, training and testing.

Figure 1: Argument parsing pipeline given Gold-Std Con-
nective(C)

In contrast to previous works, our shallow pars-
ing strategy combines the identification of non-
overlapping sequences as connective arguments
and the tagging of such text chunks with Arg1
and Arg2 labels.

Since our experiments are based on gold-
standard parse trees, we take advantage of the
overlap between the PDTB and the Penn Treebank
documents (Marcus et al., 1993) in order to map
PDTB discourse annotation onto PTB parse trees.
We extract the gold-standard connectives with the
corresponding top-level sense label from PDTB
relations, since this sense label is also one of the
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features used by our system. This feature is de-
noted as C in Fig. 1. Besides, we also extract from
the PTB trees all syntactic features needed by the
system for the first parsing subtask, which is the
identification of Arg2.

After the identification of Arg2 given the con-
nective sense label and feature(s) from the gold
parse trees, we proceed with the classification of
Arg1. This step-by-step methodology is different
from previous approaches like the one by Wellner
and Pustejovsky (2007), where the authors select
pairwise the best heads of Arg1 and Arg2 in or-
der to capture their dependencies, and also by El-
well and Baldridge (2008), who additionally de-
velop connective-specific models. Our approach
is motivated by two intuitions: first, the identifi-
cation of Arg2 and Arg1 may require different
features, since the two arguments have different
syntactic and discourse properties, as discussed in
Section 3. Second, the identification of Arg2 is
much easier than the identification of Arg1, be-
cause the former is syntactically bound to the con-
nective. For this reason, a two-step decision archi-
tecture seems more appropriate, because we can
start with the easier classification task and then
exploit additional output information to tackle the
second task.

5 Feature description

We report in Table 2 the list of all features consid-
ered in the argument labeling task and we explain
them in the light of the example in Fig. 2.

Despite the complex task, the feature set is quite
small for both arguments. For the identification of
Arg1, we include one additional features which
corresponds to Arg2 gold standard labels. Note
that the best performing set of features does not in-
clude all those listed in the table (see feature anal-
ysis in Tables 4 and 5).

Features used for Arg1 and Arg2 segmentation and labeling.
F1. Token (T)
F2. Sense of Connective (CONN)
F3. IOB chain (IOB)
F4. PoS tag
F5. Lemma (L)
F6. Inflection (INFL)
F7. Main verb of main clause (MV)
F8. Boolean feature for MV (BMV)
F9. Previous sentence feature (PREV)

Additional feature used only for Arg1
F10. Arg2 Labels

Table 2: Feature sets for Arg1 and Arg2 segmentation and
labeling.

Figure 2: Example sentence with system features

The sense of the connective (F2) refers to one
of the four top-level classes in PDTB sense hier-
archy, namely TEMPORAL, COMPARISON, CON-
TINGENCY and EXPANSION. In the sentence re-
ported in Fig. 2, for example, only “when” bears
the temporal label, while all other tokens are as-
signed as a “null”.

The IOB(Inside-Outside-Begin) chain2 (F3) is
extracted from a full parse tree and corresponds
to the syntactic categories of all the constituents
on the path between the root note and the cur-
rent leaf node of the tree. Experiments with other
syntactic features proved that IOB chain conveys
all deep syntactic information needed in the task,
and makes all other syntactic information redun-
dant, for example clause boundaries, token dis-
tance from the connective, constituent label, etc.
In Fig. 2 the path between “flashed” and the root
node is highlighted. The corresponding feature
would be I-S/E-VP/E-SBAR/E-S/C-VP, where B-
, I-, E- and C- indicate whether the given token is
respectively at the beginning, inside, at the end of
the constituent, or a single token chunk. In this
case, “flashed” is at the end of every constituent in
the chain, except for the last VP, which dominates
one single leaf.

In order to extract the morphological features
needed, we use the morpha tool (Minnen et al.,
2001), which outputs lemma (F5) and inflection
information (F6) of the candidate token. The lat-
ter is the ending usually added to the word root to
convey inflectional information. It includes for ex-
ample the -ing and -ed suffixes in verb endings as
well as the -s to form the plural of nouns. In our

2We extracted this feature using the Chunklink.pl script
made available by Sabine Buchholz at http://ilk.uvt.
nl/team/sabine/chunklink/README.html
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example sentence, this feature would be for exam-
ple s for “traders” and “heads”, etc.

As for features (F7) and (F8), they rely on in-
formation about the main verb of the current sen-
tence. More specifically, feature (F7) is the main
verb token (i.e. shook in our example), extracted
following the head-finding strategy by Yamada
and Matsumoto (2003), while feature (F8) is a
boolean feature that indicates for each token if it
is the main verb in the sentence or not.3

The previous sentence feature “Prev” (F9) is a
connective-surface feature and is used to capture
if the following sentence begins with a connective.
Our intuition is that it may be relevant to detect
Arg1 boundaries in inter-sentential relations. The
feature value for each candidate token of a sen-
tence corresponds to the connective token that ap-
pears at the beginning of the following sentence, if
any. Otherwise, it is equal to 0.

We also add gold-standard Arg2 labels (F10)
as an extra information for Arg1 identification.

6 Experiments

All data used in our experiments are taken from
PTB and PDTB. In particular, folders 02 − 22 are
used to train the model, while folders 00 − 01 be-
long to the development set, and folders 23 and
24 are meant for testing. Our goal is to classify
discourse arguments given the connectives by fo-
cusing on one relation at time. Since this results in
a large search space for the classifier, we prune the
search space trying to preserve the relevant con-
textual information related to the arguments. For
this reason, the data given as input to the classi-
fier include a window of two sentences before and
after the given connective. This allows us to re-
duce the search space by more than 90%. In Table
3 we give the statistics of the explicit relation in-
stances for the whole PDTB corpus and span limit
sets. Most of the explicit relations (95%) occur
within the five sentence window (two preceding
and two following the sentence including the con-
nective token).

We use the CRF++ tool (http://crfpp.
sourceforge.net/) for sequence labeling
classification (Lafferty et al., 2001), with second-
order Markov dependency between tags. Beside
the individual specification of a feature in the fea-
ture description template, the features in various

3We used the head rules by Yamada & Matsumoto
(http://www.jaist.ac.jp/˜h-yamada/)

Number of all explicit relations in PDTB 18459

Number of explicit relations with Arg1 94%
entirely inside the window
Number of explicit relations with Arg1 95%
entirely inside or overlapping the window

Table 3: Statistics about explicit relations and Arg1 exten-
sion.

combinations are also represented. We used this
tool because the output of CRF++ is compatible to
CoNLL 2000 chunking shared task, and we view
our task as a discourse chunking task. On the other
hand, linear-chain CRFs for sequence labeling of-
fer advantages over both generative models like
HMMs and classifiers applied at each sequence
position. Also Sha and Pereira (2003) claim that,
as a single model, CRFs outperform other models
for shallow parsing.

6.1 Evaluation methodology
We present our results using precision, recall and
F1 measures. Following Johansson and Moschitti
(2010), we use three scoring schemes: exact, in-
tersection (or partial), and overlap scoring. In the
exact scoring scheme, a span extracted by the sys-
tem is counted as correct if its extent exactly co-
incides with one in the gold standard. However,
we also use the two other scoring schemes since
exact scoring may be uninformative in some sit-
uations where it is enough to have a rough ap-
proximation of the argument spans. In the over-
lap scheme, an expression is counted as correctly
detected if it overlaps with a gold standard argu-
ment, i.e. if their intersection is nonempty. The
intersection scheme assigns a score between 0 and
1 for every predicted span based on how much it
overlaps with a gold standard span, so unlike the
other two schemes it will reward close matches.

6.2 Feature analysis
Our feature set includes a small set of lexical, syn-
tactic and semantic features, which convey the es-
sential information needed to represent the argu-
ments’ position and the clausal boundaries, as well
as the internal clause structure. We first take into
account the features commonly used in similar
works, for example by Wellner and Pustejovsky
(2007) and Elwell and Baldridge (2008), and then
carry out a selection step in order to identify only
the feature combination that performs best in our
parsing task. Note that both Wellner and Puste-
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jovsky (2007) and Elwell and Baldridge (2008)
limit their classification to argument heads, thus
they may employ features that are not very rele-
vant to our approach.

We follow the hill-climbing (greedy) feature se-
lection technique proposed by Caruana and Fre-
itag (1994). In this optimization scheme, the best-
performing set of features is selected on the basis
of the best F1 “exact” scores. Therefore, we in-
crease the number of features at each step, and re-
port the corresponding performance. In order to
understand better the contribution of each feature
and also to avoid sub-optimal solutions, we also
run an ablation test by leaving out one feature in
turn from the best-performing set. We use the de-
velopment split to generate results for the feature
analysis to find the best performing feature set,
whereas the train split is used to built model. Final
results are generated using only the test split.

The results of our feature analysis are reported
in Table 4 for Arg2 and Table 5 for Arg1. We do
not report the scores having zero as F1-measure.

Features P R F1

Features in Isolation

Token (T) 0.25 0.08 0.13

Connective (CONN) 0.58 0.50 0.54

IOB Chain (IOB) 0.22 0.06 0.10

PoS 0.26 0.03 0.05

Lemma (L) 0.26 0.09 0.13

Morph(L+INFL) 0.27 0.05 0.09

Hill-Climbing Feature Analysis

T+CONN 0.80 0.73 0.76

T+CONN+IOB 0.83 0.75 0.79

T+CONN+IOB+Morph 0.84 0.76 0.80
T+CONN+IOB+Morph+Prev 0.83 0.75 0.79

T+CONN+IOB+Morph+Prev+PoS 0.85 0.75 0.79

Token+CONN+IOB+PoS

+Morph+BMV+Prev 0.84 0.74 0.78

Token+CONN+IOB+PoS

+Morph+MV+BMV+Prev 0.82 0.72 0.77

Feature Ablation

T+CONN+IOB 0.83 0.75 0.79

T+CONN+Morph 0.80 0.69 0.74

IOB+CONN+Morph 0.84 0.72 0.77

T+IOB+Morph 0.29 0.16 0.20

Table 4: Results with Single and Combined Features for
Arg2

Both the feature-in-isolation procedure and the
ablation test show that the connective sense feature
is the most relevant feature for Arg1 and Arg2,
whereas the analysis results for Arg1 show that
the “Prev” feature is also important.

We observe that the performance of the lemma

increases if integrated with the inflection feature,
while inflection in isolation scores a null Pre-
cision, Recall and F1. Therefore, we consider
lemma and inflection together as a single feature,
which we call Morph.

We show that the best performing set for Arg1
includes eight features, whereas the best feature
combination for Arg2 classification is achieved
using only four features, namely token, IOB chain,
connective sense and Morph.

Features P R F1

Features in Isolation

Token (T) 0.29 0.03 0.05

Connective (CONN) 0.40 0.08 0.14

IOB Chain (IOB) 0.18 0.04 0.06

PoS 0.14 0.00 0.01

Lemma (L) 0.26 0.03 0.05

Morph(L+INFL) 0.27 0.02 0.03

Prev feat(PREV) 0.57 0.09 0.16

Hill-Climbing Feature Analysis

T+CONN 0.62 0.30 0.40

T+CONN+IOB 0.65 0.32 0.44

T+CONN+IOB+Prev 0.69 0.45 0.55

T+CONN+IOB+Arg2+Prev 0.69 0.50 0.58

T+CONN+IOB+BMV+Arg2+Prev 0.70 0.50 0.58

T+CONN+IOB+BMV
+Arg2+Prev+Morph 0.73 0.50 0.60

T+CONN+IOB+BMV+Prev

+Morph+PoS+Arg2 0.72 0.51 0.59

Token+CONN+IOB+PoS+Prev

+Morph+MV+BMV+Arg2 0.69 0.50 0.58

Feature Ablation

T+CONN+IOB+BMV+Morph+Prev 0.70 0.44 0.54

T+CONN+IOB+BMV+Prev+Arg2 0.70 0.50 0.58

T+CONN+IOB+BMV+Morph+Arg2 0.69 0.38 0.50

T+CONN+IOB+Prev+Morph+Arg2 0.72 0.51 0.60

T+CONN+BMV+Morph+Prev+Arg2 0.69 0.46 0.55

T+IOB+BMV+Morph+Prev+Arg2 0.62 0.36 0.45

CONN+IOB+BMV+Morph+Prev+Arg2 0.70 0.50 0.59

Table 5: Results with Single and Combined Features for
Arg1

The best combination for Arg1 classification
includes all features from our initial set described
in Table 2, except MV and PoS. This is probably
due to the fact that PoS information becomes re-
dundant for the classifier and BMV and MV con-
vey the same kind of information.

6.3 Results
We compute a baseline (Table 6 between parenthe-
sis) for each parsing subtask, i.e. Arg1 and Arg2
identification with the test dataset. To obtain this
baseline, we take into account that i) Arg2 is
the argument immediately adjacent to the connec-
tive and ii) 90% of the relations in PDTB are ei-
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ther intra-sentential or involve two contiguous sen-
tences. Thus, Arg2 baseline is computed by la-
beling as Arg2 the text span between the connec-
tive and the beginning of the next sentence. The
other baseline, on the other hand, is computed by
labeling as Arg1 all tokens in the text span from
the end of the previous sentence to the connective
position. In case the connective occurs at the be-
ginning of a sentence, then the baseline classifier
tags the previous sentence as Arg1.

P R F1

Arg2
Exact 0.83 (0.53) 0.75 (0.46) 0.79 (0.49)

Partial 0.93 (0.80) 0.84 (0.85) 0.88 (0.82)

Overlap 0.97 (0.98) 0.88 (0.85) 0.92 (0.91)

Arg1
Exact 0.70 (0.19) 0.48 (0.19) 0.57 (0.19)

Partial 0.83 (0.50) 0.62 (0.68) 0.71 (0.58)

+Prev Overlap 0.91 (0.70) 0.63 (0.68) 0.74 (0.69)

Arg1
Exact 0.70 (0.19) 0.38 (0.19) 0.50 (0.19)

Partial 0.83 (0.50) 0.49 (0.68) 0.62 (0.58)

-Prev Overlap 0.92 (0.70) 0.50 (0.68) 0.65 (0.69)

Table 6: Results of Arg1 and Arg2 extraction with test
dataset. Baseline results between parentheses.

In Table 6 we report for each parsing subtask
Precision, Recall and F1 achieved with the best
performing feature set (see Section 6.2) using the
test split, with the corresponding baseline between
parenthesis. Note that before evaluation, all spans
were normalized by removing leading or trailing
punctuation. The best results and features are
highlighted in Table 4 and 5 for Arg2 and Arg1
respectively.

We compute the confidence intervals using a re-
sampling method (Hjorth, 1993). For Arg1 iden-
tification, we observe that the confidence interval
(95%) without “Prev” feature ranges from 0.48 to
0.52 and the same interval is between 0.55 and
0.59 with “Prev” feature, if the exact F1 mea-
sure is taken into account. For Arg2 identifi-
cation the confidence interval (95%) is between
0.78 and 0.81, when the exact F1 measure is taken
into account. A statistical significance test run on
previous and current results of Arg1 identifica-
tion shows also that the difference is significant
(p < 0.0001).

We observe in the results that recall is consis-
tently lower than precision in all tables. This is
probably due to the fact that CRF is more con-
servative while tagging data with argument label
compared to other classifiers, which may lead to a
lower coverage.

As expected, Arg2 parsing subtask achieves
a better performance than Arg1 subtask because

Arg2 position and extension are easier to predict.
This is confirmed by the fact that the baseline pre-
cision of Arg2 overlap is 0.98. Also, the major
improvement w.r.t. the baseline is achieved in the
exact setting.

6.4 Error Analysis
We carry out a further analysis on the test set in
order to characterize parser errors on different test
set partitions. Since Arg1 may occur in a pre-
vious sentence w.r.t. the connective, we want to
assess the impact of Arg1 position on the parsing
task. Therefore, we separately evaluate Arg1 pre-
cision, recall and F1 on intra-sentential and inter-
sentential discourse relations. Results are reported
in Table 7. We also show the changes before
and after adding the lexical feature targeting inter-
sentential cases.

Arg1-Results
P R F1

Intra-Sentential
Exact 0.73 0.61 0.66
Partial 0.86 0.77 0.81

w/o Prev feat Overlap 0.95 0.78 0.86

Inter-Sentential
Exact 0.19 0.01 0.02
Partial 0.27 0.02 0.04

w/o Prev feat Overlap 0.31 0.02 0.04

Intra-Sentential
Exact 0.77 0.61 0.68
Partial 0.88 0.79 0.81

with Prev feat Overlap 0.96 0.77 0.85

Inter-Sentential
Exact 0.52 0.27 0.36
Partial 0.68 0.40 0.50

with Prev feat Overlap 0.79 0.40 0.54

Table 7: Results of Arg1 parsing for intra- and inter- sen-
tential partitions. In the test set, the number of intra- and
inter- sentential relations are 1028 and 617 respectively.

The “Prev” feature is critical to the parser to
achieve reasonable baseline Arg1 performance
for the inter-sentential partition of the test set.

We also carry out a comparative analysis of
the parsing performance in the exact evaluation
setting by considering separately coordinating,
subordinating and adverbial connectives. We
make the above-mentioned distinction following
the suggestion by Elwell and Baldridge (2008),
because each connective type has a different be-
havior w.r.t. its arguments: coordinating connec-
tives (e.g. and, but) usually have syntactically sim-
ilar arguments, subordinating ones (e.g. since, be-
fore) are dominated or adverbially linked to Arg1
and are syntactically bound to Arg2, while adver-
bial connectives (i.e. nevertheless, for instance)
can occur in different positions in the sentence and
are not necessarily bound to Arg1.
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The evaluation results are presented in Table 8.
In previous works, e.g. Elwell and Baldridge

(2008), adverbial connectives were usually con-
sidered the most difficult connective type to clas-
sify. This is confirmed by our results obtained
on Arg1, which show that adverbial connectives
negatively affect both precision and recall, with a
higher impact on recall. As for Arg2, the pars-
ing results on the three connective types are more
homogeneous.

We also observe that the “Prev” feature signifi-
cantly improves Arg1 parsing with any connec-
tive type because it increases recall, while pre-
cision decreases with coordinating and adverbial
connectives.

Conn. Type P R F1
Results for Arg2

Coordinating 0.81 0.75 0.78
Subordinating 0.86 0.78 0.82

Adverbial 0.83 0.74 0.78
Results for Arg1(w/o Prev)

Coordinating 0.73 0.42 0.54
Subordinating 0.73 0.45 0.56

Adverbial 0.68 0.26 0.37
Results for Arg1 (with Prev)

Coordinating 0.69 0.59 0.64
Subordinating 0.76 0.50 0.61

Adverbial 0.64 0.34 0.44

Table 8: Exact evaluation for each connective type. Coor-
dinating connectives appear in around 40% of the relations,
while subordinating and adverbials are respectively 25% and
35% of all connectives.

In order to understand the most common mis-
takes done by the classifier, we present two exam-
ple relations where resp. Arg1 (e) and Arg2 (f)
are wrongly identified4. Note that in example (f)
Arg1 appears in the previous sentence, which we
do not report here.

(e) Many analysts said the September increase
was a one-time event, coming as dealers
introduced their 1990 models [CONTIN-
GENCY]

(f) However, Jeffrey Lane, president of Shearson
Lehman Hutton, said that Friday’s plunge
is “going to set back” relations with cus-
tomers, “because it reinforces the concern of
volatility [COMPARISON]

In (e), the classifier tagged the whole text from
“the September” to “coming” as Arg1 instead of

4The examples show the gold standard annotation.

only “coming”, since it takes clausal boundaries
as a relevant factor for identifying the argument
spans. In (f) the classifier is unable to detect Arg2
probably because the argument does not occur im-
mediately next to the connective.

A manual inspection of misclassified relations
confirms that the parser is more accurate in the
identification of the sentences containing the ar-
guments rather than in the detection of their exact
spans. Also, mistakes concern mostly the classi-
fication of inter-sentential relations (especially as
regards the Arg1 classifier), thus we will need to
focus on these specific cases for future improve-
ments.

7 Conclusions

We cast the complex task of discourse argument
parsing as a set of cascading subtasks to be tackled
in sequence, and we showed that in this way we
achieved a reasonable parser accuracy by handling
the whole labeling process in a pipeline.

Since we consider this discourse parsing task
as a token-level sequence-labeling task, we were
able to detect connective arguments and the corre-
sponding boundaries avoiding the computationally
complex approaches described in previous works.

We trained a CRF classifier with lexical, syn-
tactic and semantic features extracted from PDTB
and PTB gold annotation. We tested these features
both in isolation and in different combinations in
order to achieve an optimized performance. To
make training time manageable, we pruned the
search space by 90%, though leaving out only
around 5% of all Arg1 in PDTB.

We also presented a comparative error analy-
sis (subsection 6.4), where we showed that Arg1
classification on intra-sentential relations achieves
a performance comparable to Arg2 classification
(Table 6). Since the main open issue in our ap-
proach is the correct classification of Arg1 in
inter-sentential relations, we plan to improve it
through more feature engineering. We already ex-
tended our experimental framework by including
automatically annotated parse trees and connec-
tives in the pipeline (Ghosh et al., 2011).
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