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Abstract
We propose a Named Entity (NE) recog-
nition method in which word chunks are
repeatedly decomposed and concatenated.
We can obtain features from word chunks,
such as the first word of a word chunk and
the last word of a word chunk, which can-
not be obtained in word-sequence-based
recognition methods. However, each word
chunk may include a part of an NE or mul-
tiple NEs. To solve this problem, we use
the following operators: SHIFT for sepa-
rating the first word from a word chunk,
POP for separating the last word from a
word chunk, JOIN for concatenating two
word chunks, and REDUCE for assigning
an NE label to a word chunk. We evalu-
ate our method on a Japanese NE recog-
nition data set that includes about 200,000
annotations of 191 types of NEs from over
8,500 news articles. The experimental re-
sults show that the training and processing
speeds of our method are faster than those
of a linear-chain structured perceptron and
a semi-Markov perceptron while high ac-
curacy is maintained.

1 Introduction

Named Entity (NE) recognition is a process by
which the names of particular classes and nu-
meric expressions are recognized in text. NEs
include person names, locations, organizations,
dates, times, and so on. NE recognition is one of
the basic technologies used in text processing, in-
cluding Information Extraction (IE), Question An-
swering (QA), and Information Retrieval (IR).

Supervised learning algorithms have been ap-
plied successfully to create NE recognizers. In
the early stages, algorithms for training classi-
fiers, including Maximum Entropy Models (Uchi-
moto et al., 2000), AdaBoost (Carreras et al.,

2002), and Support Vector Machines (Yamada,
2007) were widely used. Recently, learning al-
gorithms for structured prediction, such as linear-
chain Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001), linear-chain structured per-
ceptron (Collins, 2002a), semi-Markov perceptron
(Cohen and Sarawagi, 2004), and semi-Markov
Conditional Random Fields (Sarawagi and Cohen,
2004), have been widely used because of their
good performances in terms of accuracy.

However, the computational cost of using these
algorithms for structured prediction can become
problematic when we handle a large number of
types of NE classes. The computational cost of
learning first-order-Markov models with linear-
chain CRFs or structured perceptron is O(K2N),
where K is the number of types of classes and
N is the length of the sentence. Semi-Markov-
based algorithms, such as semi-Markov percep-
tron and semi-Markov CRFs, enumerate NE can-
didates represented by word chunks in advance
for capturing features such as the first word of a
chunk and the last word of a chunk. Therefore, the
computational cost of a semi-Markov perceptron
is O(KLN), where L is the upper bound length
of the entities.

The computational cost might not be a big prob-
lem, when we use these learning algorithms to
recognize a small number of types of NEs, such
as the seven types in MUC (Grishman and Sund-
heim, 1996), the eight types in IREX (Committee,
1999), and the four types in the CoNLL shared
task (Tjong Kim Sang and De Meulder, 2003).
However, the computational cost will be higher
than ever, when we recognize a large types of
classes like Sekine’s extended NE hierarchy that
includes about 200 types of NEs for covering sev-
eral types of needs of IE, QA, and IR (Sekine et
al., 2002).

This paper proposes a word-chunk-based NE
recognition method for creating fast NE recog-
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nizers while high accuracy is maintained by cap-
turing rich features extracted from word chunks.
Our method recognizes NEs from word-chunk se-
quences identified by a base chunker. When we
use a base chunker with a computational cost of
O(KN) or lower than it, we can maintain the
computational cost of our method as O(KN).
This is because the length of the word-chunk se-
quences is less than or equal to the sentence length
N . In addition, our method can use features ex-
tracted from word chunks that cannot be obtained
in word-based NE recognitions.

However, each word chunk may include a part
of an NE or multiple NEs. To solve this problem,
we use the following operators: SHIFT for sepa-
rating the first word from a word chunk, POP for
separating the last word from a word chunk, JOIN
for concatenating two word chunks, and REDUCE
for assigning an NE class label to a word chunk.
Therefore, we call our method SHIFT-POP-JOIN-
REDUCE parser (SPJR for short).

We demonstrate experimentally that the train-
ing and processing speeds of SPJR-based NE rec-
ognizers can be considerably faster than those
of a linear-chain-perceptron and a semi-Markov-
perceptron, while high accuracy is maintained.

2 SHIFT-POP-JOIN-REDUCE Parser

This section describes our method that recognizes
NEs from word chunk sequences. We assume
word chunk sequences are given by a base chunker
which is described in Section 3.4.

2.1 Operators for Word Chunks

To recognize NEs from word chunks, we use
SHIFT and POP for decomposing word chunks,
JOIN for concatenating two word chunks, and RE-
DUCE for assigning one of the defined NE class
labels. In the following, C = 〈C1, ..., C|C|〉 de-
notes a word chunk sequence. cbwj is the first
word of Cj , and cewj is the last word of Cj .

• REDUCE: This operator assigns one of the
NE labels to a word chunk.

• POP: This operator separates the last word
from a word chunk, and the separated word
is treated as a new word chunk. POP is
only applied to a word chunk consisting of
more than one word. When POP is applied
to Cj , the last word cewj is separated from
Cj . Indices of the following word chunks Ck

(j + 1 ≤ k ≤ |C|) are incremented by 1,
and the separated word cewj becomes new
Cj+1. There is one exceptional procedure for
POP to use as much initial chunk information
as possible. If POP is successively applied
to the j-th chunk, the separated words are
concatenated and regarded as the (j + 1)-th
chunk. For example, if Cj consists of words
“w x y z” and POP is applied to both y and z,
then the Cj+1 will be considered to be “y z”.

• SHIFT: This operator separates the first word
from a word chunk, and the separated word is
treated as a new word chunk. SHIFT is only
applied to a word chunk consisting of more
than one word. When SHIFT is applied to
Cj , the first word cbwj is separated from Cj .
Indices of the word chunks Ck (j ≤ k ≤ |C|)
are incremented by 1, and the separated word
cbwj becomes new Cj .

• JOIN: This operator concatenates two adja-
cent word chunks. When JOIN is applied
to Cj and Cj+1, Cj and Cj+1 are concate-
nated for creating new Cj . Indices of the
word chunks Ck (j + 2 ≤ k ≤ |C|)
are decremented by 1. To avoid an end-
less loop by generating previously processed
word chunks, we forbid JOIN from occurring
immediately after POP or SHIFT.

2.2 Training an NE Recognizer
The input to our training procedure is the word
chunks of a base chunker along with the NE la-
bels on those correct word chunks. To train an NE
recognizer, we first generate training samples, and
then run a machine-learning algorithm over the
training samples. Figure 1 shows a pseudo-code
of the procedure for generating training samples
from the i-th input. {T1,... TM} is a set of training
data consisting of M sentences.
Ti = 〈Ti,1, ..., Ti,Mi〉 (1 ≤ i ≤ M ) is the i-

th training input. Ti,j (1 ≤ j ≤ Mi) is the j-th
chunk of Ti, and l(Ti,j) is the NE label of Ti,j . If
Ti,j is not an NE, l(Ti,j) is O. The procedure runs
as follows:

• (S0) We generate initial word chunks C from
the word-sequence consisting of Ti with the
given base chunker. We start to check the
following steps from (S1) to (S5) for gener-
ating samples. The following process contin-
ues until all word chunks in Ti are processed.
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# Ti = {Ti,1, ... Ti,Mi}: an input
# Ti,j (1 ≤ j ≤Mi): a word chunk
# l(Ti,j): Ti,j’s NE label
# Wi: words in Ti
# C = {C1, ... C|C|}: word chunks
# l(cbwj): the NE label of the last word of Cj
# l(cewj): the NE label of the first word of Cj
# gen(Cj , OP ): generate a training sample
# for OPERATOR (OP) applied to Ci
# (S0) to (S5) correspond to those of Sec. 2.2.
GenerateTrainingSample(Ti)
# (S0) Generate a word chunk-sequence
# with a base chunker.
C = Chunking(Wi); j = 1;
while j ≤Mi do

if Cj == Ti,j then # (S1)
gen(Cj , REDUCE = l(Ti,j)); j + +;

else if l(cewj) == O then # (S2)
gen(Cj , POP ); C = POP (C, j);

else if l(cbwj) == O then # (S3)
gen(Cj , SHIFT ); C = SHIFT (C, j);

else if ( a word or words included in Cj
are not the constituents of Tj) then # (S4)
gen(Cj , POP ); C = POP (C, j);

else # (S5)
gen(Cj , JOIN); C = JOIN(C, j);

end if
end while

Figure 1: A pseudo code of the generation of train-
ing samples.

• (S1) If the current chunk Cj is equivalent to
the correct chunk Ti,j , we generate a training
sample for REDUCE=l(Ti,j). This means
REDUCE for annotating a word chunk with
l(Ti,j). Then we move to the next word
chunk. (j + +)

• (S2) If the label of the last word of the cur-
rent chunk cewj is “O”, a training sample for
applying POP to Cj is generated. Then POP
is applied to Cj .

• (S3) If the label of the first word of the cur-
rent chunk cbwj is “O”, a training sample for
applying SHIFT to Cj is generated. Then
SHIFT is applied to Cj .

• (S4) If a word or words included in Cj are
not the constituents of Ti,j , a training sample
for applying POP to Cj is generated.

• (S5) If all the above steps are not executed,
the correct NE exists across more than one
chunk. Therefore, we generate a sample of
current word chunk for JOIN.

After generating training samples for all the in-
puts, we train a model from the training samples
with a machine-learning algorithm.

2.3 An Example of Training

Consider the following training data Ti.
- [Mr.]O [Ken Ono]PER [went]O
[skiing]O
We first identify base chunks, and the result is as
follows:
- [Mr. Ken] [Ono went] [skiing]

We denote this base chunking result asC. Word
chunks are indicated by bracketing, and a current
chunk is underlined.

We first compare Ti,1 and C1. C1 is not equiv-
alent to Ti,1, and the NE label of the first word of
C1, “Mr.”, is “O”. Therefore, we generate a train-
ing sample for applying SHIFT to C1 by (S3), and
apply SHIFT to C1. The current C would be the
following.
- [Mr.] [Ken] [Ono went] [skiing]

We compare C1 and Ti,1 again, and C1 is equiv-
alent to Ti,1. Therefore, we generate a training
sample for applying REDUCE=O to C1 by (S1),
and move to the next word chunk.
- [Mr.] [Ken] [Ono went] [skiing]

C2 is not equivalent to Ti,2, and C2 does not
satisfy (S1) to (S4). We generate a training sample
of JOIN for C2 by (S5), and apply JOIN to C2 and
C3.
- [Mr.] [Ken Ono went] [skiing]

C2 is still not equivalent to Ti,2, and the NE la-
bel of the last word “went” is “O”. Therefore, we
generate a training sample for applying POP to C2

by (S2), and apply POP to C2.
- [Mr.] [Ken Ono] [went] [skiing]

C2 is equivalent to Ti,2, and a training sam-
ple for REDUCE=PER is generated. The re-
maining C3 and C4 are also equivalent to Ti,3 and
Ti,4, respectively. Thus, two training samples for
REDUCE=O are generated.

2.4 NE Recognition

Figure 2 shows a pseudo-code of our NE recogni-
tion method. When recognizing NEs from a given
word sequence, we first identify an initial word
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# W : an input word-sequence
# C = {C1, ... C|C|}: word chunks
# L = {L1, ... L|C|}: NE class labels of word
chunks
# Model : a trained model
NERecognition(W , Model)
# Generate a word chunk-sequence
# with a base chunker. j is for C.
C = Chunking(W ); j = 1;
while j ≤ |C| do

# Select an operation. If REDUCE is
# selected, selectOP returns an NE label l.
(op, l) = selectOP(Cj ,Model);
if op == REDUCE then
Lj = l # keep Cj’s NE label
j + + # Move to the next word chunk

else if op == POP then
C = POP (C, j);

else if op == SHIFT then
C = SHIFT (C, j);

else if op == JOIN then
C = JOIN(C, j);

end if
end while
return C and L

Figure 2: A pseudo code of NE recognition.

chunk sequence of the input with a base chunker
as in the training.

Then we process each word chunk from the be-
ginning of the sentence to the end of the sentence.
An operator to use on the current word chunk is
decided upon with a trained model, and each word
chunk is processed according to the selected op-
erator. If all the word chunks are processed, we
return word chunks with their NE labels.

2.5 An Example of Recognition

Consider the following input data:
- Mr. Jim Ji goes to U.K

We identify base chunks of the input as follows.
-[Mr. Jim Ji] [goes] [to] [U.K]

We denote this base NE chunking result as C.
An operator for each word chunk in C is selected
with a trained model Model. Here, we assume
SHIFT is selected and apply SHIFT to C1. After
applying SHIFT to C1, C1 becomes [Mr.], and C2

becomes [Jim Ji].
-[Mr.] [Jim Ji] [goes] [to] [U.K]

We start to select an operator for the new C1,

and REDUCE=O is selected. We keep O as the
NE class of C1, and move to the next chunk C2.
-[Mr.] [Jim Ji] [goes] [to]
[U.K]

Next, we select an operator for the C2, and RE-
DUCE=PER is selected. We keep PER as the NE
class of C2, and move to the next chunk C3. We
continue this NE recognition process for the re-
maining word chunks. When we process all the
word chunks, we return C with their NE labels.

3 Experimental Settings

3.1 Data Set and Evaluation Metrics
We used an extended NE corpus for our evalua-
tion (Hashimoto et al., 2008). This Japanese cor-
pus consists of about 8,500 articles from 2005
Mainichi newspaper. NE tags on this corpus is
based on the extended NE hierarchy introduced
by Sekine et al (Sekine et al., 2002). The corpus
includes 240,337 tags for 191 types of NEs. To
segment words from Japanese sentences, we used
ChaSen.1 We created the following sets for this
experiment.

• training data: news articles from January to
October 2005 in the corpus. The training data
includes 1,806,772 words and 205,876 NEs.

• development data: news articles from
November 2005 in the corpus. The de-
velopment data includes 145,635 words and
15,405 NEs.

• test data: news articles from December 2005
in the corpus. The test data includes 177,159
words and 19,056 NEs.

Recall, precision, and F-measure are our evalua-
tion metrics. Recall is defined to be the number of
correctly recognized NEs divided by the number
of all NEs. Precision is defined to be the number
of correctly recognized NEs divided by the num-
ber of all recognized NEs. F-measure (FM) is de-
fined as follows:

FM = 2 × recall × precision / ( recall + preci-
sion).

1We use ChaSen-2.4.2 with Ipadic-2.7.0. ChaSen’s web
page is http://chasen-legacy.sourceforge.jp/. Words may in-
clude partial NEs because words segmented with ChaSen do
not always correspond with NE boundaries. If such prob-
lems occur when we segment the training data, we anno-
tated a word chunk with the type of the NE included in the
word chunk. We did not deal with the difference between NE
boundaries and word boundaries in this experiment.
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3.2 Algorithms to be Compared

The following algorithms are compared with our
method.

• Linear-chain structured perceptron (Linear-
Chain, for short) (Collins, 2002a): This is a
perceptron-based algorithm for labeling tags
to word-sequences. In this algorithm, fea-
tures are only generated from each word and
its surrounding words.

• Semi-Markov perceptron (Semi-Markov, for
short) (Cohen and Sarawagi, 2004): This al-
gorithm is based on sequentially classifying
chunks of several adjacent words, rather than
single words. Ideally, all the possible word
chunks of each input should be considered for
this algorithm. However, the training of this
algorithm requires a great deal of memory.
Therefore, we limit the maximum length of
the word-chunks. We use word chunks con-
sisting of up to five or ten words. 2

• NE Chunking and Classification (NECC, for
short) (Carreras et al., 2002): This method
consists of two parts. The first part is a
base NE recognition as in our method. The
second part is NE classification. Unlike in
our method, this method just classifies given
word chunks without decomposing and con-
catenating them. This method was used in
the best system of the shared task of CoNLL
2002 (Tjong Kim Sang, 2002).

• Shift-Reduce Parser for NE Recognition (SR,
for short) (Yamada, 2007): This algorithm
is based on shift-reduce parsing for word-
sequences. It uses two operators. The first
one is shift which concatenates a word and
its following word chunk. The other is re-
duce for annotating an NE label to current
word chunk.3 The algorithm is different from
ours in that the initial inputs of their method
are word sequences. Thus, each word chunk
is constructed little by little. Therefore, the
algorithm cannot use features obtained from
word chunks at the early stage.

2This is because when we ran Semi-Markov without the
chunk length constraint, it used 72GB memory, which is our
machine memory size, and 1 GB swap region on its hard disc.

3To compare the performance under the same conditions,
we did not use the operator to separate characters from words
to recognize partial NEs in words.

We use the multiclass perceptron algorithm for
NECC, SR and SPJR. Thus all of the algorithms
are based on perceptron (Rosenblatt, 1958). We
apply the averaged perceptron (Collins, 2002a)
for all the training algorithms. All the learn-
ers and NE recognizers were implemented with
C + +. We used perceptron-based algorithms be-
cause perceptron-based algorithms usually show
the faster training speed and lower usage of mem-
ory than training algorithms, such as MEMM (Mc-
Callum et al., 2000), CRFs (Lafferty et al., 2001),
and so on. Actually, when we applied a CRFs im-
plementation based on LBFGS (Liu and Nocedal,
1989) to the training data, the implementation con-
sumed 72GB memory which is our machine mem-
ory size.

We select the number of the iteration that shows
the highest F-measure in the development data for
each NE recognizer. We set the maximum itera-
tion number at 50.

3.3 Features

The features used in our experiment are shown
in Table 1. As features for Linear-Chain percep-
tron, we used the following. Here, k denotes the
current word position. wk is the k-th word, and
pk is the Part-Of-Speech (POS) tag of k-th word.
We used the word and the POS of the k-th word
and the words in 2-word windows before and af-
ter the k-th word with the current NE-tag tk and
the NE tag tk−1 of the previous word. Each NE
tag is represented as IOB1 (Ramshaw and Marcus,
1995). This representation uses three tags I, O and
B, to represent the inside, outside and beginning
of a chunk. B is only used at the beginning of a
chunk which immediately follows another chunk
that NE class is the same. Each tag is expressed
with NE classes, like I-CL, B-CL, where CL is
an NE class.4 To realize a fast training speed for
Linear-Chain, we only used the valid combination
of tk and tk−1 in terms of the chunk representa-
tion.

4We compared five types of chunk representation: IOB1
, IOB2, IOE1, IOE2 (Tjong Kim Sang and Veenstra, 1999)
and Start/End (SE) (Uchimoto et al., 2000) in terms of the
number of the NE tags. The number of the NE tags for each
representation is as follows; IOB1 is 202, IOB2 is 377, IOE1
is 202, IOE2 is 377, and SE is 730. This experiment uses
IOB1 because IOB1 has one of the lowest number of NE
tags. The number of NE tags is related to the training speed
of Linear-Chain. Actually, Linear-Chain using IOB1-based
training data was about 2.4 times faster than Linear-Chain
using SE-based training data in our pilot study with small
training data.
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Table 1: Features. k denotes a word positions for
Linear-Chain. wk is the k-th word surface, and pk
is the POS tag of the k-th word. tk is the tag of
the k-th word. TTk is tk or the combination of tk
and tk−1. bp is the position of the first word of
the current chunk. ep indicates the position of the
last word of the current chunk. ip is the position
of words inside the current chunk. (bp < ip <
ep). If the length of the current chunk is 2, we use
features that indicate there is no inside word as the
features of ip-th words. tj is the NE class label
of j-th chunk. CLj is the length of the current
chunk, whether it be 1, 2, 3, 4, or longer than 4.
WBj indicates word bigrams, and PBj indicates
POS bigrams inside the current chunk.

Without chunk (Linear-Chain)
[TTk, wk], [TTk, wk−1], [TTk, wk−2],
[TTk, wk+1], [TTk, wk+2], [TTk, pk],
[TTk, pk−1], [TTk, pk−2], [TTk, pk+1],
[TTk, pk+2], [TTk, pk−2, pk−1],
[TTk, pk+1, pk+2], [TTk, pk−2, pk−1, pk+],
[TTk, pk, pk+1, pk+2]

With chunk (Semi-Markov, NECC, SR, SPJR)
[tj , CLj ], [tj ,WBj ], [tj , PBj ],
[tj , wbp], [tj , pbp],[tj , wep], [tj , pep],
[tj , wip],[tj , pip] , [tj , wbp, wep], [tj , pbp, pep],
[tj , wbp, pep], [tj , pbp, wep],
[tj , wbp−1], [tj , pbp−1], [tj , wbp−2], [tj , pbp−2],
[tj , wep+1], [tj , pep+1], [tj , wep+2], [tj , pep+2],
[tj , pbp−2, pbp−1], [tj , pep+1, pep+2],
[tj , pbp−2, pbp−1, pbp], [tj , pep, pep+1, pep+2]

Semi-Markov, NECC, SR, and SPJR, using
word chunks, used features extracted from words
in a word chunk and the words in two-word win-
dows before and after the word chunk. The fea-
tures extracted from chunks differ from those of
Linear-Chain.

3.4 Base Chunkers

NECC and SPJR require a base chunker. To com-
pare performances obtained with different base
chunkers, we used a rule-based chunker and a
machine-learning-based chunker.

We used a chunker that concatenates successive
words with noun or unknown POS tags, or words
existing in brackets, for the rule based chunker
(RC, for short). This identification is fast because
the chunker only checks POS tags.

Our machine-learning-based base chunker is the

SR-based chunker trained to distinguish just two
chunks: NE and non-NE. To train a machine-
learning-based chunker, we first converted the
given training data into a training data for base
chunkers. There are only two classes for the train-
ing data used for base chunking: NE or not.

For example, the following labeled input,
Dr. [Toru Tanaka]PER goes to
[Kyoto]LOC
is converted as follows.
[Dr.]O [Toru Tanaka]BNE [goes]O
[to]O [Kyoto]BNE
BNE indicates that the word chunk becomes NE,
and O indicates non-NE.

The converted training data are used for training
a base NE chunker that identifies base NEs and
non-NEs. Words identified as non-NEs are treated
as word chunks consisting of a word.

Then we split the converted training data into
five portions. To obtain a training set for recogniz-
ing NEs, we repeated the following process for all
the five portions. We trained a base NE chunker
with four out of five the portions of the converted
training data. The base NE chunker identified base
NEs from the remaining portion. After all the
portions were processed, we trained the SPJR- or
NECC-based NE recognizer from the five portions
along with the NE labels on those correct word
chunks.

For recognizing NEs in the test phase, we used
a base NE chunker trained with all the given train-
ing data converted by the method. To examine
whether we can attain high accuracy while main-
taining fast training and processing speed, we used
SR, the fastest algorithm among our compared al-
gorithms, for training base NE chunkers.

4 Experimental Results

Table 2 shows the experimental results.5 The NE
recognizers based on our method showed good
performance. SPJR with RC is the second, and
SPJR with SR is the fourth best F-measure on test
data. The best and the third systems are Semi-
Markov-based ones. These results indicate that
features extracted from word chunks contributed
to improved accuracy.

To compare the results of SPJR (RC) with the
others, we employed a McNemar paired test on the
labeling disagreements as was done in (Sha and

5We used a machine with Intel(R) Xeon(R) CPU X5680
@ 3.33GHz and 72 GB memory.
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Table 2: Experimental results. FM, RE, and PR indicate F-measure Recall, and Precision, obtained with
each algorithm, respectively. The dev. and test indicate the results for the development data, and the
results for the test data. MEM. indicates the amount of memory size (GB) for the training of each algo-
rithm. TRAIN. indicates the training time for each algorithm (in hours). PROC. indicates the processing
speed of the development data for each algorithm (in seconds). (SR) and (RC) indicate NECC or SPJR
that uses a SR-based chunker or RC, respectively. The numbers after L= indicate the maximum length
of the word-chunks for Semi-Markov perceptron.

Algorithm FM (RE,PR) for dev. FM (RE,PR) for test MEM. TRAIN. PROC.
Linear-Chain 78.95 (75.53, 82.68) 80.62 (77.36, 84.18) 12.9 23.54 81.27

Semi-Markov (L=5) 79.46 (76.78, 82.34) 80.90 (78.39, 83.58) 9.8 0.97 41.06
Semi-Markov (L=10) 80.54 (77.46, 83.86) 81.95 (79.04, 85.08) 18.3 1.98 62.96

SR 78.66 (74.53, 83.28) 79.89 (75.84, 84.39) 0.78 0.12 3.54
NECC (SR) 78.81 (72.02, 87.01) 80.61 (73.98, 88.55) 0.76 0.26 5.75
NECC (RC) 51.56 (36.73, 86.49) 50.00 (35.09, 86.93) 0.73 0.08 2.98
SPJR (SR) 79.30 (76.06, 82.82) 80.83 (77.85, 84.05) 0.76 0.29 5.86
SPJR (RC) 79.48 (76.05, 83.23) 81.09 (77.76, 84.71) 3.05 0.27 3.02

Pereira, 2003). We compared results on test data
by character units because the ends or beginnings
of Japanese NEs do not always correspond with
word boundaries. All the results except for Semi-
Markov (L=10) indicate that there is a significant
difference (p < 0.01). This result shows that SPJR
(RC) showed high accuracy.

Our method also showed faster training and pro-
cessing speeds than those of Linear-Chain and
Semi-Markov. Specifically, our proposed method
with RC showed about a 87 times faster train-
ing speed and about a 27 times faster processing
speed than those of Linear-Chain. Our method
showed about a 7 times faster training speed and
about a 21 times faster processing speed than those
of Semi-Markov (L=10). In addition, our algo-
rithm requires a lower maximum memory size
than Linear-Chain and Semi-Markov.

5 Discussion

5.1 Comparison with Linear-Chain
Our algorithm showed much faster speed than
Linear-Chain. This is because the difference
of computational procedure. Linear-Chain-based
ones run Viterbi algorithm to select the best la-
beled sequence in terms of the scores assigned by
a trained model for each input in both training and
testing. When running Viterbi algorithm, Linear-
Chain-based ones have to check the connections
of class labels. The number of connections is up
to K2, where K is the number of types of class la-
bels. On the other hand, SPJR-based ones greedily

recognize NEs.

5.2 Comparison with Semi-Markov

Since the maximum length of the word-chunks af-
fects the performance of Semi-Markov, we eval-
uated Semi-Markov using two types of the max-
imum lengths of the word-chunks. Semi-Markov
(L=5) showed faster training and processing speed
than Semi-Markov (L=10). However, SPJR-based
ones still showed much faster training and pro-
cessing speed than Semi-Markov (L=5). In ad-
dition, compared with Semi-Markov (L=5), SPJR
(RC) showed higher accuracy and SPJR (SR)
showed competitive accuracy. This result indi-
cates that SPJR-based ones show faster speed than
Semi-Markov giving up accuracy for improving
speed.

5.3 Comparison with SR

SR showed faster training and processing speeds
than those of SPJR and NECC using the SR-based
base NE chunker. Specifically, SR showed about
a 2.4 times faster training speed and about a 1.6
times faster processing speed than those of SPJR.
This is because SPJR and NECC require training
for the SR-based NE chunker and base NE recog-
nition. However, SPJR showed better accuracy
than SR. In addition, SPJR with RC showed faster
processing speed than SR. These results indicate
that our method using an appropriate base chun-
ker realizes fast processing speed while maintain-
ing accuracy.
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5.4 Comparison with NECC

SPJR with RC showed much higher accuracy than
NECC with RC. This is because the accuracy
of RC-based NEs recognition is low. The SR-
based base NE chunker identifies 86.56% of word
chunks that become NEs in development data.
However, RC identified only 50.75%. NECC can
only identify correct NEs from correct chunks.
Therefore, NECC with RC showed low accuracy.
These results indicate our method based on de-
composition and concatenation of word chunks
contributed to improving accuracy.

However, SPJR (RC) showed more memory
usage than SPJR (SR) and NECC-based ones.
This is also related to the accuracy of each base
chunker. To correctly recognize NEs from word
chunks wrongly identified by the rule-based chun-
ker, more training samples for decomposition or
concatenation were generated. NECC showed
slightly faster training and processing speeds than
SPJR. This may be because NECC identifies the
NE class of each word chunk without decomposi-
tion or concatenation.

5.5 Computational Efficiency

Our algorithm showed faster training and process-
ing speeds than Linear-Chain and Semi-Markov.
Formally, the computational cost of Semi-Markov
is O(KLN), where L is the upper bound length
of word chunks, N is the length of the sentence
and K is the size of the label set. As for Semi-
Markov, L is 10 and K is 191 in this experiment.
And that of the first order Linear-Chain perceptron
is O(K2N), and K is 202 in this experiment. In
contrast, the computational cost of NECC, SR, and
SPJR is O(KN) and K is 191.

Semi-Markov required more memory usage
than the other algorithms. The number of word
chunks of each sentence in Semi-Markov is
roughly LN . In contrast, the number of word
chunks or words of each sentence for Linear-
Chain, NECC, SR, and SPJR are up to N . This
indicates that Semi-Markov handles about L times
larger space than the other algorithms in terms of
the number of nodes. Therefore, it requires more
memory usage than the others.

6 Related Work

There have been methods proposed to improve
the training speed for semi-Markov-based mod-
els and perceptron-based methods. With regard

to reducing the space of lattices built into the
Semi-Markov-based algorithms, a method was
proposed to filter nodes in the lattices with a
naive Bayes classifier (Okanohara et al., 2006).
To improve training speed of the structured per-
ceptron, distributed training strategies and conver-
gence bounds for a particular mode of distributed
the structured perceptron training are provided in
(McDonald et al., 2010).

While the formulation is different, SPJR shares
similar idea with transformation based learning
(Brill, 1995). For example, a transformation-
based POS tagging alters the POS tag of each word
with an ordered list of transformations. These
transformations alter the POS tag of each word
based on contextual cues.

Methods using rich information other than
semi-Markov-based algorithms are proposed as
well. Previous works use N-best outputs to ob-
tain rich features. For example, a boosting-based
algorithm and a perceptron-based algorithm for re-
ranking N-best outputs were proposed (Collins,
2002b). Another approach uses feature forests
generated from N-best outputs (Huang, 2008).
This method merges N-best outputs into a single
lattice. In contrast with these methods, which re-
quire a computational cost for processing N-best
outputs, our method only handles an output.

Our proposed method showed good perfor-
mance in this experiment, however, there is a
drawback due to our recognizing strategy. Since
NE recognizers based on our proposed method
recognizes NEs greedily, only a mistake may af-
fect later recognition process. In the future, we
consider methods to incorporate techniques used
in shift-reduce parsing (Huang and Sagae, 2010),
like beam search or dynamic programming, into
our recognition method for solving the problem.

7 Conclusion

We proposed a method for recognizing NEs from
word chunk sequences. Our method uses op-
erators for decomposing and concatenating word
chunks. Experimental results showed training and
processing speeds of our method are faster than
those of linear-chain structured perceptron and
semi-Markov perceptron while high accuracy is
maintained. In the future we would like to evaluate
our method with other tasks, such as NP chunking,
and Text Chunking. We would also like to evaluate
our method with different base chunkers.

835



References
Eric Brill. 1995. Transformation-based error-driven

learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Xavier Carreras, Lluı́s Màrques, and Lluı́s Padró.
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