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Abstract 

Event extraction involves the identifica-
tion of instances of a type of event, along 
with their attributes and participants. De-
veloping a training corpus by annotating 
events in text is very labor intensive, and 
so selecting informative instances to an-
notate can save a great deal of manual 
work.  We present an active learning 
(AL) strategy, pseudo co-testing, based 
on one view from a classifier aiming to 
solve the original problem of event ex-
traction, and another view from a classifi-
er aiming to solve a coarser granularity 
task. As the second classifier can provide 
more graded matching from a wider 
scope, we can build a set of pseudo-
contention-points which are very in-
formative, and can speed up the AL pro-
cess. Moreover, we incorporate multiple 
selection criteria into the pseudo co-
testing, seeking training examples that are 
informative, representative, and varied. 
Experiments show that pseudo co-testing 
can reduce annotation labor by 81%; in-
corporating multiple selection criteria re-
duces the labor by a further 7%. 

1 Introduction 

The goal of event extraction is to identify 
instances of a class of events in text. There can 
be many event types; for example, the ACE 2005 
event extraction task involved a set of 33 generic 
event types and subtypes appearing frequently in 
the news. A typical event extraction task, in 
addition to identifying the event itself, also 
identifies all of the participants and attributes of 
the event; these are the entities that are involved 

in that event. Annotating a corpus in order to 
train an event tagger is a costly task. 

First of all, event extraction is difficult and 
requires substantial training data. The same event 
might be presented in various expressions, and an 
expression might represent different events in 
different contexts. For example, “retire” and 
“resign” can both represent an End-Position 
event, while “leave” can represent either an End-
Position or Move event in different contexts. 
Moreover, for each event type, the event 
participants and attributes may also appear in 
multiple forms and exemplars of the different 
forms may be required. 

Furthermore, compared to other tasks like 
name tagging or part of speech tagging, events of 
a particular type appear relatively rarely in a 
document. One document might only contain one 
or two events of a given type, or even none at all. 
For the ACE 2005 event extraction task, Attack 
events have the highest frequency in the training 
corpus (2240 times, an average of 4 events per 
document), while Start-Position events only 
appear 232 times (an average of 1/3 event per 
document). As a result, to acquire enough 
training samples, we need to annotate a lot of 
documents. If we can predict which documents, 
or even which sentences to annotate, we can save 
a lot of time. 

Considering the complexity of event extraction 
and the labor of annotating an event, providing 
the annotator with an informative sample to 
annotate is especially important. Active learning 
(AL) is a good way to do so because it aims to 
keep the human annotation effort to a minimum, 
only asking for advice where the training utility 
of the result of such a query is high. 

Active learning is a supervised machine 
learning technique in which the learner is in 
control of the selection of data used for learning. 
The intent is to ask an oracle - typically a human 
with extensive knowledge of the domain at hand 
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- about the classes of instances for which the 
model trained so far makes unreliable 
predictions. Selective sampling methods, 
introduced by Cohn, Atlas and Ladner (1994), 
made the learner query the oracle about data that 
is likely to be misclassified. This is the crucial 
aspect of AL – finding “good” instances for a 
human to annotate.  

In this paper, we investigate the use of AL in 
event extraction. In particular, we apply the 
active learning approach to the Attack event, 
because it is the most frequent event type in the 
ACE corpus, and is particularly challenging 
because of the large number of different 
expressions: there are 312 different words in the 
corpus that serve at least once as the main word 
(the “trigger”) of an Attack event, 

After studying several sampling strategies, we 
settled upon a pseudo co-testing approach where 
a second classifier which solves a coarser variant 
of the original task is used. Furthermore, we 
incorporate multiple selection criteria into the 
pseudo co-testing, not only selecting more 
informative sentences, but also considering their 
distribution in the sample pool, and the diversity 
of the instances added to the training set at the 
same time.  

2 Event Extraction 

2.1 Task Description 

ACE defines an event as a specific occurrence 
involving participants1, and it annotates 8 types 
and 33 subtypes of events. In this task, an event 
mention is a phrase or sentence within which an 
event is described, including trigger and argu-
ments. An event mention must have one and only 
one trigger, and can have an arbitrary number of 
arguments. The event trigger is the main word 
that most clearly expresses an event occurrence. 
The event mention arguments (roles)2 are the En-
tity/Timex mentions3 that are involved in an event 
mention, and their relation to the event. For ex-
ample, an Attack event might include participants 

                                                             
1 See http://projects.ldc.upenn.edu/ace/docs/English-
Events-Guidelines_v5.4.3.pdf for a description of this 
task. 
2 Note that we do not deal with event mention 
coreference in this paper, so each event mention is 
treated as a separate event. 
3  An Entity mention is a reference (typically, a noun 
phrase) to an object or a set of objects in one of the 
semantic categories of interest. A Timex mention is a 
reference to a time expression.  

like Attacker or Target, or attributes like Time-
Within and Place. Arguments will be taggable 
only when they occur within the scope of the cor-
responding event, typically the same sentence. 

Consider the sentence: 

(1) This Friday in France, Bob Cole was 
on his way home when he was attacked…    

Event extraction depends on previous phases 
like name identification, entity mention 
classification, and entity mention coreference. 
Table 1 shows the results of this preprocessing. 
Note that entity mentions that share the same 
EntityID are coreferential and treated as the same 
object. 

 
Entity/Timex 
mention 

Head Entity 
ID 

Type 

1-1-1 France 1-1 GPE 
1-T1-1 Friday 1-T1 Timex 
1-2-1 Bob Cole 1-2 PER 
1-2-2 He 1-2 PER 
Event 
type 

Trigger Role 
Place Target Time 

Attack attacked 1-1-1 1-2-2 1-T1-1 

 
Table 1. An example of Entity /Timex mentions, 

and Attack events 
 

In this example, there is one Attack event, 
which contains attributes and participants 
including place, target and time.  

2.2 Baseline Event Tagger 

Identifying a potential trigger – the word most 
clearly expressing the event – is essential for 
event extraction. Usually, the trigger itself is the 
most important clue in detecting and classifying 
the type of an event; for example, words like “at-
tack”, “conflict”, and “beat” are more likely to 
represent an Attack event, while “meet”, “eat”, 
and “shopping” are not likely to be triggers of 
Attack events. Then, once we find possible trig-
gers, we can apply the argument / role identifica-
tion to find the participants or attributes of the 
event. For example, the subject of the trigger 
word “attack” is usually the Attacker argument, 
while the object is the Target argument. 

However, although the trigger itself is crucial 
to determine whether or not there is a reportable 
event, it is not always sufficient. As a result, most 
current event extraction systems consider trigger 
and argument information together to tag a re-
portable event. 
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In this paper, we adapted an existing state-of-
the-art English IE system [Grishman et al. 2005]4 
to serve as our baseline system. This system ex-
tracts events independently for each sentence, 
because the definition of event mention argument 
constrains them to appear in the same sentence.  

In the training process, a pattern collector is 
first applied to all annotated events to build fea-
tures used in later classifiers, and then three Max-
imum Entropy-based classifiers are trained. For 
each word (trigger candidate) in the training data, 
if it is a verb, noun or adjective (the three possi-
ble parts-of-speech for a trigger in ACE), we up-
date the following three classifiers: 
 
l Argument Classifier: Given the trigger 

candidate and a Entity / Timex mention in the 
sentence, to distinguish whether the mention 
is a possible argument of a specific event 
type; 

l Role Classifier: for each argument identi-
fied by the argument classifier, to determine 
its role with respect to a specific event type; 

l Trigger Classifier: Given the trigger candi-
date, the pattern representing the local syn-
tactic context, and a set of roles identified by 
the role classifier, to determine whether this 
word is a true trigger, and this is a reportable 
event.  
 

In the test procedure, for each word (each 
potential trigger), the argument / role classifier is 
applied to collect the possible arguments/roles 
connected to this word, and then the trigger 
classifier is used to decide whether it is a trigger 
or not. If it is, an event mention including the 
trigger and all its roles will be reported, else the 
word will not be tagged as a trigger, and all the 
arguments/roles collected by previous classifiers 
are discarded.  

3 Active Learning for Event Extraction 

Active learning has been successfully applied to 
a number of natural language processing tasks, 
such as named entity recognition (Shen et al. 
2004; Hachey, Alex and Becker 2005; Kim et al. 
2006), text categorization (Schohn and Cohn 
2000; Tong and Koller 2002; Hoi, Jin & Lyu 
2006), part of speech tagging (Ringger et al. 

                                                             
4 The existing system had both pattern matching and 
statistical components; we integrated these compo-
nents so that the resulting system would have a uni-
form probabilistic model suitable for the active 
learning strategies we employed. 

2007), parsing (Osborne and Baldridge 2004; 
Becker and Osborne 2005; Reichart and 
Rappoport 2007), and word sense disambiguation 
(Chen et al. 2006; Zhu and Hovy 2007). 
However, there have not yet been any studies to 
use active learning in event extraction.  

There are several sampling methods in active 
learning; the most commonly used ones include 
uncertainty-based sampling, committee-based 
sampling, and co-testing. Co-testing (Muslea et 
al. 2000) involves two (or more) redundant 
views;  it simultaneously trains a separate 
classifier for each view, and the system selects a 
query based on the degree of disagreement 
among the learners. Because well-informed 
classifiers for the two views should agree, co-
testing will select an example which is 
informative for at least one of the classifier 
models.  

In theory, co-testing has some advantages over 
uncertainty sampling and committee-based 
sampling. However,  the disadvantage of co-
testing is that it has more constraints: the two 
views should be disjoint and each sufficient to 
learn a classifier. As discussed above, event 
extraction is complicated and involves several 
classifiers on different levels interacting together.  
This makes it difficult to split the feature set into 
two views. In particular, the identity of the trig-
ger will be a critical feature for any successful 
classifier.  Committee-based sampling faces simi-
lar problem as co-testing: it is hard to generate 
several classifiers that are consistent with the 
training set or sub-samples of it, respectively.  

This leaves uncertainty-based sampling as an 
attractive option. Although Muslea (2000) points 
out that uncertainty sampling may make queries 
that lead to minimal improvements of the classi-
fier, and therefore require more queries to build 
an accurate classifier, it is simple and can be ap-
plied to almost all kinds of statistical models. 

We could do active learning at the token level: 
– asking the oracle whether a specific token trig-
gers an event – but that is not very practical.  Ra-
ther, for each query, we return a sentence that 
might contain an event to ask the oracle to anno-
tate. We do so because the oracle needs to read 
the whole sentence to decide whether it is a re-
portable event, and annotate all its arguments. 
Thus, a sentence-based sampling pool is built 
where each sentence is treated as a sample query.  

3.1 Applying Uncertainty-based Sampling 

Event extraction is a compound classification 
task, which involves the identification of argu-
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ments/roles, and the event trigger. These classifi-
ers are separately trained, but not independent; 
results from previous classifiers are used as fea-
tures for the following classifier, and the decision 
by the following classifier will affect the previ-
ous results (arguments confidently tagged by the 
argument/role classifier will be discarded if the 
trigger labeling treats it as not a event). Because 
the final classifier – the trigger classifier – takes 
all the considerations we mentioned above as 
input, and makes a final decision of a reportable 
event, we use its output as the probability of the 
event tagger. The traditional approach in uncer-
tainty sampling (Lewis and Gale 1994) queries 
one of the samples on which the classifier is the 
least confident. In our case, the greatest uncer-
tainty regarding the presence of an event corre-
sponds to the trigger probability closest to 0.5. 
We treat the uncertainty of the sentence as the 
maximum of the uncertainties of the constituent 
words (i.e., the uncertainty attributable to the 
word with probability closest to 0.5):  

€ 

e_ Info(Si) =   1− min
w j ∈Si

0.5 − prob_e(w j )  

where prob_e(wj) is the trigger probability of the 
word wj in Si , as returned by the event tagger. 

3.2 Problems with Uncertainty-based Sam-
pling 

However, the results of uncertainty-based 
sampling are somewhat disappointing (see 
Figures 3, 4, and 5 in section 5.3). It performs 
quite well at first: within a few iterations, trigger 
labeling (event detection) quickly achieves a 
performance (F score) of 65%, but beyond that 
point the gain is very slow. At this point there is 
still a 7% gap between its performance and that 
of a classifier trained on the whole sampling pool.  

Why does uncertainty-based AL perform this 
way? The event tagger depends primarily on the 
particular trigger and secondarily on its local 
structure, for example, the potential arguments in 
the immediate vicinity of the trigger and the de-
pendency paths between them. Such information 
is effective at identifying the trigger and 
arguments, but is responsive only to particular 
words and patterns. Triggers and structures 
which have not been seen in the training data will 
be assigned uniformly low probabilities.  When 
trained on the whole ACE 2005 corpus (in a 
supervised training scenario) this is appropriate 
behavior:  we don’t want to report an event in 

testing if we haven’t seen the trigger before.5  
However, for active learning, the inability to 
differentiate among potential new triggers and 
local structures is critical.  Only a few words ever 
serve as possible triggers for a specific event type. 
For the Attack event, only 2.0% of the words in 
the ACE training data ever act as an event trigger. 
The uncertainty of the event tagger, by itself, 
does not provide useful guidance regarding 
possible additional triggers the user should be 
asked about, and the system might query a lot of 
irrelevant sentences with unseen words before a 
sentence with a new trigger is found.  

We can see this as an instance of a more 
general problem.  Our goal in AL is to select for 
labeling those data points which are most likely 
to improve the accuracy of the model.  Methods 
like uncertainty-based sampling are heuristics 
towards that end, but are not always effective;  
their success depends on characteristics of the 
classifier and the feature space.  For event extrac-
tion, the classifier is most likely to benefit from 
finding new, frequently-occurring triggers.  We 
need a way of identifying likely candidates. 

Furthermore, we note that – while the final 
trigger classifier which we train from the labeled 
data must operate at the token level – we will be 
presenting the user with a sentence to label, so it 
is sufficient for the classifier we use for AL to 
operate at the sentence level. 

3.3 Another View from Sentential Scope 

Can we find a classifier which suits the needs of 
our active learner by identifying sentences which 
are likely to contain an event? A simple (bag-of-
words) classifier based on the words in the 
sentence can do quite well at this task.  For 
example, a sentence with “troops”, “victim”, 
“bloody” and “soldier” might be more likely to 
contain an Attack event, even if these words 
might not be elements of the event. 

These bag-of-words features are not 
particularly helpful for the original task of 
identifying an event (trigger and arguments) – 
they don’t pinpoint a particular word as the 
trigger.  But that’s not a problem if the data 
selection for AL is operating at a coarser level.6 

                                                             
5 Unlike some other tasks such as named entity and part-of-
speech tagging, local contextual clues by themselves are 
generally not strong enough to reliably tag an event. 
6 Note that some active learners for tasks such as named 
entities and part-of-speech which also train token-level 
annotators choose to present data to the user at the sentence 
level, because it is more convenient and efficient for the 
user. These taggers could select data at the token level  using 
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3.4 Pseudo Co-Testing 

The sentence-level bag-of-words classifier is far 
from perfect – the predictions at the sentence 
level are somewhat noisy. But considering that 
only 6.5% of the sentences in the ACE data 
contain an Attack event, returning a possibly 
relevant sentence is much more useful than 
returning a totally irrelevant sentence. If a 
sentence S in the sample pool shares many words 
with another sentence in the training data known 
to contain an event, and the event tagger does not 
find a trigger word in S, there is a good chance 
that S contains a new (previously unseen) trigger 
word and new local structure, because the two 
sentences may be describing the same event, but 
using different verbs and word sequences.  

Thus, we apply a pseudo co-testing algorithm 
with one view from an event tagger based on 
local information, and another view, which aimed 
to solve an approximate task: whether there is a 
possible event in a sentence.  

We call this algorithm “pseudo co-testing” 
because one of the views is not sufficient to solve 
the target problem, but is sufficient to solve a 
subproblem at a coarser granularity, in contrast to 
traditional co-testing. People might argue that 
when a pseudo contention point is found in this 
algorithm, it means that at least one of the 
classifiers is wrong, but we do not know (until 
we query the oracle) which one. If it is the event 
tagger, this sample is informative for the event 
tagger and adding this sample will improve the 
performance; if it is the sentence classifier, it is 
not guaranteed that this sample is informative for 
the event tagger. However, since the updated sen-
tence classifier will serve to select subsequent 
queries, samples informative for the sentence 
classifier should accelerate subsequent active 
learning. Furthermore, the event tagger and the 
sentence classifier each have their own 
advantages in finding an event to query. The 
event tagger prefers sentences with already-
known local patterns, like a trigger and its 
arguments, although the overall sentence (the 
choice of words and wider structure) might be 
very different. The sentence classifier prefers 
sentences sharing the same words, but which may 
have different local structures. Together they of-
fer the potential for finding new triggers which 

                                                                                             
two views based on the identity of a token and its immediate 
context. We share these user considerations, but in addition 
selecting data at the sentence level enables us to create 
effective complementary views for event extraction not 
available at a finer (token) level. 

do not appear in the existing training data (via the 
sentence classifier) and then acquiring event and 
non-event exemplars of these triggers (through 
the event tagger). 

In pseudo co-testing, we use the probabilities 
from the event tagger and sentence classifier to 
build a contention set consisting of those 
sentences where the event tagger and sentential 
event recognizer make different predictions. 
Among these sentences, we assume that the 
larger the margin between the event tagger and 
sentential event recognizer, the less certain the 
sample is. So, instead of randomly choosing 
samples from the contention set, we order the 
samples by their margins between the event 
tagger and sentential event recognizer, and pick 
the ones with largest margin: 

co_ Info(Si ) = Max
wj∈Si&isCP

prob_ e(wj )− prob_ s(Si )  

where prob_s(Si) is the probability from the 
sentence classifier; while prob_e(wj) is the trigger 
probability from the event tagger for the word wj 
in sentence Si, and wj is a contention point (CP) 
where the event tagger’s prediction is opposite 
that of the sentence classifier. 

4 Multi-criteria-based AL 

Normally active learning only considers the 
informativeness of the sample. In uncertainty-
based query, informativeness is represented by 
the least confident sample; in committee-based 
querying, it is represented by the samples on 
which the committee vote is the most equally 
split; in co-testing, it is represented by the 
contention sample. Shen et al. (2004) pointed out 
that we should maximize the contribution of the 
selected instances based on multiple criteria 
besides informativeness. For example, the 
representativeness and diversity of the sentence 
should also be considered. In this way, we not 
only consider whether the current model contains 
enough information to classify this sentence (as 
containing an event), but also consider the 
distribution of this sample in the whole sampling 
pool (representativeness), and moreover, insure 
that we select different kind of samples in a batch 
to make the selection more diverse (diversity).  

4.1 Features used in Similarity of Samples 

To evaluate the representativeness and 
diversity, we first need to calculate the similarity 
between two samples, in our case, two sentences. 
In general, a sentence will be represented as a 
vector of features 

€ 

S1 = { f11, f12, f13,....., f1n} and 
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the similarity is calculated based on the feature 
vectors of the two sentences. Thus, the essential 
problem becomes how to build the feature vector 
for a sentence. Since there are two classifiers in 
the pseudo co-testing, we use features from both 
classifiers, and measure the similarity using a 
cosine measure, following Shen et al (2004): 

€ 

Sim(S1,S2) =

sim( f i, f j )
f j ∈S2

∑
fi∈S1

∑

| S1 | | S2 |
 

where 

€ 

sim( f i, f j )  is 1 when 

€ 

fi  and 

€ 

f j  are the 
same,  otherwise 0. 

4.2 Representativeness 

A few prior studies have considered this selection 
criterion (McCallum and Nigam 1998; Tang et al. 
2002; Shen et al. 2004). The representativeness 
of a sample can be evaluated based on how many 
samples are similar to this sample. Adding 
samples which are more representative to the 
training set will have an effect on a larger 
number of unlabeled samples.  

For every sentence in the sampling pool, we 
measure its representativeness based on its 
average similarity to other sentences in the 
sampling pool: 

€ 

Represent(Si) =

sim(Si,S j )
S j ∈P,i≠ j
∑

|P |−1
 

where P is the current sampling pool. In this way, 
we will filter out the samples that are rare in the 
whole sampling pool, and focus our effort on the 
samples that appear more frequently in the whole 
corpus. 

In addition to favoring the most informative 
example, we also prefer the most representative 
example. To combine scores from 
informativeness and representativeness, we 
followed Shen et al (2004)’s metric: 

Score(Si ) = λ ⋅co_ Info(Si )+ (1−λ)Represent(Si )  

where the relative importance of each criterion is 
determined by the parameter λ ( 10 ≤≤ λ ). In 
our experiment, λ  is set to 0.7. 

4.3 Diversity 
The role of the diversity criterion is to maximize 
the training utility of a batch of samples. As we 
add a batch of samples into the training data in 
one iteration (for efficiency in updating the mod-
el), we want to make sure we provide various 
types of sentences, which provide the most in-

formation as a whole, and avoid selecting very 
similar sentences for a single batch. To this end, 
after we rank the sentences in the sampling pool, 
based on the different strategies mentioned 
above, we skip over any sentence whose similari-
ty to one already selected in the same batch ex-
ceeds a threshold (see Figure 2).  

The diversity metric is involved in selecting a 
batch of instances, as follows: 

 !=================== 
Given: SenSet = (S1,...,SN) and the BatchSet with the 
maximal size K. 
Initialization: BatchSet = empty 
Loop until BatchSet is full 

Select Si based on some measure from SenSet; 
RepeatFlag = false; 
Loop from j = 1 to CurrentSize of BatchSet 

If Score(Si, Sj) > threshold Then 
RepeatFlag = true; 
break; 

If RepeatFlag == false Then 
Add Si into BatchSet. 

===================== 
!  

 
Figure 2. Diversity criterion in batch-based  

active learning  

5 Experiments 

We use the ACE 2005 training corpus, which 
contains in total 598 annotated documents, to 
simulate the active learning process. For 
evaluation, we conduct a blind test on a set of 54 
randomly chosen documents. For each active 
learning strategy, we make 4 runs and use the 
average scores as our final results. For each run, 
10 documents are randomly chosen as the initial 
training data, and the rest (534 documents) are 
used to build the sampling pool. Overall, the 
average initial training set contains 369 
sentences, and the sampling pool contains an 
average of 12074 sentences.  

A Maxent model based on bag-of-words 
features serves as the sentence classifier. To 
reduce data sparseness, all inflected words are 
changed to their lemma form (e.g. 
“attackers”→“attacker”). A list of stop words is 
also applied. 

For each iteration, we picked 50 sample 
sentences at the top of the ranked list based on 
different query strategies. To simulate the user 
queries, annotations extracted from the key 
annotations are returned as user feedback, and 
added into the training data.  
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5.1 Query Strategies 

In the following sections, we compare the 
performance of the query strategies mentioned 
above – uncertainty-based query (Uncertainty), 
pseudo co-testing (pCT), and multi-criteria 
pseudo co-testing(multi_pCT). We employ a ran-
dom sampling (Random) method as a baseline, 
where samples are selected randomly to add to 
the training data. Also, to assess the benefit of 
active learning, we report the performance from 
the event tagger trained on the entire ACE2005 
data except for the test set (Full_Corpus). 

5.2 Results  

The performances (F-measure) of different 
strategies are evaluated based on three metrics: 
argument/role labeling (Figures 3 & 4) and 
trigger labeling (Figure 5). 

 

 
 

Figure 3. Performance (F-Measure) of argument 
labeling 

 

 
 

Figure 4. Performance (F-Measure) of role label-
ing  

 
Uncertainty-based querying (Uncertainty) 

yields poorer results than the other active 
learning strategies, because of the event tagger’s 

relatively rigid matching procedure. Thus, it 
lacks the ability to recognize new potential 
triggers or patterns. For example, if we have 
pattern A which is very similar to some event-
bearing patterns in the training data, and pattern 
B which is quite different from any pattern in the 
training data, the event tagger will treat them the 
same. However, the sentence classifier provides 
more graded matching, and gives the sentence 
containing pattern A higher score because they 
share a lot of words. Thus, the pseudo co-testing 
(pCT) would give a higher score to pattern A, and 
achieve better performance. Also, we observed 
that multi-criteria pseudo co-testing (multi_pCT) 
performs best in all three evaluations. 

 

 
 

Figure 5. Performance (F-Measure) of trigger 
labeling 

 
The differences between the approaches are 

particularly marked for trigger labeling after just 
a few iterations. Consider how much data must 
be annotated to get to 95% of full corpus score 
for trigger labeling (F-Measure 67.5%): mul-
ti_pCT only takes 7 iterations; pCT takes 17 it-
erations; Uncertainty takes 38 iterations. In other 
words, 5.8%, 9.8%, 18.2% of the whole corpus 
needs to be annotated to reach the same perfor-
mance. Thus, using pCT is almost twice as fast as 
Uncertainty to reach a reasonable performance, 
while multi_pCT will shorten this process by half 
again. The benefits of better query selection are 
clearest for the first few batches of queries, 
which may be the range of greatest practical im-
port for developers wanting to quickly add new 
event types. 

Overall, we observe that pseudo co-testing per-
forms better on all three evaluation measures 
than uncertainty-based active learning. Uncer-
tainty-based active learning requires more than 
100 iterations before it reaches the level of per-
formance on all three measures achieved by the 
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supervised system, trained on the entire corpus 
(Full_Corpus). pCT takes 41 iterations to reach 
this level. At this point, there are in total 
369+2050 = 2419 sentences in the training data; 
this represents a reduction in labor over sequen-
tial annotation of 80.6%. Applying the multi-
criteria-based strategy (multi_pCT), we can reach 
this point even earlier, in iteration 23, where the 
labor is reduced by 87.8%7. 

6 Related Work 

Many existing active learning methods are based 
on selecting the most uncertain examples using 
various measures (Thompson et al. 1999; Schohn 
and Cohn 2000; Tong and Koller 2000; Engelson 
and Dagan 1999; Ngai and Yarowsky 2000). 
(McCallum and Nigam 1998; Tang et al. 2002) 
proposed methods that consider the 
representativeness criterion in active learning. 
(Tang et al. 2002) use the density information to 
weight the selected examples but do not use it to 
select a sample. (Brinker 2003) first incorporated 
diversity in active learning for text classification.  
Shen et al. (2004) proposed a multi-criteria-based 
active learning approach and applied it to named 
entity recognition. They jointly consider multiple 
criteria, including informativeness, 
representativeness and diversity. Experiments 
showed that incorporating all the criteria together 
is more efficient than single-criterion-based 
methods. 

Traditional active learning with redundant 
views splits the feature set into several sub-sets 
or views, each of which is enough, to some 
extent, to describe the underlying problem. 
Muslea et al. (2000) presented an approach in 
which two classifiers are trained only on labeled 
data, then run over the unlabeled data. A 
contention set of examples is then created, 
consisting of all unlabeled examples on which 
the classifiers disagree. Samples are randomly 
selected from this set for query, and then both 
classifiers are retrained. 

To the best of our knowledge, there is no study 
yet of active learning in event extraction. 
However, Patwardhan and Riloff (2009) 
presented a model for role filling in event 
                                                             
7 We observe that the AL can perform better than training on 
the whole corpus; we believe that this is a result of AL se-
lecting more positive training data. After 50 iterations of 
multi-pcT, 31.4% of the selected sentences have positive 
Aattack examples, whereas only 6.1% of the entire corpus 
has such positive examples. Separate experiments suggest 
that using a corpus richer in positive examples can produce a 
small improvement in performance. 

extraction that jointly considers both the local 
context around a phrase and the wider sentential 
context in a probabilistic framework. They used a 
sentential event recognizer and a plausible role-
filler recognizer to jointly make decisions on a 
sentence, and find the roles of the events. 
Although it is not a co-testing process, it gave us 
the intuition of using a sentential view to predict 
possible events in a sentence. 

7 Conclusion 

In this paper, we investigate strategies of active 
learning for event extraction, and propose a novel 
way of selecting good samples to be added to the 
training pool. Experiments show that a classifier 
for a coarser task can provide an extra view to 
build a pseudo co-testing strategy. Although the 
ultimate goal involves training the original (fine-
grained) classifier, the coarser task can provide 
useful information for query selection. In the 
special case of event extraction, we find that a 
sentence classifier can help an event tagger select 
a better query, because it is not only good at 
finding new trigger and local structures from 
graded matching over a wider scope, but also 
provides a better way of judge the 
representativeness and diversity of the samples. 
In our experiment, we reduced human labor by 
80.6% to 87.8%. 
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