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Abstract

Recent research efforts have led to the de-
velopment of a state-of-the-art supervised
coreference model, the cluster-ranking
model. However, it is not clear whether the
features that have been shown to be useful
when employed in traditional coreference
models will fare similarly when used in
combination with this new model. Rather
than merely re-evaluate them using the
cluster-ranking model, we examine two in-
teresting types of features derived from
syntactic parses, tree-based features and
path-based features, and discuss the chal-
lenges involved in employing them in the
cluster-ranking model. Results on a set of
Switchboard dialogues show their effec-
tiveness in improving the cluster-ranking
model: using them to augment a baseline
coreference feature set yields a 8.6–11.7%
reduction in relative error.

1 Introduction

Coreference resolution is the task of determining
which noun phrases (NPs) in a text or dialogue
refer to the same real-world entity. According to
Webber (1979), coreference resolution can be de-
composed into two complementary subtasks: “(1)
identifying what a text potentially makes avail-
able for anaphoric reference and (2) constraining
the candidate set of a given anaphoric expression
down to one possible choice”. These two subtasks
are commonly known asanaphoricity determina-
tion andanaphora resolution, both of which have
recently been tackled using machine learning tech-
niques. More specifically, anaphoricity determina-
tion is typically tackled by training ananaphoric-
ity classifier, which determines whether an NP is
anaphoric or not (e.g., Poesio et al. (2004), Zhou
and Kong (2009)). If so, the NP is passed to the

second component, the resolution system, which
identifies an antecedent for the NP. This resolver is
typically implemented by training amention-pair
(MP) model, which is a binary classifier that deter-
mines whether a pair of NPs are co-referring or not
(e.g., Soon et al. (2001), Ng and Cardie (2002b)).

While this architecture is popularly adopted
by coreference researchers and was implemented
even within recently developed coreference re-
solvers (e.g., Bengtson and Roth (2008), Stoy-
anov et al. (2009)), neither the architecture it-
self nor its aforementioned implementation is sat-
isfactory for at least two reasons. First, in this
pipeline architecture, anaphoricity determination
is performed prior to coreference resolution, so er-
rors in anaphoricity determination can propagate
to the downstream coreference component and ad-
versely affect its performance (Ng and Cardie,
2002a). Second, the MP coreference model is fun-
damentally weak in that (1) the information ex-
tracted from two NPs may not be sufficient for
making an informed coreference decision and (2)
since the model is trained to compare the NP to be
resolved (henceforth theactive NP) against a can-
didate antecedent, it only determines how good the
candidate is relative to the active NP, not how good
the candidate is relative to other candidates.

In light of the aforementioned problems, re-
searchers have proposed a number of solutions:

• To address theerror propagation problem,
researchers have proposedjoint inference
(Denis and Baldridge, 2007) andjoint learn-
ing (Rahman and Ng, 2009) for anaphoricity
determination and coreference resolution.

• To address theexpressivenessproblem re-
sulting from making a coreference decision
based on only two NPs, researchers have pro-
posed theentity-mentionmodel, where coref-
erence decisions are made by determining
whether an NP belongs to a preceding coref-
erencecluster (e.g., Luo et al. (2004), Yang
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et al. (2008)).

• To address the failure to directly compare
candidate antecedents and determine the best
one, researchers have proposed themention-
ranking model, which imposes a ranking on
the candidate antecedents and therefore cap-
tures the competition among them (e.g., De-
nis and Baldridge (2008), Iida et al. (2009)).

Recent research efforts have led to the develop-
ment of a state-of-the-art supervised coreference
model that can addressall of the aforementioned
problems, namely thejoint cluster-ranking(CR)
model (Rahman and Ng, 2009). However, other
than its superior empirical performance to compet-
ing coreference models (such as the MP model),
little is known about the joint CR model. In partic-
ular, most of the linguistic features for coreference
resolution were developed and evaluated in the
context of the MP model, and thus it is not clear
whether these features would fare similarly when
used in combination with the joint CR model.

Motivated by this observation, our goal in this
paper is to examine the value of features derived
from syntactic parses for the joint CR model. Note
that parse-based features have been investigated
extensively for the MP model. For example, they
have been used to implement Binding Constraints
(e.g., Luo and Zitouni (2005)) and encode syn-
tactic salience (e.g., Haghighi and Klein (2009)).
Rather than re-evaluate them for the CR model, we
investigate two types of parse-based features that
we believe are particularly interesting.

First, we employ parse trees directly asstruc-
tured features for the joint CR model. The
main advantage of employing tree-based struc-
tured features is simplicity: we no longer need
to design heuristics to extract the desired fea-
tures (e.g., salience, Binding Constraints) from
the parse trees, as designing heuristics can be
time-consuming and sometimes difficult for cer-
tain tasks. Note, however, that previous attempts
have employed structured features to train an MP
model for anaphora resolution (Yang et al., 2006;
Versley et al., 2008) and an anaphoricity classifier
in the aforementioned pipeline architecture (Zhou
and Kong, 2009). In both cases, the structured fea-
tures are combined with their non-structured (i.e.,
flat) counterparts via a composite kernel and used
to train a classification model. What is interesting
for us to investigate in this paper, however, is the
question of how to combine flat and structured fea-

tures in arankingmodel that employsjoint learn-
ing. With the increasingly important role struc-
tured features and ranking models play in natural
language learning, we believe that a method for
combining flat and structured features for training
a ranker would be of particular interest to natural
language processing (NLP) researchers.1

Second, motivated in part by lexical semantics
research (Lin and Pantel, 2001), we investigate
path-basedfeatures, which encode the contextual
relationship between an active NP and a candidate
antecedent as the shortest path between the cor-
responding nodes in the parse tree. As with other
NLP tasks, the effectiveness of a given type of fea-
tures for coreference resolution depends in part on
how the linguistic information it intends to capture
is represented. We seek to investigate the extent to
which a joint CR model can benefit from this path-
based representation of context.

Unlike the vast majority of English coreference
resolvers, which were evaluated using the MUC
and ACE corpora, our resolver was evaluated on
a set of Switchboard dialogues. To our knowl-
edge, we are among the first to report results for
the full coreference task on this dataset. As a re-
sult, our work contributes to the establishment of a
baseline using a state-of-the-art supervised coref-
erence model against which future work can be
compared. Our experimental results indicate that
while both the tree-based and path-based features
improve coreference performance when applied to
a Baseline feature set in isolation, the best perfor-
mance is achieved when they are applied in com-
bination. In particular, these two types of features
yield an improvement of 2.2–3.7% in F-measure
over the Baseline joint CR model, which corre-
sponds to a 8.6–11.7% reduction in relative error.

The rest of the paper is organized as follows.
Section 2 discusses our implementation of the
joint CR model. Section 3 describes tree-based
and path-based features and how they can be in-
tegrated into the CR model. We present evaluation
results in Section 4 and conclude in Section 5.

2 The Baseline Coreference Model

This section describes the Baseline CR model.
Since the CR model is a natural extension of the

1The dual form of Collins and Duffy’s (2002) ranking al-
gorithm can also combine flat and structured features. Note
that their algorithm employs online learning, whereas ours
employs batch learning in a maximum-margin fashion.
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MP model, in order to understand the CR model,
it helps to first understand the MP model.

2.1 The Mention-Pair Model

As noted before, the MP model is a classifier that
determines whether two NPs are co-referring or
not. Each instancei(NPj , NPk) corresponds to two
NPs, NPj and NPk, and is represented by 39 fea-
tures (see Table 1 of Rahman and Ng (2009) for a
description of these features). Linguistically, these
features can be divided into four groups: string-
matching, grammatical, semantic, and positional.
However, they can also be categorized based on
whether they arerelational or non-relational: re-
lational features capture the relationship between
NPj andNPk, whereas non-relational features cap-
ture the linguistic properties of one of them.

We follow Soon et al.’s (2001) method for creat-
ing training instances. Specifically, we create (1) a
positive instance for each anaphoric NPNPk and its
closest antecedentNPj ; and (2) a negative instance
for NPk paired with each of the intervening NPs,
NPj+1, NPj+2, . . ., NPk−1. The classification as-
sociated with a training instance is either positive
or negative, depending on whether the two NPs
are coreferent. To train the MP model, we use the
SVM learner from SVMlight (Joachims, 1999).2

After training, the classifier is used to identify
an antecedent for an NP in a test text. Each NP,
NPk, is compared in turn to each preceding NP,
NPj , from right to left, andNPj is selected as its an-
tecedent if the pair is classified as coreferent. The
process ends as soon as an antecedent is found for
NPk or the beginning of the text is reached.

2.2 The Cluster-Ranking Model

The CR model addresses two weaknesses of the
MP model, one concerning expressiveness and
the other concerning its failure to compare can-
didate antecedents directly and capture the com-
petition among them. It does so by combin-
ing the strengths of the entity-mention model and
the mention-ranking model. As discussed before,
the mention-ranking model addresses the failure
to compare candidate antecedents by training a
ranker to impose a ranking on the candidate an-
tecedents for an active NP. On the other hand,
the entity-mention model addresses the expres-
siveness problem by determining whether an ac-

2For this and subsequent uses of the SVM learner in our
experiments, we set all parameters to their default values.

tive NP belongs to a preceding, possibly partially-
formed, coreference cluster. Its increased expres-
siveness stems from its ability to employcluster-
level features (i.e., features that are defined over
any subset of NPs in a preceding cluster). Com-
bining the entity-mention model and the mention-
ranking model yields the CR model, which ranks
the preceding clusters for an active NP so that
the highest-ranked preceding cluster is the one to
which the active NP should be linked.

Since the CR model ranks preceding clusters,
a training instancei(cj , NPk) represents a preced-
ing clustercj and an anaphoric NPNPk. Each in-
stance consists of two types of features: (1) fea-
tures that are computed based solely onNPk, and
(2) cluster-level features, which describe the rela-
tionship betweencj andNPk. Motivated in part by
Culotta et al. (2007), we create cluster-level fea-
tures from therelational features in our 39-feature
set using four logical predicates:NONE, MOST-
FALSE, MOST-TRUE, and ALL . Specifically, for
each relational featureX, we first convertX into
an equivalent set of binary-valued features if it
is multi-valued. Then, for each resulting binary-
valued featureXb, we create four binary-valued
cluster-level features: (1)NONE-Xb is true when
Xb is false betweenNPk and each NP incj ; (2)
MOST-FALSE-Xb is true whenXb is true between
NPk and less than half (but at least one) of the NPs
in cj ; (3) MOST-TRUE-Xb is true whenXb is true
betweenNPk and at least half (but not all) of the
NPs incj ; and (4)ALL -Xb is true whenXb is true
betweenNPk and each NP incj .

We follow Rahman and Ng’s (2009) method for
creating training instances. Specifically, for each
NP,NPk, we create a training instance betweenNPk
and eachpreceding clustercj using the features
described above. Since we are training a model
for jointly learning anaphoricity determination and
coreference resolution, we need to provide the
ranker with the option to start a new cluster by cre-
ating an additional training instance that contains
features that solely describeNPk. The rank value
of a training instancei(cj , NPk) created forNPk is
the rank ofcj among the competing clusters. If
NPk is anaphoric, the rank ofi(cj , NPk) is HIGH if
NPk belongs tocj , and LOW otherwise. However,
if NPk is non-anaphoric, the rank ofi(cj , NPk) is
LOW unlesscj corresponds to theNULL cluster, in
which case its rank is HIGH. Given these training
instances, we can train a ranker using SVMlight’s
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ranker-learning algorithm.
After training, the cluster ranker processes the

NPs in a test text in a left-to-right manner. For
each active NP,NPk, we create test instances for it
by pairing it with each of its preceding clusters. To
allow for the possibility thatNPk is non-anaphoric,
we create an additional test instance containing
features that solely describe the active NP (as dur-
ing training). All these test instances are then pre-
sented to the ranker. If the additional test instance
is assigned the highest rank value by the ranker,
thenNPk is classified as non-anaphoric and will not
be resolved. Otherwise,NPk is linked to the cluster
that has the highest rank.

3 Tree-Based and Path-Based Features

In this section, we describe the tree-based and
path-based features in detail and show how they
can be exploited by the joint CR model.

3.1 Path-Based Features

As mentioned before, a path-based feature en-
codes the contextual relationship between an ac-
tive NP and a candidate antecedent as the shortest
path between the corresponding nodes in the parse
tree. More formally, apathbetween an active NP,
NPk, and a candidate antecedent,NPj , in a parse
tree is defined as the shortest sequence of nodes in
the tree that need to be traversed in order to reach
NPj from NPk, and is represented as a sequence of
non-terminal symbols,s1s2 . . . sm, wheresi (1 ≤
i≤m) is the non-terminal symbol associated with
the ith node being traversed in the path, withs1
andsm being the non-terminal symbol associated
with the nodes spanningNPk andNPj , respectively.
Given this representation, a path captures the shal-
low syntactic context in which two NPs appear.

There is a caveat, however. If the active NP
and a candidate antecedent appear in different sen-
tences, there will be no path between them. To en-
able the application of path-based features to these
NPs, we create an additional “root” node with a
random label (e.g., R) that connects the root nodes
of the two trees containing these NPs. This allows
a path to be established even if the two NPs appear
in different sentences.

Now, to employ these paths for coreference res-
olution, two questions need to be answered. First,
which paths should be used? In our implemen-
tation, we collect from each training text a path
between each NP and each of its preceding NPs.

This yields approximately 512K paths. For effi-
ciency reasons, we reduce the number of paths be-
ing considered by removing those paths that oc-
cur less than seven times in the training set. Af-
ter this filtering process, only approximately 22K
paths remain. Each resulting path is represented as
a binary-valued feature for coreference resolution.

Second, how can we compute the value of a
path-based feature? If we were to train an MP
model, its value is 1 if the path between the two
NPs under consideration is the same as the path
represented by the feature. Otherwise, its value is
0. Since we are training a joint CR model, where
each instance corresponds to an NP,NPk, and a pre-
ceding cluster,cj , rather than two NPs, we com-
pute its feature value as follows: its value is 1 if
the path betweenNPk and one of the NPs incj is
the same as the path represented by the feature;
otherwise, its value is 0.

We hypothesize that by capturing shallow syn-
tactic context, path-based features can improve the
performance of a coreference system. The reason
is that through these features, a learner can poten-
tially learn to distinguish betweengoodpaths (i.e.,
paths that are likely to connect coreferent NPs)
andbadpaths (i.e., paths that are likely to connect
non-coreferent NPs), thus improving the resulting
model’s ability to identify the correct antecedent
or preceding cluster for an active NP.

3.2 Tree-Based Features

Not only can parse trees be exploited to identify
coreference relations via the extraction of paths,
but they can be used to determine the anaphoric-
ity of an NP. Specifically, we aim to identifynon-
anaphoricNPs by employing parse trees as struc-
tured features. While previous work has employed
parse trees as structured features (Zhou and Kong,
2009), it does so in a pipeline architecture where
anaphoricity determination is performed prior to
coreference resolution. In contrast, we are faced
with the challenge of integrating tree-based struc-
tured features with flat features in a model that in-
volves bothjoint learningandranking.

To understand how this can be done, recall that
in the joint CR model, joint learning for anaphoric-
ity determination and coreference resolution is
achieved by introducing an additional training in-
stance,i(NULL , NPk), which is formed between an
active NP,NPk, and aNULL preceding cluster, ef-
fectively providing NPk with an option to start a
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new cluster. Since we aim to use tree-based fea-
tures to identify non-anaphoric NPs, we augment
the set of features fori(NULL , NPk), which cur-
rently contains the flat features derived fromNPk,
with these (structured) tree-based features.

Of course, having an SVM learner learn a rank-
ing model from both the flat and tree-based fea-
tures requires more than just adding the tree-based
features to the feature set. In particular, we need
to implement the three steps below.

Step 1: Specifying the Parse Substructure
While we want to use a parse tree directly as a

feature, we donot want to use theentire tree as
a feature. The reason is that a complex tree may
make it difficult for the SVM learner to make gen-
eralizations: the more complex the tree is, the less
likely it is to find similar trees in other instances.

To strike a better balance between having a
rich representation of context and improving the
learner’s ability to generalize, we extract a sub-
structure from a parse tree and use it as the value
of the structured feature of an instance. This sub-
structure was previously shown to be useful when
used as a structured feature for training a classi-
fier for determining the information status of an
NP (Rahman and Ng, 2011). Given an instance
i(NULL , NPk), we extract the substructure from the
parse tree containingNPk as follows. Letn(NPk) be
the root of the subtree that spans all and only the
words inNPk, and letParent(n(NPk)) be its imme-
diate parent node. We (1) take the subtree rooted
at Parent(n(NPk)), (2) replace each leaf node in
this subtree with a node labeledX, (3) replace the
child nodes ofn(NPk) with a leaf node labeledY,
and (4) use the subtree rooted atParent(n(NPk))
as the structured feature fori(NULL , NPk). Fig-
ure 1 illustrates this substructure extraction proce-
dure via an example.

Intuitively, the first three steps aim to provide
generalizations by simplifying the tree. For exam-
ple, step (1) allows us to focus on using a small
window surroundingNPk as its context. Steps (2)
and (3) help generalization by ignoring the words
within NPk and its context. Note that using two la-
bels,X andY, helps distinguish the active NP from
its context within this substructure. Also note that
we simply use one node (Y) to represent the ac-
tive NP, since NP-internal information (e.g., gen-
der) has been captured by the flat features.

While this parse substructure ignores the words
in NPk, these unigrams could be useful for deter-
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Figure 1: A parse tree (left) and the parse substruc-
ture extracted for the NP “one day” (right).

mining its anaphoricity, as a learner may learn
from coreference-annotated data that “it” only has
a moderate probability of being anaphoric, and
that “the contrary” from the phrase “on the con-
trary” is never anaphoric. As a result, we augment
the set of flat features ini(NULL , NPk) with the un-
igrams extracted fromNPk.

Step 2: Recasting Ranking as Classification
Existing implementations of SVMs, such as
SVMlight-TK (Moschitti, 2004), allow us to com-
bine flat and (structured) tree-based features to
train a classifier by designing appropriate kernels.
Hence, if we were to train an SVM classifier, all
we need to do is to design a kernel. However, we
are given a ranking problem, and it is not immedi-
ately clear how an SVM can learn a ranking model
in the presence of tree-based features.

Our approach to this problem is to reduce the
given ranking problem to an equivalent classifica-
tion problem. Once we have a classification prob-
lem, all we need to do is to design a kernel for
training a classifier, as mentioned above. To re-
duce a ranking problem to an equivalent classifi-
cation problem, we need to convert the training set
for the joint CR model to an equivalent training set
that can be used to train a classifier.

Before describing the conversion process, let
us first recall how the training set for a joint CR
model is created. Given a training textD, we cre-
ate fromD a set of training instancesT for a joint
CR model by taking the union ofT1, T2, . . . , Tn,
whereTk (1 ≤ k ≤ n) is the set of training in-
stances generated fromNPk in D. If NPk has|C|
preceding clusters,Tk will contain exactly|C|+1
training instances, since one training instance is
generated fromNPk and each of its|C| preced-
ing clusters, and one training instance is formed
betweenNPk and theNULL antecedent. Each in-
stance is associated with a rank value, which is
either HIGH or LOW. GivenT , the SVM ranker-
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learning algorithm aims to learn how to rank pre-
ceding clusters for an active NP by learning how
to rank the instances within eachTk.

As noted before, to facilitate learning a ranker
from both flat and tree-based features, we refor-
mulate the given ranking problem as a set of pair-
wise ranking problems. The reason is that a pair-
wise ranking problem is essentially abinary clas-
sificationproblem, since pairwise ranking merely
involves ranking two objects. Not surprisingly,
this reformulation requires that we convertT into
an equivalent training setT ′, which consists of
pairwise ranking problems and can therefore be
used to train a classifier (i.e., a pairwise ranker).
Below we describe how to convertT to T ′.

For eachTk in T , we create a training instance
inst for T ′ from each pair of training instances
in Tk that have different rank values. For exam-
ple, if i(ci, NPk) and i(cj , NPk) in Tk have ranks
r1 andr2 respectively wherer1 6= r2, we create a
training instance forT ′ whose feature vector is ob-
tained by subtractingi(cj , NPk) from i(ci, NPk). If
both feature vectors contain only flat features, the
subtraction is straightforward, since each flat fea-
ture is real-valued. However, if one of the feature
vectors has a tree-based feature3 (which happens
whenci or cj is NULL ), we handle the flat features
and the tree-based feature separately. Specifically,
we first perform subtraction for the flat features as
described above, and then append the tree-based
feature to the feature set ofinst. If r1 > r2, the
class value ofinst is 1; otherwise, it is−1.

In sum, eachTk in T constitutes a ranking prob-
lem, and we described how to convert this ranking
problem into a set of pairwise ranking problems in
T ′. As noted before, a pairwise ranking problem is
a binary classification problem. Hence, the result-
ing training set,T ′, can be used to train a (binary)
SVM classifier that minimizes the number of vio-
lations of pairwise rankings inT ′.

Step 3: Designing the Composite Kernel
To train an SVM classifier onT ′, we need to define
a kernel function for computing the similarity be-
tween a pair of instances. If both instances contain
only flat features, we simply employ a normalized
linear kernel, which computes similarity as the co-
sine of their feature vectors. However, if one or
both of them has a tree-based feature, a linear ker-

3Note that at most one of these two feature vectors has
a tree-based feature. The reason is that exactly one of the
instances inTk has a tree-based feature, namely the one cor-
responding to theNULL cluster.

nel is not directly applicable. In this case, we need
to (1) compute the similarity of their flat features
and the similarity of their tree-based features sep-
arately, and then (2) employ a composite kernel,
Kc, to combine the two similarity values. Specifi-
cally, we defineKc as follows:

Kc(F1, F2) = K1(F1, F2) + αK2(F1, F2),

whereF1 andF2 are the full set of features (con-
taining both flat and structured features) that rep-
resent the two instances under consideration.K1

is a linear kernel, which operates on the flat fea-
tures.K2 is a convolution tree kernel (Collins and
Duffy, 2001), which operates on the tree-based
features. Specifically,K2 computes the similarity
of two parse trees by efficiently enumerating the
number of common substructures in them. To pre-
vent the kernel value returned byKc from being
consistently dominated by one of the component
kernels (i.e.,K1 andK2), we normalize the ker-
nel values returned byK1 andK2 so that they fall
between 0 and 1.α is as a weight parameter that
allows the two kernel values to be combined lin-
early, providing the flexibility to vary the relative
importance of the component kernels. We will de-
termineα empirically on the development set.

3.3 Applying the Pairwise Ranker

So far, we have described a method for training
a (pairwise) ranker when the feature set contains
both flat and tree-based features, which involves
converting training setT to training setT ′. A nat-
ural question, then, is: do we have to similarly per-
form this conversion on the test set so that the pair-
wise ranker can be applied to it?

It turns out that the answer is no. Given a set of
test instancesTk to be ranked, all we need to do
is to apply the pairwise ranker to each instance in
Tk. The ranker produces one real value for each
instance. According to the values provided by the
ranker, these test instances can be ranked: the most
positive value corresponds to the highest rank.

It may not be immediately clear why it makes
sense to apply the pairwise ranker in the aforemen-
tioned manner to rank the test instances. Space
limitations preclude a rigorous mathematical ex-
planation. Here, we will provide a sketch of the
explanation. Recall that each instance inT ′ was
created by subtracting the feature vectors of two
instances. In addition, when SVMlight was ap-
plied to train the pairwise ranker onT ′, it at-
tempted to minimize the number of violations of
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pairwise rankings. To do so, SVMlight needs to
position the hyperplane so that an instance with a
higher rank inT is assigned a more positive value
by the hyperplane than one with a lower rank inT .
Consequently, we can apply the pairwise ranker to
each test instance to be ranked, and use the value
returned by the ranker for each instance to impose
a ranking on the test instances.

4 Evaluation

In this section, we examine the effectiveness of the
tree-based and path-based features in improving
the joint CR model.

4.1 Experimental Setup

Corpus. We employ in our evaluation a dataset
comprising 147 coreference-annotated Switch-
board dialogues, which contain a total of 68,992
NPs.4 We partition the dialogues into a training set
(117 dialogues) and a test set (30 dialogues). We
extract the NPs and the parse trees directly from
the gold-standard annotations, but the coreference
features are computed entirely automatically.

Scoring programs. We employ two commonly-
used coreference scoring programs, B3 (Bagga
and Baldwin, 1998) andφ3-CEAF (Luo, 2005),
both of which report results in terms of recall (R),
precision (P), and F-measure (F).

4.2 Results and Discussion

The baseline mention-pair model. We employ
as our first baseline the MP model, which is
trained using the procedure described in Section
2.1. Given that our goal is to examine the ef-
fectiveness of the tree-based and path-based fea-
tures for the joint CR model, one may wonder why
the results of the MP model are relevant to our
investigation. Recall from the introduction that
we chose to improve the joint CR model with the
two types of features derived from syntactic parses
because the joint CR model has been shown to
achieve state-of-the-art performance on the ACE
corpus. To ensure that the joint CR model also out-
performs the MP model on our Switchboard cor-
pus (and is therefore the strongest baseline we can
use), we show the results of the MP model in row
1 of Table 1. As we can see, it achieves F-measure
scores of 69.1 (B3) and 62.8 (CEAF).5

4This dataset is released by the LDC as part of the NXT
corpus (Calhoun et al., 2010).

5Since gold-standard NPs are used in our coreference ex-
periments, CEAF recall, precision, and F-measure will all be

The baseline joint cluster-ranking model. Our
second baseline is the joint CR model, which is
trained using the method described in Section 2.2.
In particular, this baseline model does not employ
any tree-based or path-based features. Results are
shown in row 2 of Table 1. In comparison to the
MP model in row 1, we can see that B3 F-measure
rises from 69.1 to 74.5 and CEAF F-measure rises
from 62.8 and 68.5. These results are consistent
with our hypothesis that the joint CR model is in-
deed a stronger baseline than the MP model.

Incorporating path-based features. Next, we
incorporate the path-based features into the Base-
line joint CR model. Results are shown in row
3 of Table 1. In comparison to the results of the
Baseline joint CR model in row 2, we can see that
adding the path-based features into the feature set
improves the joint CR model according to both
scorers. In particular, B3 and CEAF F-measure
scores rise by 1.3% and 2.1%, respectively, sug-
gesting the usefulness of the path-based features.

In addition to the R, P and F columns, Table
1 has two columns labeled “% err. red.”, which
show the error reduction of a system relative to
the Baseline joint CR model. Here, we compute
the error of a system by subtracting its F-measure
score from the perfect F-measure (i.e., 100). With
the addition of path-based features, we can see that
relative error is reduced by 5.1 and 6.7 according
to B3 and CEAF, respectively.

Incorporating tree-based features. Next, we
incorporate the tree-based features into the Base-
line joint CR model. Recall that from a tree, we
extract both flat features (i.e., unigrams) and struc-
tured features (i.e., parse substructures), so both
types of features are used to augment the Base-
line feature set. Because both types of features are
involved, we need to tuneα in the composite ker-
nel. To ensure a fair comparison among different
systems, we donotemploy additional labeled data
for tuningα. Rather, we use 75% of the available
training data for training the joint CR model and
reserve the remaining 25% for parameter tuning.

Results are shown in row 4 of Table 1. In com-
parison to the results of the Baseline joint CR
model in row 2, we can see that adding the trees
and the unigrams into the feature set improves the
joint CR model according to both scorers. In par-
ticular, B3 and CEAF F-measure scores rise by
1.0% and 1.9%, respectively.

the same. See Luo (2005) for details.
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B3 CEAF
System R P F % err. red. R P F % err. red.

1 Baseline MP model 78.1 61.6 69.1 — 62.8 62.8 62.8 —
2 Baseline CR model 71.1 78.2 74.5 — 68.5 68.5 68.5 —
3 CR + paths 76.4 75.2 75.8 (5.10) 70.6 70.6 70.6 (6.67)
4 CR + unigrams + trees 75.1 76.0 75.5 (3.92) 70.4 70.4 70.4 (6.03)
5 CR + paths + unigrams + trees 76.6 76.8 76.7 (8.63) 72.2 72.2 72.2 (11.74)
6 CR + paths + unigrams 76.3 75.4 75.8 (5.10) 71.5 71.5 71.5 (9.52)
7 CR + paths + pipeline architecture76.9 75.2 76.0 (5.88) 71.4 71.4 71.4 (9.21)

Table 1: Coreference results on the test set obtained using B3 and CEAF.

Incorporating tree- and path-based features.
Next, we incorporate both tree-based (i.e., un-
igrams and parse substructures) and path-based
features into the Baseline joint CR model. As in
the previous experiment, we reserve 25% of the
available training data for tuningα. Results are
shown in row 5 of Table 1. In comparison to the
results of the Baseline joint CR model in row 2, we
can see that adding both types of features improves
F-measure by 2.2% (B3) and 3.7% (CEAF), which
is equivalent to a relative error reduction of 8.6%
(B3) and 11.7% (CEAF).

In comparison to the results in rows 3 and 4,
we can see that better results can be obtained by
applying the two types of features in combination
than in isolation to the Baseline joint CR model.
This suggests that although both types of features
are derived from parse trees, they provide comple-
mentary information for the CR model.

Understanding the value of parse substruc-
tures. So far, we have always applied the uni-
grams and the parse substructures in combination
in our experiments. To better understand the value
of the parse substructures, we perform an ablation
experiment in which we repeat the previous exper-
imentwithoutusing the parse substructures.

Results are shown in row 6 of Table 1. In
comparison to the results in row 5, we can see
that F-measure drops by 0.9% (B3) and 0.7%
(CEAF). Since the difference in results between
the two rows can be attributed entirely to the pres-
ence/absence of the parse substructures, the drop
in F-measure suggests that the parse substructures
are indeed useful features for the joint CR model.

Pipeline vs. joint modeling. One challenge we
addressed here involves enabling the integration
of structured and flat features in a ranker that
performs joint learning. A natural question is:
is this joint learning architecture indeed better
than the traditional pipeline architecture in which
anaphoricity determination is performed prior to

coreference resolution? To answer this question,
we show in row 7 of Table 1 the results ob-
tained using the pipeline architecture, where (1)
an anaphoricity classifier is trained with all the
features used to represent an instance involving
the NULL antecedent in the joint CR model in
row 5 and (2) the joint CR model is trained using
the Baseline and path-based features. This setup
would therefore allow us to determine whether the
joint architecture or the pipeline architecture can
better exploit the structured features. In compari-
son to the results in row 5, we see that F-measure
drops by 0.6–0.8%. These results suggest that
joint learning is indeed better than pipeline learn-
ing in terms of exploiting structured features.

5 Conclusions

We have examined the effectiveness of tree-based
and path-based features in improving a state-of-
the-art supervised coreference model, the cluster-
ranking model. Results on 147 Switchboard dia-
logues, show that both types of features are effec-
tive at improving the performance of the cluster-
ranking model. In particular, when they are ap-
plied in combination, we see a reduction in rela-
tive error by 8.6–11.7%. One challenge that we
addressed during the course of this investigation
involves enabling flat and structured features to be
employed simultaneously in a ranking model that
employs joint learning. With the increasingly im-
portant role structured features and ranking mod-
els play in natural language learning, we believe
that our method for combining flat and structured
features for training a ranker would appeal to re-
searchers working in different areas of NLP.
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