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Abstract

We present an efficient technique to incor-
porate a small number of cross-linguistic
parameter settings defining default word
orders to otherwise unsupervised gram-
mar induction. A syntactic prototype,
represented by the integrated model be-
tween Categorial Grammar and depen-
dency structure, generated from the lan-
guage parameters, is used to prune the
search space. We also propose heuristics
which prefer less complex syntactic cate-
gories to more complex ones in parse de-
coding. The system reduces errors gen-
erated by the state-of-the-art baselines for
WSJ10 (1% error reduction of F1 score for
the model trained on Sections 2–22 and
tested on Section 23), Chinese10 (26% er-
ror reduction of F1), German10 (9% er-
ror reduction of F1), and Japanese10 (8%
error reduction of F1), and is not sig-
nificantly different from the baseline for
Czech10.

1 Introduction

Unsupervised grammar induction has gained gen-
eral interest for several decades, offering the pos-
sibility of building practical syntactic parsers by
reducing the labor of constructing a treebank
from scratch. One approach is to exploit the In-
side/Outside Algorithm (Baker, 1979; Carroll and
Charniak, 1992), a variation of EM algorithm for
PCFG, to estimate the parameters of the parser’s
language models. More recent advances in this ap-
proach are the constituent-context model (CCM)
(Klein and Manning, 2001; Klein and Manning,
2002), dependency model with valence (DMV)
based on Collin’s head dependency model (1999),
and the CCM+DMV mixture (Klein and Manning,
2004; Klein, 2005). Several search techniques and

models have been added to CCM+DMV for deal-
ing with local optima and data sparsity (Smith,
2006; Cohen et al., 2008; Headden III et al., 2009).
Spitkovsky et al. (2010) proposed a training strat-
egy where the model fully trained on shorter sen-
tences and roughly trained on longer sentences
tend to outperform the model fully trained on the
entire dataset. Recently, Gillenwater et al. (2010)
proposed the use of posterior regularization in EM
in which the posterior distribution of parent-child
POS tags are regulated to an expected distribution.

However, purely unsupervised learning still
does not perform well because the parameter es-
timation can be misled by unexpected frequent
cooccurrence. A common example of it is the col-
location of a verb (VBZ) and a determiner (DT) in
a verb phrase. This collocation results in incorrect
trees such as ((VBZ DT) NN).

To avoid this problem, the use of syntactic pro-
totypes has been proposed. Instead of enumerat-
ing every possibility, syntactic structures are cau-
tiously constructed regarding some syntactic con-
straints. Haghighi and Klein (2006) proposed
the use of bracketing rules extracted from WSJ10
in CCM and considerably improved accuracy.
Druck et al. (2009) used dependency formation
rules handcrafted by linguists to improve the ac-
curacy of DMV. Snyder et al. (2009) do semi-
supervised grammar induction from bilingual text
with the help of a supervised parser on one side
and word alignment. However, bilingual cor-
pora are not available for many language pairs.
Naseem et al. (2010) proposed the use of cross-
linguistic knowledge represented as a set of allow-
able head-dependent pairs. However, this method
still requires provision of language-specific rules
to boost accuracy. If language-specific rules are
necessary to achieve accuracy, we need more effi-
cient ways to encode this knowledge.

This paper proposes a method for inducing
language-specific word order regularities captur-
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ing cross-linguistically frequent constructions to
constrain unsupervised grammar induction. We
use the notion of syntactic prototype, a set of
grammar rules automatically generated for such
constructions. Categorial Dependency Grammar
(CDG), which combines rules of constituency and
dependency, is used to represent syntactic proto-
types. We also propose a novel category penalty
score for use in decoding, which defines the most
probable parse according to a preference for less
complex categories.

The paper is organized as follows. §2 details the
method of encoding linguistic prior knowledge as
a syntactic prototype. §3 explains an overview of
our approach. §4 shows experiment results and
discusses the errors. We conclude in §5.

2 Syntactic Prototypes

A syntactic prototype is a set of grammar rules
representing default language parameters (such as
word order for the most cross-linguistically fre-
quent linguistic constructions, following Naseem
et al. (2010)’s notion of cross-linguistic knowl-
edge. This section shows how CDG rules are de-
rived from a set of word order constraints.

2.1 Categorial Dependency Grammar

Categorial Dependency Grammar (CDG) is an ex-
tension of pure Categorial Grammar (CG) (Aj-
dukiewicz, 1935; Bar-Hillel, 1953) used for defin-
ing language-specific prototypes to be discovered.
Its syntactic derivations define constituency and
dependency in parallel. In CG, each constituent
is assigned one or more syntactic categories, de-
fined as an atomic category or a function category.
For example, the proper name ‘John’ is assigned
the atomic category np. If X and Y are categories
of either kind, then X/Y and X\Y are function
categories that map constituents of type Y respec-
tively on the right and on the left into those of type
X . For example, the intransitive verb ‘walks’ is
assigned the function S\NP .

We extended CG construct dependency struc-
ture alongside the syntactic derivation by encod-
ing the direction of dependency in slashes. Us-
ing the head-outward notation for dependency of
(Collins, 1999), the slash is subscripted < (>) if
the corresponding dependency is to be linked from
the head on the right to its dependent on the left
(the head on the left to its dependent on the right).
For example, an English adjective (e.g. ‘big’) can

be assigned the category np/>np, while a transi-
tive verb can be assigned s\>np/<np. CDG dif-
fers from PF-CCG (Koller and Kuhlmann, 2009)
in that dependency direction is specified indepen-
dently from the order of function and argument,
while theirs is determined by slash directionality.
For them such an adjective has the implicit cat-
egory np/>np and acts as the head of the noun
phrase. The derivation rules for context-free CDG
are listed below:

X/<Y : d1 Y : d2 ⇒ X : h(d1)→ h(d2) (1)
X/>Y : d1 Y : d2 ⇒ X : h(d1)← h(d2)

Y : d1 X\<Y : d2 ⇒ X : h(d1)→ h(d2)

Y : d1 X\>Y : d2 ⇒ X : h(d1)← h(d2)

where the notations h(d1) → h(d2) and h(d1) ←
h(d2) mean a dependency linking from the head
of the dependency structure d1 to the head of d2,
and that linking from the head of d2 to the head of
d1, respectively. Let us denote a constituent type
with C : w, where C is a syntactic category and w
is the head word of the constituent.

Given the CDG in (2), we obtain the syntactic
derivation of the string ‘John eats delicious sand-
wiches’ in Figure 1.

John, sandwiches ` np (2)

delicious ` np/>np

eats ` s\>np/<np

Figure 1(a) shows dependency-driven derivation,
in which the heads of constituents are propagated.
Figure 1(b) reflects the formation of the depen-
dency structure corresponding to the dependency-
driven derivation.

The attraction of using CDG for grammar in-
duction is the integration of the constituent model
and the dependency model. As shown in figure 1,
the syntactic derivation defines the dependency
structure, because we can directly construct a de-
pendency structure from any head-driven syntactic
derivations using the annotated directions. CDG
can boost the accuracy of grammar induction by
modeling rules of both constituent formation and
dependency. However, the search space would
become impossibly large if we had to enumerate
all possible syntactic categories, including all pos-
sible arguments and dependency direction. This
danger can be avoided by using small amounts of
hand-crafted prior linguistic knowledge.
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John eats sandwiches
np s\>np/<np np

delicious
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(a) Dependency-driven derivation.

John eats sandwiches
np s\>np/<np np

delicious
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s

John eats sandwiches
np

: John
s\>np/<np

: eats
np

: sandwiches

delicious
np/>np

: delicious

np
: sandwiches

s\>np
: eats

s
: eats

(b) Equivalent dependency structure.

Figure 1: Syntactic derivation of ‘John ate delicious sandwiches’ based on CDG. Each constituent type
is denoted by C : w, where C is a syntactic category and w is the head word, such as s\>np/<np : eats.

However, a simple parametric syntactic proto-
type will give rise to parsing failures when faced
with parametrically exceptional items, which oc-
cur in most if not all languages. We allow for such
exceptions to be accommodated by defining an ad-
ditional wildcard category ? which combines with
any syntactic category to yield the wildcard itself,
according to the following additional combinatory
rules:

? : d1 X : d2 ⇒ {? : h(d1)← h(d2), (3)
? : h(d1)→ h(d2)}

X : d1 ? : d2 ⇒ {? : h(d1)← h(d2),

? : h(d1)→ h(d2)}

The wildcard is assigned to unknown words and
large irreducible constituents so as to allow com-
plete parses of otherwise unparsable sentences. As
shown in (3), each wildcard derivation generates
two possible dependency structures; i.e. d1 and d2
can be the head of a phrase. The wildcard will be
revisited in §3.1.

2.2 Language Parameterization
We generate the CDG for each language automat-
ically from language parameters. To facilitate this
process, we have devised a questionnaire consist-
ing of 30 questions concerning word orders for
constructions that occur in most languages. Sorted
by their importance, the questions can be grouped
into the following categories:

1. The orders of subject, verb, direct object, and
optional indirect object (1 question)

2. The argument orders of subject- and object-
control verbs (2 questions)

3. The orders of adjectives, adverbs, and auxil-
iary verbs (4 questions)

4. The use of cardinal numbers and noun classi-
fiers (2 questions)

5. The argument orders of adpositions, nomi-
nal modifiers, adverbials, possessive mark-
ers, relative pronouns, and subordinate con-
junctions. (7 questions)

6. The orders of gerunds, infinitive markers,
nominalizers, and sentential modifiers (6
questions)

7. The orders of particles, the existence of a
copula, the usages of gerunds, the order of
negative markers, the use of dative shifts, and
the omission of discourse-given subject and
object (8 questions)

These language parameters are used to automat-
ically generate a CDG representing a syntac-
tic prototype including language-specific types of
cross-linguistically frequent categories1 will be
generated. For example, if a language has the
word order SVIO, the syntactic category s\>np,
s\>np/<np, and s\>np/<np/<np are generated
and assigned by default to intransitive, transitive,
and ditransitive verbs, respectively. Each slash
in all syntactic categories is assigned with de-
pendency directions according to Collins (1999)’s
head percolation heuristics. All questions are op-
tional; i.e. if any of the questions are left blank, all
possible categories for that question will be gener-
ated.

Once the cross-linguistic category classes are
generated, we then map them to the POS tags in
a particular corpus. This part is an engineering
task where the mapping should be best fitted to the

1E.g. intransitive verb, transitive verb, ditransitive verb,
subject- and object-control verb, adjective, adverb, preposi-
tion, relative pronoun, gerund, copula, subordinate conjunc-
tion, noun classifier, infinitive marker, cardinal number, etc.
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corpus. However, we will show in the experiment
section that the preparation process for syntactic
prototypes is quantifiable and reasonable in com-
parison to the improvement in accuracy attained.

3 Grammar Induction

3.1 Structure Enumeration
The first step in grammar induction is to enumer-
ate all possible parses for each sentence. We use a
table mapping from POS tags to language-specific
categories to define the lexicon, and build a parse
chart for each sentence with CKY Algorithm. A
packed chart is used for both speed and space com-
pactness. We apply a right-branching preference
to eliminate spurious ambiguity caused by coordi-
nation and nominal compounding. In the event of
a sentence yielding no parse using that lexicon, we
assign the wildcard category ‘?’ to all unknown
words and maximal irreducible constituents, and
reparse the sentence.

3.2 Parsing Model
We extend the probabilistic context-free gram-
mar with role-emission probabilities, defined as
the product of the probability of each daughter
category performing as a head or a dependent
in a derivation. This model was motivated by
Collins (1999)’s head-outward dependency model
and Hockenmaier (2003)’s generative model for
parsing CCG. Given a CDGG, we define the prob-
ability of a tree t having the constituent typeC : w
by:

P (t|s,G) =
1

Z

∏

C:w→α
∈R(t)−L(t)

πexp(α|C : w,G)
×πhead(H : w|G)
×πdep(D : w′|G)

(4)

×
∏

C:w∈N(t)

πHE(w|C,G)#t(C:w)

where Z is a normalization constant and each pro-
duction α contains H : w and D : w′, and H : w
and D : w′ are the head and the dependent, re-
spectively. There are four types of parameters as
follows.

1. πexp(α|C : w,G): probability of the type C :
w generating a production α.

2. πhead(C : w|G): probability of the type C :
w performing as a head.

πhead(C : w|G) =

∑
C:w′ #(C : w′ → αC:w

head )∑
C′:w′ #(C′ : w′ → αC:w)

(5)

3. πdep(C : w|G): probability of the type C : w
performing as a dependent.

πdep(C : w|G) =

∑
C′:w′ #(C′ : w′ → αC:w

dep )∑
C′:w′ #(C′ : w′ → αC:w)

(6)

4. πHE(w|C,G): probability of a category C
generating the head w.

πHE(w|C,G) =

∑
t∈Q#t(C : w)∑

t∈Q
∑
w′ #t(C : w′)

(7)

where αC:w is a production that contains C : w,
and αC:w

head and αC:w
dep have C : w as the head and

the dependent, respectively. #t(C : w) is the fre-
quency count of the category C : w in the tree t.
N(t) is the set of all nonterminal nodes.

3.3 Parameter Estimation
Learning is achieved using the Variational
Bayesian EM Algorithm (VB-EM) (Attias, 2000;
Ghahramani and Beal, 2000) to estimate the pa-
rameters πexp, πhead, πdep, and πHE. We followed
the approach of Kurihara and Sato (2006) for
training PCFGs with the VB-EM. This approach
places Dirichlet priors over the multinomial gram-
mar rule distributions. We set the Dirichlet hyper-
parameters to 1.0 for all rules containing the wild-
card category and 5.0 for all others. In all other re-
gards, we followed Kurihara and Sato (2006). The
VB-EM algorithm iterates two processes of expec-
tation calculation and parameter maximization. It
is favored for the present purpose because it is less
data-overfitting than the standard Inside/Outside
Algorithm regarding its free-energy criteria for
model selection. We calculate expected counts us-
ing Dynamic Programming (Baker, 1979; Lari and
Young, 1990).

To further avoid the data over-fitting issue, we
smoothed the probability of each substructure with
the additive smoothing technique (Lidstone, 1920;
Johnson, 1932; Jeffreys, 1948). An approximated
parameter π̂(τ) is calculated by

π̂(τ) =
π(τ) + ε

1 + ε
(8)

where ε is a small constant value. In our experi-
ments, we chose ε = 10−25.

3.4 Decoding with Category Penalty
By using prototypical syntactic categories in
derivation, the system can be misled by complex
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categories. A parse containing more complex cat-
egories is preferred to one containing less complex
categories, because both simple and complex syn-
tactic categories have the same chance of occur-
rence in parse enumeration. When learning the
parameters, rules containing complex categories
tend to have relatively excessive probability, as op-
posed to the Zipfian distribution of syntactic cate-
gories in which less complex categories are more
frequently found in CCGbank. We therefore intro-
duce a category penalty score.

The category penalty score is motivated by the
observation that, in practical use of language, sim-
pler categories tend to be used more frequently
than the more complex ones. The penalty score
v(c) of the category c is defined as follows:

v(c) = kS(c) (9)

where S(c) is the count of all forward and back-
ward slashes in c and k is the penalty constant.

We weight each tree by the product of the
penalty scores of the syntactic category on each
node; i.e.

P (t|s,G) =





v(A) · π(A→ w) lexicon
v(A) · π(A→ α) branching
·∏|α|i=1 P (ti|s,G)

(10)

We use Viterbi decoding to find the most probable
parse from a packed chart.

4 Experiments and Discussion

4.1 Datasets and Accuracy Metrics
In order to evaluate the method in comparison to
the state of the art, we chose WSJ10, the stan-
dard collection of trees from WSJ part of PTB
(Marcus et al., 1993) whose sentence length does
not exceed ten words after taking out punctuation
marks and empty elements. In stead of surface
forms, we used a set of POS sequences taken from
all WSJ10’s trees to avoid the data sparsity issue.
We converted the Penn Treebank into dependency
structures with Collins (1999)’s head percolation
heuristics. Following the literature, we trained the
system with sections 2–22 and evaluated the resul-
tant model on section 23.

For multilingual experiments, we made use of
dependency corpora from the 2006 CoNLL X
Shared Task (Buchholz and Marsi, 2006). Shown
in Table 1, Chinese (Keh-Liann and Hsieh, 2004),

Table 1: Sizes and granularity of POS of multilin-
gual corpora

Languages Sentences POS Tags
WSJ10 7,422 36

Chinese10 52,424 28
Czech10 27,375 1,149

German10 13,473 51
Japanese10 12,884 77

Czech (Bohomovà et al., 2001), German (Brants
et al., 2002), and Japanese (Kawata and Bartels,
2000) were chosen for the sake of language ty-
pology variety. We also chose sentences whose
length does not exceed ten words after taking out
punctuation marks. As a free-word-ordered, in-
flectional language, the Czech dataset was partic-
ularly prepared by augmenting the POS tags with
inflectional information, resulting in significantly
much more granularity. However, Czech’s syntac-
tic prototype does not make use of such syntactic
information to restrain the search space.

We measured the capability of our system by
two metrics: directed dependency accuracy, and
undirected dependency accuracy (Klein, 2005).
For directed dependency accuracy, we count a di-
rected dependency of a word pair to be correct if
it exists in the gold standard. For undirected de-
pendency accuracy, we neglect the direction of the
dependency. All accuracy numbers are reported in
terms of precision, recall, and F1 scores.

4.2 Construction of Syntactic Prototypes

In order to construct syntactic prototypes for each
language, we conduct an interview with a non-
linguist native speaker. We ask him/her each ques-
tion in the questionnaire mentioned in §2.2 by giv-
ing them a sample sentence and letting them build
up the corresponding sentence in their language.
We then ask questions to elicit word alignment and
analyze the answers. Normally it takes up to two
hours per previously unseen language to complete
the questionnaire.

We then study the manual of the treebank’s POS
tags and mapped each to one or more language-
specific category classes. Normally this process
takes around four to six hours to thoroughly scru-
tinize the usage of each POS tag and assign them
to appropriate classes. It therefore takes six to ten
hours to build a syntactic prototype for each lan-
guage.
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4.3 Results
This section presents results of English and multi-
lingual experiments using syntactic prototypes as
a guide to grammar induction.

4.3.1 Experiments on English
Table 2 shows experiment results of English gram-
mar induction on WSJ10. In the beginning, we
compared the produced trees against the gold stan-
dard produced from Collins’s parser. We trained
the system with Sections 2–22 of WSJ10 and
tested it on Section 23. In decoding, we set the
category penalty constant to 10−15. The F1 score
outperforms the baseline set by (Naseem et al.,
2010). To exhibit the stability of the approach,
we also ran ten-fold cross validation on English;
i.e. we divided WSJ10 into ten parts and, for each
fold, we chose nine parts for as a training set and
the other one as a test set. We attained higher F1
score, as expected for cross-validation, which ef-
fectively tests on the development set.

4.3.2 Effects of Numbers of Constraints and
Category Penalties

Figure 2 shows the effects of numbers of con-
straints towards directed and undirected F1 scores.
We varied the number of constraints in English
syntactic prototypes. The category class 4 (the us-
ages of cardinal numbers and noun classifiers) was
neglected, because we can treat cardinal numbers
as adjectives or nouns and there are no true noun
classifiers in English. Therefore there are 28 con-
straints in total for English. We again trained on
Sections 2–22 of WSJ10 and tested on Section 23.
In decoding, we set the category penalty constant
to 10−15. We then evaluated the accuracy against
the gold standard produced by Collins’s parser.

As we increased the number of constraints in
syntactic prototypes, we found that both directed
and undirected F1 scores increase and start to sat-
urate after the first 20 rules. In keeping with the
Zipfian distribution, the first 20 rules cover fre-
quent linguistic phenomena. When we pruned the
search space with linguistic constraints, the di-
rected accuracy starts to approach the undirected
accuracy. We also note that errors generated by
the system reflect the same attachment ambiguity
errors as supervised parsing.

Figure 3 shows the effects of category penalty
constants on accuracy. We again trained on Sec-
tions 2–22 of WSJ10 and tested on Section 23. We
then evaluated the accuracy against the gold stan-
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Figure 2: Effects of numbers of constraints on the
directed and undirected dependency accuracy. The
category penalty constant is fixed at 10−15.
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Figure 3: Effects of category penalty on the di-
rected and undirected dependency accuracy.

dard produced by Collins’s parser. We notice that
both accuracy scores saturate at the penalty con-
stant of 10−15 and slightly decay afterwards.

4.3.3 Multilingual Experiments

We also conducted multilingual experiments on
Chinese, Czech, German, and Japanese to show
the stability of the approach. We ran ten-fold cross
validation on each language and calculated the av-
erage F1 scores. Our baseline systems are as fol-
lows: (Naseem et al., 2010) for English, (Snyder
et al., 2009) for Chinese, and (Gillenwater et al.,
2010) for Czech, German, and Japanese. In Ta-
ble 3, our system significantly outperforms almost
all the baselines, except in the Czech experiment.
We believe that the under-performance of our sys-
tem on Czech is caused by the data sparsity issue.
Designed based on rather fixed word ordered lan-
guages, the syntactic prototype needs to generate
almost all possible syntactic categories to capture
Czech’s free word orderedness. Although its POS

443



Table 2: Undirected and directed dependency accuracy of grammar induction on English Penn Treebank.
The baseline for English is (Naseem et al., 2010).

Undirected Directed Baseline
Precision Recall F1 Precision Recall F1 Directed F1

WSJ10 (Sect. 23) 79.24 79.29 79.27 74.72 74.77 74.75 73.80
WSJ10 (10X) 79.59 79.65 79.62 75.44 75.50 75.47 —

tags are grouped to easily map to cross-linguistic
category classes, each class still contains a lot of
syntactic categories. Because we do not use inflec-
tional information in restraining the search space,
the data sparsity becomes significant in Czech and
therefore deteriorates the accuracy.

4.4 Error Analysis

We counted erroneous dependency pairs generated
in the English experiment (10X) in §4.3.1, and we
classified errors into two types: over-generation
and under-generation. From Table 4, we can no-
tice that the majority of errors are caused by ad-
verbial and prepositional attachment (e.g. RB >
VB, CD < IN, and NN < IN), and NP struc-
tural ambiguity (e.g. NN > NNP, DT > NN, and
NNP > NNP).2 These errors are common in su-
pervised parsing. There is also under-generation
of adverbial preposition phrases. We believe that
the category penalty score accounts for this issue,
resulting in the NP-modifying preposition (such
as np\<np/>np) being preferred to the adverbial
one (such as s\>np\<(s\>np)/<np).

5 Conclusion

We have demonstrated an efficient approach to
grammar induction using linguistic prior knowl-
edge encoded as a prototype or lexical schema.
This prior knowledge was used to capture frequent
linguistic phenomena. To integrate the strength
of constituent and dependency models, Categorial
Dependency Grammar was used as the backbone
formalism. We also proposed a category penalty
score preferring less complex categories, based on
the observation of the Zipfian distribution of cate-
gory types in CCGbank.

Syntactic prototypes can capture the most fre-
quent constructions and improve accuracy on al-
most all of the selected languages. We found that

2Similar to the dependency directions in §2.1, the nota-
tions < and > are pointers to the syntactic head of the phrase.
For example, DT > NN means that NN is the head and DT is
its dependent.

Table 4: Top-10 over-generation and under-
generation in the English experiment (10X) when
compared against Collins’s gold standard

Over-generation Under-generation
Errors Counts Errors Counts

RB > VB 402 VBD < IN 364

CD < IN 200 DT > NN 331

NN < IN 197 VBD < TO 283

RB > VBN 188 VBD < RB 275

NN < TO 181 VBZ < RB 244

NNP > CD 180 IN < NN 219

MD > VB 166 JJ > NN 203

NNS < IN 149 MD < RB 194

NNP > NN 145 MD < VB 185

NN > NNP 141 NNP > NNP 179

dependency accuracy correlates with the Zipfian
distribution as the number of constraints increases,
as the increase in accuracy saturates after the first
20 rules. Error analysis suggests that the main
sources of error are in adverbial and prepositional
attachment, and NP structural ambiguity, which
are also problematic for supervised parsing.

Future work remains as follows. First, we are
looking forward to improving the capability of our
syntactic prototype to also handle free word or-
dered languages by generating syntactic categories
with more flexible combination and restraining the
search space with inflectional information. Sec-
ond, we plan to experiment on grammar induction
from untagged words by decomposing the model
into tagging and parsing subproblems (Ganchev
et al., 2009; Rush et al., 2010; Auli and Lopez,
2011). Third and finally, we will experiment on
longer sentences to show the scalability of our ap-
proach in dealing with larger data.
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Table 3: Undirected and directed dependency accuracy of grammar induction for English, Chinese,
Czech, German, and Japanese. Our baseline systems are as follows: †(Naseem et al., 2010) for English,
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