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Abstract

Context-free grammars with latent anno-
tations (PCFG-LA) have been found to
be effective for parsing many languages;
however, currently their lexical model may
be subject to over-fitting and requires
language engineering to handle out-of-
vocabulary (OOV) words. Inspired by pre-
vious studies that have incorporated rich
features into generative models, we pro-
pose to use a feature-rich log-linear lexical
model to train PCFG-LA grammars that
are more robust to rare and OOV words.
The proposed lexical model has three ad-
vantages: over-fitting is alleviated via reg-
ularization, OOV words are modeled us-
ing rich features, and lexical features are
exploited for grammar induction. Our ap-
proach results in significantly more accu-
rate PCFG-LA grammars that are flexible
to train for different languages (with test
F scores of 90.5, 85.0, and 81.9 on WSJ,
CTB6, and ATB, respectively).

1 Introduction

The latent variable approach of (Matsuzaki et
al., 2005; Petrov et al., 2006) is capable of
learning high accuracy context-free grammars di-
rectly from a raw treebank, and has achieved
state-of-the-art parsing accuracies on multiple lan-
guages, outperforming many other parsers that are
engineered for performance in a particular lan-
guage (Petrov, 2009; Green and Manning, 2010).
However, the lexical model of PCFG-LA gram-
mars (responsible for emitting words from latent
POS tags) is not designed to effectively handle
OOV words universally. In fact, hand-crafted rules
designed for English OOV words were used in the
multi-language study of (Petrov, 2009) for non-
English languages, leaving room for further im-
provement for each of the languages studied.
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Huang and Harper (2009) and Attia et al. (2010)
studied the impact of rare and OOV word handling
for parsing with PCFG-LA grammars, especially
for non-English languages. They both found that
language-specific handling of OOV words signif-
icantly improves parsing performance. However,
hand tailoring of the language-specific module
with expert knowledge may produce suboptimal
results, and would not be applicable to new lan-
guages. Petrov and Klein (2008) presented a dis-
criminatively trained PCFG-LA model that makes
use of rich morphological features for handling
OOV words and obtained improved performance
on some languages; however, this method was
considerably less accurate than its strong gener-
ative counterpart on English WSJ.

Berg-Kirkpatrick et al. (2010) demonstrated
that each generation step of a generative process
can be modeled as a locally normalized log-linear
model so that rich features can be incorporated
for learning unsupervised models, e.g., POS in-
duction. Inspired by their work, we propose a
log-linear lexical model for generative PCFG-LA
grammars. It maintains the advantages of gener-
ative models, while providing a principled way
to: 1) alleviate over-fitting via regularization, 2)
handle OOV words using rich features, and 3) ex-
ploit lexical features for grammar induction. The
proposed approach produces significant improve-
ments for all of the three studied languages.

The rest of the paper is structured as follows.
We first review PCFG-LA grammars and issues
related to the lexical model in Section 2, and then
describe the proposed log-linear lexical model and
the training methods in Sections 3 and 4, respec-
tively. Experiments are presented in Section 5.
Section 6 concludes this paper.

2 PCFG-LA Grammar

PCFG grammars with latent annotations (Mat-
suzaki et al., 2005; Petrov et al., 2006) augment
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the observed parse trees in the treebank with a la-
tent variable at each tree node. Each latent vari-
able effectively refines an observed category ¢ into
a set of latent subcategories {t,|z = 1,---,|t|},
where |t| denotes the number of latent tags split
from ¢. Each syntactic category in the original
tree in Figure 1(a) is split into multiple latent
subcategories, and that parse tree is decomposed
into many derivation trees whose non-terminals
are latent categories; Figure 1(b) depicts one such
derivation tree, where each grammar rule expands
a latent non-terminal category into a sequence of
latent non-terminals and/or terminal words, e.g.,
VP-4—VBD-5 NP-6.

NP . NP-2 VP-4
| I N N
PRP VBD NP . PRP-3 VBD-5 Np-g .
S‘he hiard DT NN S‘he hé‘:dl’d D&N—6
the n(‘)ise tine n(‘nse

(@) (b)

Figure 1: (a) treebank tree (b) derivation tree

The objective of PCFG-LA training is to in-
duce a grammar with latent variables that maxi-
mizes the probability of the training trees. Given
a PCFG-LA grammar with model parameter 6, R
denotes the set of grammar rules, D(T") the set of
derivation trees for parse tree 7', and R(7") and
R(D) the sets of rules comprising 7" and D, re-
spectively. The probability of 71" under the gram-
mar is computed as:

. PD)= > 11 Pa

DeD(T) DeD(T) reR(D

Py(T) =

An EM-algorithm is used to optimize # based
on the training likelihood. The E-step computes
the expected count e, of rule r over the training
set 7 under the current model parameter 6':

e Y Y. 80, )Py (r|T) (1)

TeT r"eR(T)

where J(+, -) is an indicator function that returns 1
if the two operands are identical and O otherwise,
and Py (r'|T) is the posterior probability of having
(latent) rule 7’ in parse tree T'. The M-step aims to
maximize the intermediate objective:

1(0) = erlogPy(r) 2)

reR
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which results in the following update formula for
lexical rule probability 0, ., = Py(w|t,):
€ty w

Zw’ etr ,’LU/

where e;, ., denotes the expected count of lexical
rule r=t;—w. The phrasal rule probabilities are
updated similarly.

In order to allocate the grammar complexity to
where it is most needed, Petrov et al. (2006) de-
veloped a simple split-and-merge procedure. In
every split-merge (SM) round, each latent cate-
gory is first split into two, and the model is re-
estimated using several rounds of EM iterations.
A likelihood criterion is then used to merge back
the least useful splits. The result is that categories,
such as NP and VB, that occur frequently in differ-
ent syntactic environments, are split more heavily
than categories such as UH (interjection). This
approach also creates a hierarchy of latent cat-
egories that enables efficient coarse-to-fine pars-
ing (Petrov and Klein, 2007).

We next discuss two important issues related to
the lexical model of PCFG-LA grammars: over-
fitting and OOV word handling.

Py(wlty) = 3)

2.1 Opver-fitting

As the number of latent annotations increases, a
PCFG-LA grammar has an increasing power to fit
the training data through EM training, leading to
over-fitting. In order to counteract this behavior,
Petrov et al. (2006) introduced a linear smoothing
method to smooth lexical emission probabilities:

- “ﬂZPg(w]tx)

Py(wlty) <+ P+ (1 —€)Py(wlty)

A similar smoothing method was used for phrasal
rules.

While the above method has been found to be
effective, Huang and Harper (2009) observed that
rare words suffer more from over-fitting than fre-
quent words and suggested tying rare words to-
gether when estimating their emission probabili-
ties. Using their approach, all words with a fre-
quency less than a threshold 7 are mapped to sym-
bol rare', and their emission probability Py(w|t,)
is set in proportion to their co-occurrences with the
surface POS tag:

Po(uwlts) = <"

!
Zw’:cA o <7 Ctw
,

Py(rarelt,)

'7 is tuned on the development set.



where c.,, and c¢;, are the observed counts
of words and word/tag pairs, respectively, and
Py(rare|t;) is a free parameter estimated by the
EM algorithm. This constraint greatly reduces the
number of free parameters and was found to sig-
nificantly improve parsing accuracies.

2.2 OOV Handling

Since the lexical model can only generate words
observed in the training data, a separate module
is needed to handle OOV words that can appear
in novel test sentences. A simple approach might
be to estimate the emission probability of an OOV
word w based on how likely it is that ¢,, generates
a rare word in the training data:

Py(w|ty) = Py(rarelt,)

We call this type of approach the simple method?.

A better approach would exploit the word for-
mation process for the language being modeled.
As with other generative English parsers, the
PCFG-LA parser implementation of (Petrov et al.,
2006) classifies OOV words into a set of OOV sig-
natures based on the presence of features such as
capital letters, digits, dashes, as well as a list of
indicative suffixes (e.g., -ing, -ion, -er), and esti-
mates the emission probability of an OOV word w
given a latent tag ¢, as:

Py(w|ts) o Py(slty)

where s is the OOV signature for w and Py(s|t,)
is computed by e;, /ey, ..

While this approach performs well for English,
the same OOV word handling module would not
be adequate for other languages since they have
different word formation processes, which should
be exploited for better disambiguation of OOV
words. For example, Huang and Harper (2009)
improved Chinese parsing performance by esti-
mating the emission probability of an OOV word
using the geometric average of the emission prob-
abilities of all of the characters ch;, in the word:

Polwlta) = T\q/Hchkew,Pe(chktz)aéo Po(chilt)

where n = |[{chy € w|Py(chg|ts) # 0}]. As
will be shown later in Section 5, handling Ara-
bic OOV words in a similar way to Chinese pro-
duces improved parsing performance on Arabic?;

2This method is used in the simple lexicon of the Berkeley
parser.

3We use prefixes and suffixes up to three characters for
handling Arabic OOV words.
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however, the aforementioned language dependent
OOV handling approaches are most likely subop-
timal and designing a method for a new language
could be nontrivial. We call this type of approach
the heuristic method.

Researchers have exploited discriminative pars-
ing models (Finkel et al., 2008; Petrov and Klein,
2008) to utilize naturally occurring overlapping
features, including features for OOV handling.
The discriminative version of the PCFG-LA gram-
mar (Petrov and Klein, 2008) was found to be
more accurate than its generative counterpart on
some languages, partially due to its use of reg-
ularization and multi-scale grammars to alleviate
data sparsity and rich features to improve OOV
word handling. However, such a model is much
slower to train and considerably less accurate on
English WSJ than its strong generative counter-
part. Hence, we will investigate a locally normal-
ized log-linear lexical model to take advantage of
rich features within the generative learning frame-
work.

3 Log-Linear Lexical Model for
PCFG-LA grammars

Instead of treating each Py(w|t,) as a free param-
eter of a multinomial distribution as in a standard
PCFG-LA grammar, we first model the condi-
tional probability of latent tag ¢, given the surface
POS tag t and word w using a log-linear model:

exp(¢, £ (s, w))
> exp(e, £(ter, w))

where f(t,,w) represents the feature vector ex-
tracted from the pair (¢,,w), ¢ is the feature
weight vector, and the denominator sums over all
latent tags for POS tag ¢. This model is applicable
to both known and OOV words as long as there
are active features; otherwise, a uniform latent tag
distribution would be assumed. We call this the /a-
tent lexical model as it deals with the distribution
of latent tags.

The conditional probability of ¢, given word w
can then be expressed as:

Py(tz|t,w) =

“4)

Py(ta|w) = P(ta, thw) = Py(te|t, w)P(tw)

and finally the word emission probability given a
latent tag can be computed via Bayes’ rule:
Py (talt, w)P(tw)P(w)

Polwite) = S~ alt, w P{w)P(w) )




This new lexical model is composed of the la-
tent lexical model Py (|, w) and two other parts:
P(t|w) and P(w), which are computed differently
for known and OOV words.

For words observed in the training data,
both P(t|w) are P(w) are computed using the
maximum-likelihood estimation (based on the ob-
served training trees) so that Py(w|t;) forms
a proper distribution of observed words during
grammar induction.

For OOV words, we use a log-linear OOV model
to estimate the POS tag distribution:

_ exp(v,8(tw))
P, (tjw) = S, exp(y, g(t', w))

where g(t,w) represents the feature vector ex-
tracted from the pair (¢, w), -y is the feature weight
vector, and the denominator sums over all POS
tags with active features. The simple approach in
Subsection 2.2 is used when no feature is active.
P(w) is approximated by one over the number of
training tokens. It should be noted that P (t|w)
may use different features than Py (¢, |t, w).

Compared with modeling Py(w|t,) directly as
a multinomial distribution, the new lexical model
separates P(t|w) from Py (¢, |t, w), offering three
important advantages:

(6)

e The parameter ¢ of the latent lexical model
P4(t;|t, w) can be smoothed through regular-
ization to address data sparsity.

e Rich features can be utilized in the OOV
model P, (t|w) to estimate POS tag distri-
butions of OOV words for a variety of lan-
guages. This is important when working on
new languages.

e Rich features can be utilized in the latent lex-
ical model Py(t.|t, w) to guide the induction
of latent POS tags.

The reader should note that Berg-Kirkpatrick et
al. (2010) modeled Py(wlt,) directly using a log-
linear model:

exp(@, £(tz, w))
> w €XP(9, £(ta, w'))

This would be problematic for our parsing model
because it would not be trained to estimate the
probability of OOV words given a latent tag. For
parsing, we must model OOV words that can ap-
pear in previously unseen sentences. One might

Py(wlty) =

compute the numerator for an OOV word based
on its features and divide it by a denominator ap-
proximated using the words in the training data,
but such an estimate is inaccurate and results in
poor performance in our preliminary experiments.

We also choose not to model Py(t,|w) directly
using a log-linear model:

_ eXp<¢7 f(txa w)>
Py (tzlw) = v 2o exp(o, f(tl,, w))

and compute Py(wl|t,) via Bayes’ rule. Such
a model cannot guarantee that the probability
Py (t|w) computed by > Py(t,|w) is equal to the
maximum likelihood estimate, which is a reason-
able constraint.

4 Model Training

The parameter 6 for our parser model consists of
¢ for the log-linear latent lexical model, ~ for
the log-linear OOV model, and v for the phrasal
rule expansion probabilities. The other parame-
ters (e.g., P(tjw) and P(w) for known words and
P(rarelt,)) can be computed based on observable
or fractional counts once 6 is determined.

~ of the OOV model is independent of the latent
categories, and we simply use a gradient-based op-
timization approach to maximize the following ob-
jective:

U(y) = crwlog Py (tw) — &||y]|”

t,w

where ¢, is the count of the pair (¢, w) in the
training data, and ' is the regularization weight.

For parameters ¢ and ¢, we follow the split-
merge training procedure in (Petrov et al., 2006)
to induce latent categories. Given a set of latent
categories, the goal is to find 6 that maximizes the
regularized training likelihood:

L(6) = ) logPy(T) — xl[¢|[? (7)

TeT

where r||#||? is the regularization term* for the
feature weights of the latent lexical model.

The two optimization approaches described
in (Berg-Kirkpatrick et al., 2010) can be extended
naturally to our problem. One approach is EM-
based with an E-step identical to Equation 1 in

“Both ' and & are tuned on the development set. We
could also use L1 regularization and leave it to future work.
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Section 2. The objective of the M-step becomes:

> e wlogPy(wlts) — kll¢||?

w—tx ERY

+ Z e, log Py (1)

r€Rp

00) =

where we separate the set of rules R into lexical
rules R; and phrasal rules R,,. The phrasal rule
parameter ¢ is updated as before by normalizing
the expected rule counts and is smoothed in the
same way as in (Petrov et al., 2006). The interme-
diate objective function I(¢) related to ¢, i.e.,
(9)= D ewlogPy(wlts) — wl¢l>

w—rty ER[

can be optimized by a gradient descent optimiza-
tion algorithm (we use LBFGS (Liu and Nocedal,
1989)). Its gradient has the following form:

> e WA w(d) — 260

w—tL ERy

F(ta,w) = > Py(tarlw, t)f (tor, w)

Vi(¢) =

Atx,w(¢) -

where €}, = €1, w — et Py(wlts).

It can be shown that [(¢) is not a concave func-
tion with respect to ¢, but this created no prob-
lems in our experiments. It should be noted that if
we set the regularization weight « to 0, the maxi-
mum of [(¢) is achieved when Py(w|t;) is set to
e+, w/€t,,.» Which is identical to the update for-
mula in Equation 3, and would thus be unable to
use rich features. This is less of an issue when reg-
ularization takes effect as it favors common dis-
criminative features to reduce the penalty term.

The second approach, which was found to
outperform the EM-based approach in (Berg-
Kirkpatrick et al., 2010), optimizes on the reg-
ularized log-likelihood (Equation 7) directly by
updating both v and ¢ using a gradient descent
approach. In order to convert this to an un-
constrained optimization problem’, we set each
phrasal rule expansion probability v; as the output
of a log-linear model, i.e., ¢; = exp(¢})/Z with
Z being the normalization factor, and treat v’ as
the parameter for the phrasal rules to be optimized.
The gradient of L(6) with respect to ¢ turns out to
be the same as in the first approach (Salakhutdinov
et al., 2003). The gradient of L(#) with respect to

5The elements of 1) are constrained to form proper proba-
bility distributions.
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1)’ can be derived similarly. We omit the details
here due to space limitations.

In the original EM-based training ap-
proach (Petrov et al., 2006), many of the rule
expansion probabilities become very small and are
pruned to dramatically reduce the grammar size.
The phrasal rule probabilities computed from the
log-linear model with parameter )" are not usually
low enough to be pruned, due to the fact that a
large decrease in ¢} results in a much smaller
change in v; when 1; is already relatively small.
In order to address this problem, we combine the
two optimization approaches together: first run
rounds of EM-based optimization to initialize
the grammar parameters and prune many of the
useless phrasal rules, and then switch to the direct
gradient descent optimization approach. This
combined approach outperforms the standalone
EM-based approach in our study and is used in
the experiments reported in this paper.

5 Experiments

In this section, we will show the effect of rare
word smoothing and OOV handling on the ac-
curacy of the standard PCFG-LA grammars, and
investigate how the proposed feature-rich lexical
model addresses these problems. In what follows,
we first describe the experimental data and then
the results of the standard PCFG-LA grammars.
We then describe the features and results of the
PCFG-LA grammars with log-linear lexical mod-
els, and present some analyses. Finally, additional
features are discussed and the final test results are
compared with the literature.

5.1 Data & Setup

We experiment with three languages: English,
Chinese, and Arabic. For English, we used the
WSJ Penn Treebank (Marcus et al., 1999) and
the commonly used data splits (Charniak, 2000).
For Chinese, we used the Penn Chinese Treebank
6.0 (CTB6) (Xue et al., 2005) and the preparation
steps and data splits in (Huang and Harper, 2009).
For Arabic, we used the Penn Arabic Treebank
(ATB) (Maamouri et al., 2009) and the prepara-
tion steps® and data splits in (Green and Manning,
2010; Chiang et al., 2006). Table 1 provides gross
statistics for each treebank. As we can see, CTB6
and ATB both have a higher OOV rate than WSJ,

Except that clitic marks were removed, which results in
about 0.3 degradation in F score (p.c.).



and hence have greater need for effective OOV
handling.

Statistics Train Dev Test
#sents 39832 1700 2416
English  #tokens 950.0k  40.1k  56.7k
(WSJ) Y000V _types - 128% 132%
%00V _tokens - 2.8% 2.5%
#sents 24416 1904 1975
Chinese  #tokens 678.8k  51.2k 52.9k
(CTB6)  %oov_types - 20.6% 20.9%
%00V _tokens - 5.0% 5.3%
#sents 18818 2318 2313
Arabic #tokens 5979k  70.7kx  70.1k
(ATB) Y000V _types - 15.6% 16.7%
J00v_tokens - 3.2% 3.4%

Table 1: Gross Statistics of the treebanks.

Due to the variability (caused by random initial-
ization) among the grammars (Petrov, 2010), we
train 10 grammars with different seeds in each ex-
periment and report their average F score on the
development set. The best grammar selected us-
ing the development set is used for evaluation on
the test set.

5.2 Standard PCFG-LA Grammars

We first study the effect of rare word smooth-
ing and OOV handling on the standard PCFG-
LA grammars using our reimplementation of the
Berkeley parser. The no+simple row in Table 2
represents the baseline, for which the grammars
are trained without rare word smoothing described
in Subsection 2.1 and OOV words are handled by
the simple method described in Subsection 2.2.
Each language-dependent heuristic-based OOV
word handling method improves parsing accura-
cies, and the rare word smoothing method pro-
vides even greater improvement across the lan-
guages. Their combination results in further im-
provement. This confirms that both over-fitting
and OOV words are issues to consider for training
accurate PCFG-LA grammars.

Rare Word

. OOV  WSJ] CTB6 ATB
Smoothing
no simple 89.86 82.52 79.12
no heuristic 90.07 82.98 79.44
yes simple 90.53 83.25 80.30
yes heuristic 90.69 83.73 80.64

Table 2: The effect of rare word smoothing and
OOV handling on parsing F scores evaluated on
the respective development set.

5.3 Log-Linear Lexical Model

Here we investigate a core set of features that have
proven effective for POS tagging to demonstrate
the effectiveness of our model and its robustness
across languages, and leave it to future work to in-
clude additional features as discussed in Subsec-
tion 5.5. Table 3 lists the templates we used to ex-
tract predicates on words. For the log-linear OOV
model, we use the full feature set, i.e., (¢, pred)
pairs extracted using all of the predicates. For
the log-linear latent lexical model, we experiment
with two feature sets: 1) the wid feature set con-
taining only (¢, wid) pairs, which are the same as
those used in the standard PCFG-LA grammars, 2)
the full feature set using all of the predicates.

Predicate Explanation
(w=") word identity (wid)
d(hasDigit(w)

) contains a digit?

=) contains a hyphen?
first letter capitalized?
prefix of length k£ < 3
suffix of length k < 3

( —
(hasHyphen(w)
(initCap(w) = -)
gpreﬁxk(w) =)

5
5
J
d(suffixg (w) = -)

Table 3: Predicate templates on word w.

We first evaluate the effectiveness of regular-
ization and the log-linear OOV model by train-
ing the latent lexical model using the wid fea-
ture set with regularization and examining differ-
ent OOV handling methods. As shown in Table 4,
the wid+simple and wid+heuristic approaches’
produce results comparable to the correspond-
ing PCFG-LA grammars trained with rare word
smoothing and respective OOV handling. This
shows that regularizing the latent lexical model al-
leviates data sparsity, however, we will illustrate
in Subsection 5.4 that this is achieved in a differ-
ent way than rare word smoothing.

The log-linear OOV model using the full feature
set results in improved parsing performance over
all languages, with the most improvement seen
on Arabic (0.71 F), followed by Chinese (0.28
F), confirming that the log-linear OOV model is
more accurate than the heuristic approach, and
can be flexibly used for different languages. The
improvement on English is marginal possibly be-
cause the signature-based OOV features are suf-
ficiently accurate for handling English unknown

"Training the latent lexical model using the wid feature
set and handling OOV words using the simple or heuristic
approach.
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Figure 2: The conditional distribution P(t|t, w) of latent tags for selected cardinal numbers (e.g., 0.26,
million) that appear only once, 10 times, or frequently for standard PCFG-LA grammars trained with
(labeled rare) or without (labeled baseline) rare word smoothing and for PCFG-LA grammars with regu-
larized feature-rich lexical model using the wid feature set (labeled wid). The distribution is represented
by the four bars separated by dotted vertical lines, and each bar represents the conditional probability of

a latent tag.

words after years of expert crafting.

We next investigate the effect of training the la-
tent lexical model using the full feature set. Com-
pared with the wid+full model, the full+full model
improves 0.38 F on Arabic and 0.27 F on Chi-
nese, despite the fact that the additional features
are very simple, mostly prefixes and suffixes of
words. The improvement on English is again
marginal possibly because the features do not pro-
vide such insights on fine-grained syntactic sub-
categories (e.g., suffix -ed is indicative of past
tense verbs, but not their sub-categories). Admit-
tedly, many of the features are noisy, but as we will
show in Subsection 5.4, some of the features can
guide the learning of the latent categories to reflect
the similarity between syntactically similar words
of the same POS type.

Compared with the baseline (no+simple in Ta-
ble 2), the feature-rich full+full model signifi-
cantly improves parsing F scores by 1.03, 1.66,
and 2.67 absolute on English, Chinese, and Ara-
bic, respectively.

Latent

. (0]0)% WSJ] CTB6 ATB
Lexical
wid simple 90.54 83.18 80.32
wid heuristic 90.71 83.63 80.70
wid full 90.81 83.91 81.41
full full 90.89 84.18 81.79
Table 4: The effect of features (wid vs. full) for

training the latent lexical model and the OOV han-
dling methods (simple, heuristic, or the log-linear
model using the full feature set) on parsing perfor-
mance (F score) on the development set.
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5.4 Analysis

We examine in Figure 2 the effect of regulariza-
tion and rare word smoothing on the learned rules
by looking at the distribution P(¢,,|t, w) for PCFG-
LA grammars trained in different ways®. For
standard PCFG-LA grammars trained without rare
word smoothing (labeled baseline), rare words
have sparse distributions of latent tags, which are
determined solely based on limited contexts and
are thus not reliable. The rare word smoothing ap-
proach (labeled rare) collapses all rare words into
a single token so that P(¢,|t,w) = P(t,|t, rare)
is identical for any rare word w. This constraint
greatly reduces data sparsity; however, treating
all rare words as one token could eliminate too
much lexical information (e.g., the distribution of
latent tags is the same for all rare cardinal numbers
no matter whether they appear only once or 10
times). Regularization of the log-linear latent lex-
ical model (labeled wid) favors a uniform distri-
bution (zero penalty when all feature weights are
zero). There is not much evidence to skew the dis-
tribution from uniform for rare words. However,
when more evidence is available, the distribution
becomes smoothly skewed to reflect the different
syntactic preferences of the individual words, and
it can eventually become as spiky as in the other
approaches given sufficient evidence.

In order to provide some insights into why pars-
ing accuracies are improved for Arabic and Chi-
nese by using the full feature set when training the
latent lexical model, we look at the country names

8For standard PCFG-LA grammars, P(t,|t,w) is simply

computed by e, . /€et,w; Whereas, for the feature-rich lexical
model, P(¢|t, w) is computed from the latent lexical model.
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Figure 3: The conditional distribution P(¢,|¢, w) of lat

%‘b’

ent tags for selected country names (proper nouns)

listed in order of decreasing frequency from the Chinese treebank (English translations are provided
under Chinese names), after training using the wid and the full feature set, respectively. The distribution
is represented by the four bars separated by dotted vertical lines, and each bar represents the conditional

probability of a latent tag. The preferred latent tag for

that end with the character % (country) in the Chi-
nese treebank. These names appear in similar con-
texts and would be expected to favor certain latent
tag or tags; however, when training using the wid
feature set, this is only true for the frequent names
as shown in Figure 3. For the rare names, there is
not much evidence to divert the distribution away
from uniform. When training with the full fea-
ture set, the suffix1=[E| predicate is active for all
of those country names and has a large feature
weight associated with the preferred latent tag. As
a result, the distribution of latent tags for the rare
names is skewed more toward the preferred latent
tag due to strong evidence from that suffix feature.

5.5 Other Features

Our model supports any local features that can
be extracted from the pair (¢;,w), including the
language-dependent features studied in (Attia et
al., 2010). In addition, features related to word
semantics (e.g., using WordNet (Fellbaum, 1998))
or word clusters (e.g., using unsupervised cluster-
ing (Brown et al., 1992; Koo et al., 2008; Goyal
and Daume, 2011)) might also be beneficial for
modeling Py(t.|t,w) and/or P, (t|w). Features
extracted from (¢, w) could also be helpful for
providing some smoothing effect across the latent
tags. Moreover, it might be beneficial to perform
feature selection prior to training. We leave this to
future work.

5.6 Final Results

Table 5 compares the final test results of our
best grammars (the full+full approach) with the
literature’. Our PCFG-LA grammars with a

°All of the parsers from the referenced papers are trained
and evaluated using the data splits in our experiments.
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country names is highlighted in black.

TB Parser LP LR F
Charniak (2000) 89.9 89.5 89.7
—  Petrov and Klein (2007) 90.2 90.1 90.1
Cg Petrov and Klein (2008) - - 89.4
Huang and Harper (2009) 904 89.9 90.1
This Paper 90.8 90.3 90.5
© Charniak (2000) 80.5 79.5 80.0
m  Petrov and Klein (2007) 84.0 829 834
B Huang and Harper (2009) 85.1 83.2 84.1
This Paper 859 842 85.0
E Petrov and Klein (2007) 80.5 789 79.7
< This Paper 82.7 812 819
Table 5: Final test set accuracies.
feature-rich lexical model significantly outper-

form the standard PCFG-LA grammars of (Petrov
and Klein, 2007) for all of the three languages, es-
pecially on Chinese (+1.6 F) and Arabic (+2.2 F).

6 Conclusions

We have presented a feature-rich lexical model for
PCFG-LA grammars to: 1) alleviate over-fitting
via regularization, 2) handle OOV words using
rich features, and 3) exploit lexical features for
grammar induction. Experiments show that the
proposed approach allows us to train more effec-
tive PCFG-LA grammars for more accurate and
robust parsing of three different languages. It is
expected that even more accurate parsers can be
produced by using this approach together with
self-training (Huang and Harper, 2009) and/or
product models (Petrov, 2010; Huang et al., 2010).

Acknowledgments

This research was supported in part by NSF IIS-
0703859. We would like to thank Spence Green
for providing the processed Arabic Treebank data
and lots of insightful suggestions.



References

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef van Gen-
abith. 2010. Handling unknown words in statistical
latent-variable parsing models for Arabic, English
and French. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics conference.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Coté,
John DeNero, and Dan Klein. 2010. Painless un-
supervised learning with features. In Proceedings
of the Conference of the North American Chapter
of the Association for Computational Linguistics on
Human Language Technology.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguis-
tics.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic
dialects. In Conference of the European Chapter of
the Association for Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. The MIT Press.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics.

Amit Goyal and Hal Daume. 2011. Approximate scal-
able bounded space sketch for large data NLP. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Spence Green and Christopher D. Manning. 2010.
Better Arabic parsing: Baselines, evaluations, and
analysis. In Proceedings of the International Con-
ference on Computational Linguistics.

Zhonggiang Huang and Mary Harper. 2009. Self-
training PCFG grammars with latent annotations
across languages. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing.

Zhonggiang Huang, Mary Harper, and Slav Petrov.
2010. Self-training with products of latent vari-
able. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

227

Terry Koo, Xavier Carrera, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming.

Mohamed Maamouri, Ann Bies, Sondos Krouna,
Fatma Gaddeche, and Basma Bouziri. 2009. Penn
Arabic treebank guidelines. Technical report, Lin-
guistic Data Consortium, University of Pennsylva-
nia.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor, 1999. Treebank-3.
Linguistic Data Consortium, Philadelphia.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology.

Slav Petrov and Dan Klein. 2008. Sparse multi-scale
grammars for discriminative latent variable pars-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Slav Petrov. 2009. Coarse-to-fine natural language
processing. Ph.D. thesis, University of California at
Bekeley.

Slav Petrov. 2010. Products of random latent vari-
able grammars. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. 2003. Optimization with EM and
expectation-conjugate-gradient. In Proceedings of
the International Conference on Machine Learning.

Nianwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering.



