
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 192–200,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Semantic Role Labeling Without Treebanks?

Stephen A. Boxwell1, Chris Brew2, Jason Baldridge3, Dennis Mehay1, and Sujith Ravi4

1The Ohio State University, {boxwell,mehay}@ling.ohio-state.edu
2The Educational Testing Service, cbrew@ets.org

3The University of Texas at Austin, jbaldrid@mail.utexas.edu
4ISI, sravi@isi.edu

Abstract

We describe a method for training a se-
mantic role labeler for CCG in the absence
of gold-standard syntax derivations. Tra-
ditionally, semantic role labeling is per-
formed by placing human-annotated se-
mantic roles on gold-standard syntactic
parses, identifying patterns in the syntax-
semantics relationship, and then predict-
ing roles on novel syntactic analyses. The
gold standard syntactic training data can
be eliminated from the process by extract-
ing training instances from semantic roles
projected onto a packed parse chart. This
process can be used to rapidly develop
NLP tools for resource-poor languages of
interest.

1 Introduction

Semantic role labeling is the process of generat-
ing sets of semantic roles from syntactic analy-
ses. The process of training a semantic role la-
beler, however, is costly in resources. First, it re-
quires gold-standard semantic role data, like Prop-
bank (Palmer et al., 2005). Secondly, it requires
a detailed syntactic annotation of the same re-
source. We are fortunate to have the reasonably-
sized Penn Treebank (Marcus et al., 1993) and
adaptations for formalisms like Tree Adjoining
Grammar (Chen and Shanker, 2004) and Com-
binatory Categorial Grammar (Hockenmaier and
Steedman, 2007) alongside the Propbank data, but
for other languages, such resources are unlikely to
be available. There has been work in generating
semantic role labelers using gold-standard trees in
the absence of semantic training data (Fürstenau
and Lapata, 2009; Lang and Lapata, 2010). But

what if we had semantic training data, but no syn-
tactic training data? If we could develop and train
a semantic role labeler without syntactic training
data, we could greatly reduce the cost and devel-
opment time of NLP tools for languages of inter-
est.
One option is to use some automatic means to gen-
erate a treebank – instead of creating a corpus of
syntax trees by hand, we could use an automatic
parser. This, however, leads to a chicken-and-egg
problem – we would need a high-quality parse
model to choose a single-best analysis for each
training sentence, and a parse model needs syn-
tactic training data. No automatic parser can cur-
rently generate high quality single-best parses in
the absence of a parse model. But a parser can,
given word tags and combinatory rules, generate
a parse forest – a very large collection of possible
analyses – and say little or nothing about their rel-
ative merit.
In this paper, we extract SRL features from the en-
tire parse forest, effectively training on every pos-
sible parse in the training set simultaneously. This
can be done efficiently by representing the parse
chart as a hypergraph, enabling us to iterate over
every constituent in the parse forest without enu-
merating every individual parse (which would be
computationally infeasible). This, combined with
the parsing advantages afforded by Combinatory
Categorial Grammar (CCG), enables us to train a
semantic role labeler without gold-standard trees.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman,
2000) is a grammar formalism that describes
words in terms of their combinatory potential.
For example, determiners belong to the category
NP/N, or “the category of words that become noun

192



phrases when combined with a noun to the right”.
The rightmost category indicates the argument that
the category is seeking, the leftmost category in-
dicates the result of combining this category with
its argument, and the slash indicates the direction
of combination. Categories can be nested within
each other: a transitive verb like devoured be-
longs to the category (S\NP)/NP, or “the category
that would become a sentence if it could combine
with a noun phrase to the right and another noun
phrase to the left”. The process of automatically
assigning CCG categories to words is called “su-
pertagging”, and CCG categories are sometimes
informally referred to as “supertags”. An example
of how categories combine to make sentences is
shown in Figure 1.
CCG has many capabilities that go beyond that
of a typical context-free grammar. First, it has
a sophisticated internal system of managing syn-
tactic heads and dependencies1. These dependen-
cies are used to great effect in CCG-based se-
mantic role labeling systems (Gildea and Hocken-
maier, 2003; Boxwell et al., 2009), as they do not
suffer the same data-sparsity effects encountered
with treepath features in CFG-based SRL systems.
Secondly, CCG permits these dependencies to be
passed through intermediary categories in gram-
matical structures like relative clauses. In Figure
2, the steak is still in the object relation to de-
voured, even though the verb is inside a relative
clause. Finally and most importantly, these depen-
dencies are represented directly on the CCG cat-
egories themselves. This is crucial for the predic-
tion of semantic roles inside a packed parse chart
– because the dependency is formed when the two
heads combine, it is available to be used as a local
feature by the semantic role labeler. This prop-
erty of CCG and its impact on packed-chart SRL
is described extensively in Boxwell et al. (2010).
This ability to predict dependencies (and semantic
roles) at parse time figures heavily into the process
described here.

3 Brutus: A CCG Based Semantic Role
Labeler

The Brutus Semantic Role Labeler (Boxwell et al.,
2009)2 is a semantic role labeling system for CCG.

1A complete explanation of CCG predicate-argument de-
pendencies can be found in the CCGbank user manual (Hock-
enmaier and Steedman, 2005)

2Found at http://www.ling.ohio-state.edu/
˜boxwell/software/brutus.html

The man devoured the steak

np/n n (s\np)/np np/n n
> >np np

>
s\np

<s

Figure 1: A simple CCG derivation.

steak that the man devoured

np (np\np)/(s/np) np (s\np)/np
>T

s/(s\np)
>B

s/np
>

np\np
<np

Figure 2: An example of CCG’s treatment of rel-
ative clauses. The syntactic dependency between
devoured and steak is the same as it was in figure
1.

It is trained using CCGbank and a version of Prop-
bank that has been aligned to the CCGbank in or-
der to account for discrepancies in terminal index-
ation (Honnibal and Curran, 2007; Boxwell and
White, 2008). The system is organized in a two-
stage pipeline of maximum entropy models3, fol-
lowing the organization of a previous CFG-style
approach (Punyakanok et al., 2008). The first
stage is the identification stage, where, for each
predicate in the sentence, each word is tagged as
either a role or a nonrole (figure 3). The second
stage is the classification stage, where the roles
are sorted into ARG0, ARG1, and so on (figure
4). The identification model and the classification
model share the same features, but they are trained
and run separately.
For the results presented here, we use a version of
Brutus that has been stripped down to only use lo-
cal features so as to enable us to perform SRL at
parse time. Recall from section 1 that we wish to
extract training features not from a complete parse
tree, but from a packed parse chart. For this rea-
son, global features (those that are inaccessible to
a single edge in the parse chart) cannot be used.
After removing all global features from the seman-

3We use the Zhang Le maxent toolkit, available
at http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html, using the BFGS training
method, trained to 500 iterations with gaussian priors of 1
and 5, for the identification and classification steps, respec-
tively.

193



tic role labeler, the local features that remain are as
follows:

• Words. A three-word window surrounding
the candidate word.

• Predicate. The predicate whose semantic
roles the system is looking for.

• Predicate Category. The CCG category of
the predicate.

• Result Category Detail. This indicates the
feature on the result category of the predicate.
Possible values include DCL (for declarative
sentences), PSS (for passive sentences), NG

(for present-progressive phrases like “run-
ning the race”), etc. These are read trivially
off of the verbal category.

• Syntactic Dependency. As with a previ-
ous approach in CCG semantic role labeling
(Gildea and Hockenmaier, 2003), this feature
shows the exact nature of the syntactic depen-
dency between the predicate and the word we
are considering, if any such dependency ex-
ists. This feature is represented by the cate-
gory of the predicate, the argument slot that
this word fits into, and whether or not the
predicate is the head of the resultant category,
represented with a left or right arrow.

• Before / After. A binary indicator feature in-
dicating whether the candidate word is before
or after the predicate.

4 Parsing Without Syntactic Training
Data

In order to test the performance of our semantic
role labeler, we will need automatically generated
parses to run the SRL models over. Even though
we are able to train SRL models in the absence of
syntactic training data, we still need test parses on
which to predict roles. So why not use the fast,
accurate CCG parser (Clark and Curran, 2004b)
used with previous CCG-based SRL systems? It
makes sense to use the highest quality parses avail-
able. But recall that the reason for this roundabout
way of training the semantic role labeler is to en-
able us to generate SRL models without syntactic
training data. If we use an off-the-shelf syntactic
parser that was trained on gold-standard training
data, we introduce a source of additional training

Combinator Penalty
Function Application 0
Function Composition 1
Crossing Composition 1

Type Raising 1
Null Coordination 2
Full Coordination 0

Substitution ∞

Table 1: The complete sub-baseline model, which
requires no syntactic training data. The substitu-
tion combinator is used to model parasitic gaps in
English, which are so rare that we make the prag-
matic decision to disallow substitution entirely.

data that we wish to exclude. But how will we gen-
erate reasonably accurate parses without a trained
parse model? Even a simple MLE-style approach
requires training data.
To satisfy this need, we develop a very simple
parse model that penalizes any non-normal-form
rule applications, effectively relying on the CCG
supertags to identify likely grammatical relations.
Specifically, combinators like function composi-
tion and type raising are penalized by a fixed
amount, while function application is allowed to
pass without penalty. The candidate analysis with
the lowest penalty is chosen as the single-best –
in case of a tie, the most right-branching analysis
is chosen. The complete parse model is shown in
table 1.

5 Experiment 1: Generating Traditional
Identification and Classification
Models from the Chart

In the first experiment, we use a parser to cre-
ate a set of parse forests from the training set.
The individual parses are not enumerated – we ex-
tract features from every possible syntactic deriva-
tion simultaneously by iterating over every edge
in the packed chart. Local syntactic features are
accessible, as are the gold-standard semantic roles
from Propbank. The identifier and classifier mod-
els are then trained from these features, instead
of from features obtained from gold-standard syn-
tactic derivations. We will call this two-part
SRL model the CHART model. We compare this
model to the more traditional GOLD model, which
uses the same features but is generated from gold
standard trees. We test the system using both
gold-standard parse trees and single-best auto-

194



SAID: LOVE: SAID: LOVE:

Robin said John loves Mary

np (s[dcl]\np)/s[dcl] np (s[dcl]\np)/np np
>

s[dcl]\np
<

s[dcl]
>

s[dcl]\np
<

s[dcl]

Figure 3: In the first stage of the semantic role labeling process, candidate semantic roles are chosen by
the identifier model. We have not yet decided which role (ARG0, ARG1, etc) each word plays, only that
there is a role there.

SAID:ARG0 LOVE:ARG0 SAID:ARG1 LOVE:ARG1

Robin said John loves Mary

np (s[dcl]\np)/s[dcl] np (s[dcl]\np)/np np
>

s[dcl]\np
<

s[dcl]
>

s[dcl]\np
<

s[dcl]

Figure 4: In the second stage of the semantic role labeling process, the classifier model sorts the roles
into ARG0, ARG1, etc.

matically generated parse trees (generated from
gold-standard supertags by the parser from section
4). Interestingly, SRL performance drops only
slightly between gold standard test parses and au-
tomatically generated parses when using the chart-
based SRL model. Table 2 shows the results for
the development set, and table 3 shows the results
for the test set.

Gold Parse Auto Parse
Train P R F P R F
GOLD 88.4 85.7 87.0 84.8 80.4 82.5
CHART 83.5 70.8 76.6 83.0 69.4 75.6

Table 2: SRL performance on gold-standard
parses and automatic parses from the development
set (section 00). The models are defined in section
5.

Manual inspection of the results reveals that the
CHART model frequently fails to identify mod-
ifier roles, contributing to the very low recall
score. This was traced to a consistent weaken-
ing of the adjunct dependency feature, resulting
largely from the ambiguous attachment of auxil-
iary verbs. Consider a simple sentence Jon will

Gold Parse Auto Parse
Train P R F P R F
GOLD 89.7 84.8 87.2 85.8 80.0 82.8
CHART 84.6 70.4 76.9 83.0 67.7 74.6

Table 3: SRL performance on the test set (section
23) using the same models as table 2.

visit tomorrow. Syntactically, there are two possi-
ble attachments for tomorrow. It can be attached
low, to visit (figure 5), or it can be attached high,
to will visit (figure 6). The former will result in
a dependency between visit and tomorrow, while
the latter will result in a dependency between will
and tomorrow. Now, imagine training over this
sentence’s chart. For both analyses, we notice that
a role should be placed on tomorrow. In one case,
there is a dependency between visit and tomorrow,
and in one case there is not. Our simple parsing
model does not necessarily do a good job of dis-
criminating in favor of the analysis that we want,
so the SRL components may see both options with
nearly equal weight. Empirically, the identifica-
tion model learns that the dependency feature is
not a good predictor of modifier roles. This is in-

195



Jon will visit tomorrow

np (s[dcl]\np)/(s[b]\np) s[b]\np vp\vp
<

s[b]\np
>

s[dcl]\np
<

s[dcl]

Figure 5: The correct analysis for Jon will visit
tomorrow. In this case, there is a syntactic depen-
dency between tomorrow and visit. Note that vp is
an abbreviation for s\np.

Jon will visit tomorrow

np (s[dcl]\np)/(s[b]\np) s[b]\np vp\vp
>

s[dcl]\np
>

s[dcl]\np
<

s[dcl]

Figure 6: An erroneous analysis for Jon will visit
tomorrow. There is no syntactic dependency be-
tween tomorrow and visit.

correct – in fact, the presence of a syntactic de-
pendency between a predicate and a target word
is almost always a dead giveaway to the presence
of a semantic role. In our effort to downplay the
role of syntax we may have set up a situation in
which a sophisticated machine-learning based ar-
gument identifier does exactly the wrong thing. It
could be that a less sophisticated argument identi-
fier will be better suited to the task that our system
requires.

6 Experiment 2: Improving Argument
Identification with a Simpler Model

The CHART identification model performs poorly
because it does not recognize syntactic dependen-
cies as good predictors of semantic roles. Suppose
that instead of using that identification model, we
used a simple heuristic: if there is a syntactic de-
pendency between a word and the predicate, then
label that word with a semantic role – otherwise,
do not. This simple identification “model” re-
quires no training – it simply relies on the pattern
that semantic role bearing units tend to be joined
to their predicates by syntactic dependencies. We
will refer to this as the chart-dependency model,
or C-DEP. In addition to this model, we pro-
pose another model that similarly identifies roles

with dependencies, but enumerates certain excep-
tional dependencies that do not predict semantic
roles (like those originating from auxiliary verbs
like to and has) according to the Propbank guide-
lines. We will refer to this as the improved chart-
dependency model, or C-DEP+4. In both cases,
the classification model is identical to that of the
CHART model.
Tables 4 and 5 show the effect of using the two
chart-dependency identification models compared
to the GOLD and CHART models from section
5. Performance using the C-DEP and C-DEP+
models greatly improves on the disappointing re-
call of the CHART model, while retaining the fa-
vorable property of eschewing gold-standard syn-
tactic training data. Instead of systematically
weakening the most predictive identification fea-
ture available, the simple identification models use
only that feature. This results in a major improve-
ment in recall at the cost of an acceptable drop in
precision.

Gold Parse Auto Parse
Train P R F P R F
GOLD 88.4 85.7 87.0 84.8 80.4 82.5
CHART 83.5 70.8 76.6 83.0 69.4 75.6
C-DEP 75.9 83.0 79.3 72.5 78.1 75.1
C-DEP+ 81.6 82.8 82.2 77.9 77.8 77.9

Table 4: SRL performance on the development set
(section 00) using the four models. The GOLD and
CHART models are defined in section 5. The C-
DEP and C-DEP+ models are defined in section
6.

Gold Parse Auto Parse
Train P R F P R F
GOLD 89.7 84.8 87.2 85.8 80.0 82.8
CHART 84.6 70.4 76.9 83.0 67.7 74.6
C-DEP 76.7 83.2 79.8 73.0 77.7 75.2
C-DEP+ 82.8 82.9 82.8 78.7 77.4 78.1

Table 5: SRL performance on the test set (section
23), using the same models as in table 4.

4The C-DEP+ model ignores all dependencies originat-
ing from the following categories: (s[to]\np)/(s[b]\np),
(s[dcl]\np)/(s[pt]\np), (s[dcl]\np)/(s[pss]\np),
(s[b]\np)/(s[pss]\np), and (s[dcl]\np)/(s[ng]\np).

196



7 Experiment 3: Generating an SRL
Model Without Gold-Standard
Supertags

In the experiments described in sections 5 and
6, we used four different training methods to
generate semantic role labeling models, which
are then tested on gold standard syntactic parses
and parses that were automatically generated
from gold-standard supertags. But much of the
challenge of parsing in CCG comes down to
the choice of supertags – choosing the correct
supertag for a preposition, for example, makes
the difference between attaching the prepositional
phrase high or low. But surely using gold-standard
supertags gives us an unfair advantage; in real-
world applications, these supertags would have
to be predicted. We could use an off-the-shelf
CCG supertagger (Clark and Curran, 2004a), but
this would open us to the same chicken-and-egg
problem already encountered with automatic
parsers – the C&C supertagger is trained on
gold-standard syntactic data. Doing without a
supertagger and using every possible supertag in a
tag dictionary is computationally infeasible; most
words have at least two or three possible tags;
the most ambiguous word has 133 supertags (as).
Therefore, we have no choice but to investigate
ways to get supertags that do not rely on gold-
standard syntactic annotation.
We use a weakly supervised approach to su-
pertagging that augments an HMM with an
oracle CCG tag dictionary and a set of broad
grammar-informed constraints (Baldridge, 2008;
Ravi et al., 2010). The tag dictionary provides
only a simple mapping from word to supertag
– it does not use any kind of cutoff, nor does it
give a prior probability on individual supertags.
Using an HMM that has been initialized with
grammar-based transition probabilities, combined
with a two-stage integer programming strategy,
this approach can achieve single-best accuracy of
64.3% on ambiguous supertags. These supertags
are then used to generate parse forests, which are
used to train the CHART, C-DEP, and C-DEP+
models. Notice that, although most of the tag
sequences do not produce spanning analyses, we
can still produce a packed chart and generate SRL
training features.
We also train a secondary discriminative supertag-
ger using the induced tags that are the output of
the tag-dictionary-based HMM supertagger for

the training set, and use this supertagger with
the parser from section 4 to generate single-best
parses to test the SRL models on. It is necessary
to train a secondary supertagger over the induced
tags because the induced tags by themseleves are
unlikely to produce a spanning analysis. The in-
duced supertags from the HMM are only given for
the most probable sequence from the HMM; using
the beta-best tag predictions of the secondary
supertagger produces acceptable coverage. This
supertagger is a simple Maxent tagger conditioned
on a 5-word window surrounding the target word
and trained using a gaussian prior of 5. SRL
performance over automatic parses generated
with these predicted supertags is not as strong as
with gold standard supertags, but is reasonable
considering the absence of syntactic training data.
Results for the development set are shown in table
6, and results for the test set are shown in table 7.

Gold Supertags Auto Supertags
Auto Parse Auto Parse

Train P R F P R F
CHART 83.0 69.4 75.6 64.1 60.0 61.9
C-DEP 72.5 78.1 75.1 65.5 60.5 62.9
C-DEP+ 77.9 77.8 77.9 68.8 60.2 64.2

Table 6: SRL performance on the development
set (section 00) comparing automatic parses gen-
erated using gold-standard supertags and automat-
ically induced supertags.

Gold Supertags Auto Supertags
Auto Parse Auto Parse

Train P R F P R F
CHART 83.0 67.7 74.6 63.8 61.7 62.7
C-DEP 73.0 77.7 75.2 66.8 61.1 63.8
C-DEP+ 78.7 77.4 78.1 70.0 60.7 65.0

Table 7: SRL performance on the test set (section
23), using the same models as table 7.

Manual inspection of the induced supertag data
reveals some unusual predictions of supertags. For
example, it is difficult to think of a valid category
for the determiner the besides NP/N. The word
the almost always has the category NP/N in CCG-
bank. CCGbank does assign other categories for
the, though most, if not all, of them are errors. Ta-
ble 8 shows the token frequencies of select cate-

197



gories for the from the training set of CCGbank.
Even though there are 46 possible categories in
all, only one of them is really worth considering
(18 of the categories appear only once). The auto-
matic method for inducing supertags from the tag
dictionary, however, frequently predicts categories
for the that are extremely rare in the English CCG-
bank. This is because the tag dictionary is gener-
ated with no cutoff and provides no prior proba-
bility across tags – each tag in the dictionary is
given equal consideration by the Markov Model,
which ranks them according to how well they in-
teract with their neighbors.
For this reason, we revisit our earlier decision to
generate a tag dictionary with no cutoff. Instead,
we generate a tag dictionary of categories that
make up at least 10% of the word tokens. For
example, suppose the word direct appears in the
corpus 100 times. For a category to be listed for
the word direct in the tag dictionary, it must appear
as the category for direct no fewer than 10 times.
This can effectively eliminate a large number of
very rare categories that overwhelm the HMM.
It also more closely simulates a hand-written tag
dictionary for closed-class words, or a tag dictio-
nary that was generated automatically from a tra-
ditional part-of-speech dictionary. Using a tag dic-
tionary with a 10% cutoff greatly improves perfor-
mance on semantc role labeling, coming to within
7% accuracy of using gold-standard supertags.
The results for the development set are shown in
table 9, and the results for the test set are shown in
table 10.

Category Frequency
NP/N 47255
N/N 99

((S\NP)\(S\NP))/NP 78
...

...
(S/S)/(S/S) 1

(S[adj]\NP)/N 1
(N\N)/N 1

Table 8: The frequencies of select categories for
the from sections 02-21 of the CCGbank (there
are 46 in all). Some categories, like NP/N, are ex-
tremely common, whereas others, like (N\N)/N,
appear only once.

We have shown that simple and easy syn-
tactic processing is still beneficial for SRL.

Gold Supertags Auto Supertags
Auto Parse Auto Parse

Train P R F P R F
CHART 83.0 69.4 75.6 67.5 66.3 66.9
C-DEP 72.5 78.1 75.1 69.3 69.5 69.4
C-DEP+ 77.9 77.8 77.9 74.0 69.2 71.5

Table 9: SRL performance on the development set
(section 00) using cutoff of 10% on tag dictionary.

Gold Supertags Auto Supertags
Auto Parse Auto Parse

Train P R F P R F
CHART 83.0 67.7 74.6 67.8 65.7 66.7
C-DEP 73.0 77.7 75.2 70.1 68.4 69.2
C-DEP+ 78.7 77.4 78.1 75.2 68.2 71.5

Table 10: SRL performance on the test set (section
23) using cutoff of 10% on tag dictionary and the
same models as table 9.

For completeness, we briefly explore another
option, even simpler than this: we trained SRL
models that relied on no syntactic features at all.
Specifically, we included the word, predicate,
and before/after features (described in detail in
section 3). Unsurprisingly, the performance was
unacceptably low (P=.73, R-.31, F=.44), most of
that coming from successful identification of the
predicate itself. This method makes the identifier
exceptionally timid, and on the rare occasion
that a word is identified as a role-bearing unit,
it is often assigned roles corresponding to every
predicate in the sentence. We conclude that it is
necessary to include syntactic features, but that
these can be rough and ready.

8 Conclusions and Future Work

In the three experiments presented, we demon-
strated that an effective SRL model can be trained
without a corpus of parse trees. This can be
achieved by using a simple baseline parser to gen-
erate a parse forest for a large amount of unanno-
tated newspaper text, then extracting training in-
stances from all possible syntactic analyses simul-
taneously. This approach is most effective when
we have some syntactic knowledge of the sentence
in the form of supertags, but is still effective when
only a tagging dictionary is available.
In the future, we hope to expand this work into

198



other languages. Armed only with a Propbank-
like corpus of semantic roles and a tag dictionary,
we can train a surprisingly effective semantic role
lableler. To this end, we hope to further investigate
issues surrounding the generation of supertags –
particularly, minimally supervised approaches to
generating CCG tag dictionaries. Recall that per-
formance actually improved when very rare cat-
egories were excluded from the tag dictionary;
one option to achieve similar results is to anno-
tate by hand, say, the 200 most common words
(almost certainly syntactically interesting closed
class words), then using these to guide the genera-
tion of a comprehensive tag dictionary, or perhaps
by bootstrapping from traditional part-of-speech
tags. It would also be beneficial to investigate al-
ternate methods of inducing tags from the tag dic-
tionary that produce n-best tag predictions, as this
would improve coverage over the training set.
Another avenue of future research could be the
generation of semantic predictions without com-
mitting single-best test sentences. Recall that in
order to test the semantic role labeler, we needed
to generate parse trees for the target sentences.
Because we assume that gold-standard syntac-
tic training data is not available, we use a sub-
baseline model that requires no training data. But
is it really necessary to choose a single best parse
at all? Because the version of Brutus used here
can extract features from inside the chart, it can
also predict semantic roles at parse time (Boxwell
et al., 2010). We could therefore predict all pos-
sible roles in the chart and explore ways of iden-
tifying likely rolesets, using a mechanism for the
enforcement of global constraints, such as the in-
teger linear programming solution of Punyakanok
et al (2008).

References
J. Baldridge. 2008. Weakly supervised supertagging

with grammar-informed initialization. In Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics-Volume 1, pages 57–64. As-
sociation for Computational Linguistics.

Stephen A. Boxwell and Michael White. 2008. Pro-
jecting Propbank Roles onto the CCGbank. In
Proceedings of the Sixth International Language
Resources and Evaluation Conference (LREC-08),
Marrakech, Morocco.

Stephen A. Boxwell, Dennis N. Mehay, and Chris
Brew. 2009. Brutus: A semantic role labeling sys-

tem incorporating CCG, CFG, and Dependency fea-
tures. In Proc. ACL-09.

Stephen A Boxwell, Dennis N Mehay, and Chris Brew.
2010. What a parser can learn from a semantic role
labeler and vice versa. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 736–744, Cambridge, MA,
October. Association for Computational Linguistics.

J. Chen and V. Shanker. 2004. Automated extraction of
TAGs from the Penn Treebank. New developments
in parsing technology, pages 73–89.

S. Clark and J.R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. In
Proceedings of COLING, volume 4, pages 282–288.

Stephen Clark and James R. Curran. 2004b. Parsing
the WSJ using CCG and Log-Linear Models. In
Proc. ACL-04.

H. Fürstenau and M. Lapata. 2009. Semi-supervised
semantic role labeling. In Proceedings of the 12th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 220–228.
Association for Computational Linguistics.

Daniel Gildea and Julia Hockenmaier. 2003. Identi-
fying semantic roles using Combinatory Categorial
Grammar. In Proc. EMNLP-03.

J. Hockenmaier and M. Steedman. 2005. CCGbank
manual. Technical report, MS-CIS-05-09, Univer-
sity of Pennsylvania.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
Computational Linguistics, 33(3):355–396.

M. Honnibal and J.R. Curran. 2007. Improv-
ing the complement/adjunct distinction in CCG-
bank. In Proceedings of the 10th Conference of
the Pacific Association for Computational Linguis-
tics (PACLING-07), pages 210–217. Citeseer.

J. Lang and M. Lapata. 2010. Unsupervised induc-
tion of semantic roles. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 939–947. Association for
Computational Linguistics.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a Large Annotated Corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

199



Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008.
The Importance of Syntactic Parsing and Inference
in Semantic Role Labeling. Computational Linguis-
tics, 34(2):257–287.

S. Ravi, J. Baldridge, and K. Knight. 2010. Minimized
models and grammar-informed initialization for su-
pertagging with highly ambiguous lexicons. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 495–503.
Association for Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

200


