
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 93–101,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Single and Multi-objective Optimization for Feature Selection in
Anaphora Resolution

Sriparna Saha 1 Asif Ekbal 1 Olga Uryupina 2 Massimo Poesio 3,2

1 Department of Computer Science and Engineering, IIT Patna,India,
{sriparna,asif}@iitp.ac.in

2 University of Trento, Center for Mind/Brain Sciences,uryupina@unitn.it
3 University of Essex, Language and Computation Group,poesio@essex.ac.uk

Abstract

There is no generally accepted met-
ric for measuring the performance of
anaphora resolution systems, and the ex-
isting metrics—MUC, B3, CEAF, Blanc,
among others—tend to reward signifi-
cantly different behaviors. Systems op-
timized according to one metric tend
to perform poorly with respect to other
ones, making it very difficult to compare
anaphora resolution systems, as clearly
shown by the results of theSEMEVAL 2010
Multilingual Coreference task. One so-
lution would be to find a single com-
pletely satisfactory metric, but it’s not
clear whether this is possible and at any
rate it is not going to happen any time
soon. An alternative is to optimize mod-
els according to multiple metrics simulta-
neously. In this paper, we show, first of
all, that this is possible to develop such
models using Multi-objective Optimiza-
tion (MOO) techniques based on Genetic
Algorithms. Secondly, we show that op-
timizing according to multiple metrics si-
multaneously may result in better results
with respect to each individual metric than
optimizing according to that metric only.

1 Introduction
In anaphora resolution,1 as in otherHLT tasks,
optimization to a metric is essential to achieve
good performance (Hoste, 2005; Uryupina, 2010).
However, many evaluation metrics have been pro-
posed for anaphora resolution, each capturing
what seems to be a key intuition about the task:
from MUC (Vilain et al., 1995) to B3 (Bagga and

1We use the term ’anaphora resolution’ to refer to the task
perhaps most commonly referred to as ’coreference resolu-
tion,’ which many including us find a misnomer. For the pur-
poses of the present paper the two terms could be seen as
interchangeable.

Baldwin, 1998), from theACE metric (Doddington
et al., 2004) toCEAF (Luo, 2005) toBLANC (Re-
casens and Hovy, 2011). And unlike in other areas
of HLT, none has really taken over. This would not
matter so much if those metrics were to reward the
same systems; but in fact, as dramatically demon-
strated by the results of the Coreference Task at
SEMEVAL 2010 (Recasens et al., 2010), the oppo-
site is true—almost every system could come on
top depending on which metric was chosen.

It seems unlikely that the field will converge on
a single metric any time soon. Given that many of
the proposed metrics do capture what would seem
to be plausible intuitions, it would seem desirable
to develop methods to optimize systems according
to more than one metric at once—in particular, ac-
cording to at least one metric of what we might call
the ’link-based’ cluster of metrics (e.g.,MUC) and
at least one of what we will call the ’entity-based’
cluster (e.g.,CEAF).

As it happens, techniques for doing just that
have been developed in the area of Genetic Al-
gorithms: so-calledmulti-objective optimization
(MOO) (Deb, 2001) techniques. In this paper, we
will show how these techniques can be used to op-
timize anaphora resolution models (we focused for
the time being on feature selection) by looking for
a solution in the space defined by a multiplicity of
metrics (we usedMUC andCEAF (in two variants)
as the optimization functions). Perhaps the most
interesting result of this work is the finding that by
working in such a multi-metric space it is possible
to find solutions that are better with respect to an
individual metric than when trying to optimize for
that metric alone—which arguably suggests that
indeed both families of metrics capture some fun-
damental intuition about anaphora, and taking into
account both intuitions we avoid local optima.

The structure of the paper is as follows. We first
review the literature on using genetic algorithms
for both single function and multi function opti-
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mization. Next, we discuss the particular method
of multi-objective optimization we used in this pa-
per, Non-Dominated Sorting Genetic Algorithm II
(Deb et al., 2002). After that we discuss how the
method was used, and present our results. We then
compare our work with other approaches to opti-
mization for anaphora found in the literature.

2 Background: Optimizing for
Anaphora Resolution

A great number of statistical approaches to
anaphora resolution have been proposed in the
past ten years. These approaches differ with re-
spect to their underlying models (e.g., mention
pair model (Soon et al., 2001) vs. tournament
model (Iida et al., 2003; Yang et al., 2005),
vs. entity-model (Luo et al., 2004)), machine
learners (e.g., decision trees vs. maximum entropy
vs. SVMs vs. TiMBL) and their parameters, and
with respect to feature sets used. There have been,
however, only few attempts at explicit optimiza-
tion of these aspects, and in those few cases, opti-
mization tends to be done by hand.

An early step in this direction was the work by
Ng and Cardie (2002), who developed a rich fea-
ture set including 53 features, but reported no sig-
nificant improvement over their baseline when all
these features were used with theMUC6 andMUC7
corpora. They then proceeded to manually select
a subset of features that did yield better results for
the MUC-6/7 datasets. A much larger scale and
very systematic effort of manual feature selection
over the same dataset was carried out by Uryupina
(2007), who evaluated over 600 features.

The first systematic attempt at automatic opti-
mization of anaphora resolution we are aware of
was carried out by Hoste (2005), who investigated
the possibility of using genetic algorithms for au-
tomatic optimization of both feature selection and
of learning parameters, also considering two dif-
ferent machine learners, TiMBL and Ripper. Her
results suggest that such techniques yield improve-
ments on theMUC-6/7 datasets. Recasens and
Hovy (2009) carried out an investigation of feature
selection for Spanish using theANCORA corpus.

These approaches focused on a single metric
only; the one proposal simultaneously to consider
multiple metrics, Zhao and Ng (2010) still opti-
mized for each metric individually.

The effect of optimization on anaphora resolu-
tion was dramatically demonstrated by Uryupina’s
contribution to SEMEVAL 2010 Multilingual

Coreference Task (Uryupina, 2010). Uryupina di-
rectly optimizes two parameters of her system:
the choice of a model (mention-pair vs.ILP with
various constraints) and the definition of mention
types for training separate classifiers. The opti-
mization is done on the development data in a
brute-force fashion, in order to maximize the per-
formance according to a pre-defined metric (MUC,
CEAF or BLANC). The results on theSEMEVAL-10
dataset clearly show that existing metrics of coref-
erence rely on different intuitions and therefore a
system, optimized for a particular metric, might
show inferior results for the other ones. For ex-
ample, the reportedBLANC difference between the
runs optimized forBLANC andCEAF is around 10
percentage points.

This highlights the importance of the multi-
objective optimization (MOO) for coreference, that
suggests a family of systems, showing reliable per-
formance according to all the desired metrics. A
form of MOO was applied to coreference by Mun-
son et al. (2005). Their general conclusion was
negative, stating that “ensemble selection seems
too unreliable for use in NLP”, but they did see
some improvements for coreference.

3 Optimization with Genetic Algorithms
In this section, we review optimization techniques
using genetic algorithms (GAs) (Goldberg, 1989).
We first discuss single objective optimization,
that can optimize according to a single objec-
tive function, and then multi-objective optimiza-
tion (MOO), that can optimize more than one ob-
jective function, in particular, a popularMOO tech-
nique named Non-dominated Sorting Genetic Al-
gorithm (NSGA)-II (Deb et al., 2002).

3.1 Genetic Algorithms
Genetic algorithms (GAs) (Goldberg, 1989) are
randomized search and optimization techniques
guided by the principles of evolution and natu-
ral genetics. InGAs the parameters of the search
space are encoded in the form of strings (called
chromosomes). A collection of such strings is
called apopulation. Initially, a random population
is created, which represents different points in the
search space. Anobjectiveor fitnessfunction is as-
sociated with each string that represents the degree
of goodnessof the string. Based on the principle
of survival of the fittest, a few of the strings are se-
lected and each is assigned a number of copies that
go into the mating pool. Biologically inspired op-
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erators likecrossoverandmutationare applied on
these strings to yield a new generation of strings.
The processes of selection, crossover and mutation
continues for a fixed number of generations or till
a termination condition is satisfied.

3.2 Multi-objective Optimization

Multi-objective optimization (MOO) can be for-
mally stated as follows (Deb, 2001). Find the vec-
torsx∗ = [x∗1, x

∗
2, . . . , x

∗
n]

T of decision variables
that simultaneously optimize theM objective val-
ues

{f1(x), f2(x), . . . , fM (x)}
while satisfying the constraints, if any.

An important concept inMOO is that ofdom-
ination. In the context of a maximization prob-
lem, a solutionxi is said to dominatexj if
∀k ∈ 1, 2, . . . ,M, fk(xi) ≥ fk(xj) and ∃k ∈
1, 2, . . . ,M, such thatfk(xi) > fk(xj).

Among a set of solutionsP , the nondominated
set of solutionsP

′
are those that are not dominated

by any member of the setP . The nondominated
set of the entire search spaceS is called theglob-
ally Pareto-optimal set. In general, aMOO algo-
rithm usually admits a set of solutions not domi-
nated by any solution encountered by it.

3.3 Nondominated Sorting Genetic
Algorithm-II (NSGA-II)

Genetic algorithms (GAs) are known to be more
effective than classical methods such as weighted
metrics, goal programming (Deb, 2001), for solv-
ing MOO primarily because of their population-
based nature. A particularly popularGA of this
type isNSGA-II (Deb et al., 2002).

In NSGA-II, initially a random parent population
P0 is created and the population is sorted based on
the partial order defined by the non-domination
relation. This results in a sequence of nondomi-
natedfronts. Each solution is assigned a fitness
value which is equal to its non-domination level
in the partial order. A child populationQ0 of size
N is then created from the parent populationP0

by using binary tournament selection, recombina-
tion, and mutation operators. In general, in the
tth iteration, a combined populationRt = Pt +Qt

is formed. The size ofRt is 2N , as the size of
bothPt andQt is N . All the solutions ofRt are
sorted according to non-domination. If the total
number of solutions belonging to the best non-
dominated setF1 is smaller thanN , thenF1 is to-

Figure 1: Chromosome representation forGA

based feature selection

tally included inP(t+1). The remaining members
of the populationP(t+1) are chosen from the sub-
sequent nondominated fronts in the order of their
ranking. To choose exactlyN solutions, the solu-
tions of the last included front are sorted using the
crowded comparison operator (Deb et al., 2002)
and the best among them (i.e., those with lower
crowding distance) are selected to fill in the avail-
able slots inP(t+1). The new populationP(t+1) is
then used for selection, crossover and mutation to
create a populationQ(t+1) of sizeN .

4 Two Algorithms for Feature Selection
in Anaphora Resolution

Below we discuss how single and multi-objective
optimization techniques can be used feature selec-
tion in the anaphora resolution task.

4.1 Chromosome Representation and
Population Initialization

If the total number of features isF , then the length
of the chromosome isF . As an example, the en-
coding of a particular chromosome is represented
in Figure 1. HereF = 12 (i.e., total 12 different
features are available). The chromosome repre-
sents the use of 7 features for constructing a clas-
sifier (first, third, fourth, seventh, tenth, eleventh
and twelfth features). The entries of each chro-
mosome are randomly initialized to either 0 or 1.
Here, if theith position of a chromosome is 0 then
it represents thatith feature does not participate in
constructing the classifier. Else if it is 1 then the
ith feature participates in constructing the classi-
fier.

4.2 Fitness Computation

For fitness computation, the following procedure
is executed:

1. Suppose there areN number of features
present in a particular chromosome (i.e.,
there are totalN number of 1’s in that chro-
mosome).
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2. Construct the coreference resolution system
(i.e., BART) with only theseN features.

3. This coreference system is evaluated on the
development data. The recall, precision and
F-measure values of three metrics are calcu-
lated.

In case of single objective optimization (SOO),
the objective function corresponding to a particu-
lar chromosome is the F-measure value of a sin-
gle metric. This objective function is optimized
using the search capability ofGA. For MOO, the
objective functions corresponding to a particular
chromosome areFMUC (for theMUC metric),Fφ3

(for CEAF using theφ3 entity alignment function
(Luo, 2005)) andFφ4 (for CEAF using theφ4 en-
tity alignment function). These three objective
functions are simultaneously optimized using the
search capability ofNSGA-II.

4.3 Genetic Operators

In case ofSOO, a single point crossover operation
is used with a user defined crossover probability,
µc. A mutation operator is applied to each entry
of the chromosome with a mutation probability,
µm, where the entry is randomly replaced by ei-
ther 0 or 1. In this approach, the processes of fit-
ness computation, selection, crossover, and muta-
tion are executed for a maximum number of gen-
erations. The best string seen up to the last gener-
ation provides the solution to the above feature se-
lection problem. Elitism has been implemented at
each generation by preserving the best string seen
upto that generation in a location outside the popu-
lation. Thus on termination, this location contains
the best feature combination.

We use crowded binary tournament selection as
in NSGA-II, followed by conventional crossover
and mutation for theMOO based feature selec-
tion. The most characteristic part ofNSGA-II is
its elitism operation, where the non-dominated so-
lutions (Deb, 2001) among the parent and child
populations are propagated to the next generation.
The near-Pareto-optimal strings of the last gener-
ation provide the different solutions to the feature
selection problem.

5 Methods

5.1 The BART System

For our experiments, we useBART (Versley et
al., 2008), a modular toolkit for anaphora reso-

lution that supports state-of-the-art statistical ap-
proaches to the task and enables efficient feature
engineering. BART implements different models
of anaphora resolution (mention-pair and entity-
mention; best-first vs. ranking), has interfaces to
different machine learners (MaxEnt, SVM, deci-
sion trees) and provides a large set of linguistically
motivated features, along with the possibility to
design new ones. It is thus ideally suited for exper-
imenting with optimization and feature selection.

In this study, we specifically focus on feature
selection.2 The complete list of features currently
implemented inBART is listed in Table 1; all were
considered in the present experiments. We used
a simple mention-pair model without ranking as
in (Soon et al., 2001). In the mention-pair model,
anaphora resolution is recast as a binary classifica-
tion problem. Each classification instance consists
of two mentions, i.e. an anaphorMj and its po-
tential antecedentMi (i < j). Instances are mod-
eled as feature vectors (cf. Table 1) and are handed
over to a binary classifier that decides, whether the
anaphor and its candidate antecedent are mentions
of the same entity or not. All the feature values are
computed automatically.

We train a maximum entropy classifier and fol-
low the approach of (Soon et al., 2001) to parti-
tion mentions into coreference sets given the clas-
sifier’s decisions.

5.2 The Data Sets

We evaluated our approach on the ACE-02 dataset,
which is divided in three subsets: bnews, npaper,
and nwire. We provide results for both gold (hand-
annotated) versions of the datasets (gbnews, gnpa-
per, gnwire) and system mentions extracted with
CARAFE3 (cbnews, cnpaper, cnwire).

Table 2 compares the performance level ob-
tained using all the features in Table 1 with that of
a loose re-implementation of the system proposed
by Soon et al. (2001), commonly used as baseline
and relying only on very shallow information. Our
reimplementation of the Soon et al. model uses
only a subset of features: those marked with an
asterisk in Table 1. We also provide in Table 2 typ-
ical state-of-the-art figures on the ACE-02 dataset,
as presented in an overview by Poon and Domin-

2The choice of the best model and the best machine
learner, along with its parameters, is the main direction of
our future work.

3http://sourceforge.net/projects/
carafe
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Table 1: Features used byBART: each feature describes a pair of mentions{Mi,Mj}, i < j, whereMi

is a candidate antecedent andMj is a candidate anaphor

Mention types and subtypes
MentionType* relevant types ofMi andMj , as identified in Soon et al.
MentionTypeAnte Salient Mi is demonstrative;Mi is an NE
MentionTypeAnte Extra Mi is a pronoun
MentionTypeAna Mj is a definite, demonstrative or indefinite NP, or pronoun of a specific type
MentionType2 relevant types ofMi andMj , as identified in Soon et al.
MentionTypeSalience combination ofMentionType andMentionType Ana
FirstSecondPerson Mi is a pronoun of the 1st/second person, same forMj

PronounLeftRight 4 possible values for< Mi is a pronoun> ∗ < Mj is a pronoun>
PronounWordForm lemma forMi if it’s a pronoun; same forMj

SemClassValue semantic class ofMi, andMj and the pair
BothLocation bothMi andMj are locations or geo-political

Agreement
GenderAgree* Mi andMj agree in gender
NumberAgree* Mi andMj agree in number
AnimacyAgree* Mi andMj agree in animacy

Aliasing
Alias* heuristical NE-matching
BetterNames heuristical matching for personal names

Syntax
Appositive* Mi andMj are in an apposition
Appositive2 Mi andMj are adjacent
Coordination Mi is a coordination; same forMj

HeadPartOfSpeech POS ofMi’s head; same forMj and the pair
SynPos depth ofMi’s node in the parse tree
Attributes Mi andMj have incompatible premodifiers
Relations Mi andMj have incompatible postmodifiers

Matching
StringMatch* Mi andMj have the same surface form after stripping off the determiners
NonProStringMatch bothMi andMj are non-pronominal andStringmatch(Mi,Mj) == 1
Pro StringMatch bothMi andMj are pronominal andStringmatch(Mi,Mj) == 1
NE StringMatch bothMi andMj are NE andStringmatch(Mi,Mj) == 1
HeadMatch Mi andMj have the same head
MinSame Mi andMj have the same minimal span
LeftRightMatch Mj is a prefix or suffix substring ofMi or vice versa
StringMatchExtra extra string-macthing for bare plurals
StringKernel approximate matching

Salience
First Mention Mi is the first mention in its sentence
CorefChain Size of the coreference chain suggested forMi so far (with a threshold)
NonProSalience for non-pronominalMi, number of preceding mentions with the same head lemma

Web
Wiki Mi andMj have the same wikipedia entry
Yago Mi andMj are linked in Yago viameans or typeof relation
WebPatterns specific contexts for co-reference extracted from the web

Proximity
DistanceMarkable distance in mentions betweenMi andMj

DistanceSentenceInt* distance in sentences betweenMi andMj

DistanceSentence log-distance in sentences betweenMi andMj

DistanceSentence2 log-distance in sentences betweenMi andMj , different formula
DistDiscrete distance in sentences betweenMi andMj discretized into{0,1,>=2}

Miscellaneous
Speech Mi is in quoted speech; same forMj and the pair
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Table 2: Baseline performance on the ACE-02 dataset

gold mentions
gbnews gnpaper gnwire

FMUC Fφ3 Fφ4 FMUC Fφ3 Fφ4 FMUC Fφ3 Fφ4

following Soon et al. (2001) 71.6 67.2 69.6 67.8 62.6 67.5 66.7 67.9 69.7
All features (Table 1) 75.8 70.6 74.4 72.5 64.7 67.0 71.2 70.3 72.2
state-of-the-art 65-69 - - 70-72 - - 54-67 - -

system mentions
cbnews cnpaper cnwire

FMUC Fφ3 Fφ4 FMUC Fφ3 Fφ4 FMUC Fφ3 Fφ4

following Soon et al. (2001) 61.3 56.7 55.9 63.3 57.6 54.0 60.8 58.2 57.0
All features (Table 1) 62.3 57.9 57.5 65.5 55.9 52.7 60.6 56.8 55.6

Table 3: Feature vectors identified via single-objective optimization.

DataSet Metric Features Selected FMUC Fφ3 Fφ4

opt.
gbnews MUC 0010011011011110011111100011100100111111101076.8 71.5 74.5

φ3,φ4 1001100011101011000010110101001101101100000176.7 71.8† 74.9†

gnpaper MUC 1000000100111111010101110111000010101010011174.6 67.1 70.1†

φ3 1010100110010011010010000001010001000110110072.2 67.6 69.1
φ4 1110100110010011010011100010010111001000110071.4 65.2 70.3

gnwire MUC 1011101101111111001010101001101001101100101174.0† 70.3† 73.1†

φ3 1101101110000100001111011010111101111000110171.4 72.3 73.6
φ4 1110100110010011010011100010010111001000110071.7 72.1 74.4

cbnews MUC,φ3 1111100110010100001101110010110110111100110064.6 59.7 58.4
φ4 1111100110000100001111010010111110111000110163.6 59.6 58.8

cnpaper MUC,φ3 0100010010010101100100001011110010110000100066.5 59.7† 54.7†

φ4 1010010110101110001111111001010010001001001166.2 59.1 55.6†

cnwire MUC 0010111110111010100110000001010100101100100163.8 60.0 58.1
φ3,φ4 0001100010111010001000001001100010011000010063.4 61.2 58.4

gos (2008). The results clearly show that although
even larger sets of features have been proposed
(Uryupina, 2007; Bengtson and Roth, 2008), the
set of features already included inBART is suffi-
cient to achieve results well above the state of the
art on the dataset we used.

The results in Table 2 also confirm the intu-
ition that, contrary to what is suggested by some
of the early papers (Soon et al., 2001; Ng and
Cardie, 2002) working on smaller datasets, lin-
guistic factors do play a crucial role in anaphora
resolution and therefore rich feature sets may lead
to performance improvements once larger datasets
are considered (a similar result was also obtained
by Bengtson and Roth (2008)). Such improve-
ments, however, come at high costs, as both using

larger datasets and larger sets of features learning
a model becomes slower and requires much more
memory.

This suggests that automatic feature selection
may be essential not just to improve performance
but also to be able to train a model—i.e., that an ef-
ficient coreference resolution system should com-
bine rich linguistic feature sets with automatic fea-
ture selection mechanisms.

5.3 Genetic Algorithm Parameter Setting

We set the following parameter values for both sin-
gle (i.e.,GA) andMOO (i.e., NSGA-II): population
size=20, number of generations=30, probability of
mutationµm = 0.2 and probability of crossover
µc = 0.9. Both approaches are executed on devel-
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opment data to determine the optimal feature vec-
tor(s). Final results are reported on the test data.
It is to be noted that GA is a stochastic approach
and outputs different results for trials with differ-
ent seeds and initial populations. Initial seeds and
population are chosen randomly. Thus for each
data set we executed the proposed single and multi
objective based approaches 3 times. Finally, we
report the maximum values of these 3 runs.

6 Results

6.1 Single Objective Optimization

Single objectiveGA based feature selection was
executed on the six data sets to determine the ap-
propriate set of features. For each data set three
sets of experiments were carried out by optimizing
the F-measure values of the three different evalu-
ation metrics. The binary-valued feature vectors
identified by the single objectiveGA based feature
selection technique for the six data sets and the
corresponding F-measure values are shown in Ta-
ble 3. The order of the features in the vector cor-
responds to their order in Table 1; the values of 0’s
and 1’s represent the absence and presence of the
corresponding features. Significant improvements
over the classifier based on all the features are in-
dicated with† (sign test,p < 0.05).

These results show that for all the datasets, the
proposed single objectiveGA-based feature selec-
tion technique performs better than the baseline
approach of using all features. Moreover, the re-
sults show that the technique based onSOO (i.e.,
conventionalGA-based method) with different ob-
jective functions provides different evaluation fig-
ures. Thus, it is meaningful to optimize each ob-
jective function separately.

It is also evident from Table 3 that the optimal
feature set obtained by optimizing a single objec-
tive function may not be optimal with respect to
another objective function. Thus, it is not possible
to come up with common patterns in the set of op-
timal features. For example, in case ofgbnews, the
F-measure value of the first metric, i.e. ofMUC
corresponding to the optimal feature vector opti-
mizing second metric, i.e.φ3 is 76.7. This is ob-
viously less than the evaluation figure obtained by
optimizing the first metric.

6.2 Multi-objective Optimization

Thereafter we apply our proposedMOO based fea-
ture selection technique on the six data sets. The

MOO approach provides a set of non-dominated
solutions on the final Pareto optimal front. All the
solutions are equally important from the algorith-
mic point of view. In Table 4, we show the final
solutions obtained by theMOO based approach for
all the data sets. Significant improvements over
the classifier based on all the features are indicated
with † (sign test,p < 0.05).

The results in Table 4 indicate that theMOO

based technique achieves higher performance than
the single objectiveGA based approach. For the
gbnewsdata set,MOO achieves 0.6, 0.3 and 0.8 F-
measure points increments for three metrics over
the single objectiveGA based technique. For
the gnpaperdata set, there are increments of 2.5
F-measure points on second metric and 1.0 F-
measure point on third metric over the correspond-
ing single objectiveGA based technique. Sim-
ilarly, for all other datasets theMOO based ap-
proach attains superior performance over theSOO-
based approach.

7 Comparison with Related Work

As discussed in Section 2 most work on optimiza-
tion in anaphora resolution relies on manual opti-
mization; the one significant exception is the work
of Hoste (2005).

There are two major differences between the ap-
proach of Hoste (2005) and that followed in our
study. First, the scope of (Hoste, 2005) is re-
stricted tosingle-objectiveoptimization. As we
saw above, this might provide unstable solutions,
that are too tailored to a particular scoring met-
ric. Second, the feature set of Hoste (2005) is rela-
tively small and therefore does not provide an effi-
cient test-bed for a feature selection approach. Not
surprising, parameter optimization shows a more
consistent effect on the overall performance than
feature selection in (Hoste, 2005)’s experiments.

8 Discussion and Conclusions

In this paper we showed that it may not be neces-
sary to choose one among the existing metrics for
anaphora resolution—in fact, that developing sys-
tems attempting to optimize according to a combi-
nation of them may lead to better results.

In subsequent work, we plan to expand the
optimization technique to consider also learning
parameters optimization, classifier selection, and
learning model selection.
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Table 4: Feature vectors identified by the MOO based approach.

DataSet Features FMUC Fφ3 Fφ4

gbnews 0001111011011111001110110101111110111001010177.20 71.50 75.70
0011010011011111001010110101111110011001010177.20 72.00 75.50†

0011111011111111001110110101111110011001010177.00 72.10 75.10
0011101011011111001110110101111110011000010077.30 71.50 74.40
0011110010011111001010110101111110110001010177.40 71.30 74.70†

gnpaper 0100101110101011011111100001001010101100001073.90 70.10† 71.10†

1000000100111111010101110111000010101010011174.60 67.10 70.10
0100101010101011011111100011011010101100001073.80 70.10 71.30
1101111110001111001111001111011010011100001074.30 67.90 70.00
1100101010101110011111100011001010101100001074.10 69.30 70.70
1001111010101111001111000011011110101100001074.40 67.20 69.60
1100111010101110011111101011111010001100001074.40 67.50 69.10
1000111010101110011111100011011110101110001074.50† 66.90 69.40
0100111010101011011111101001110010001100001074.20 68.80 70.90

gnwire 1010110011101110011010100101101110011000010074.90† 72.30† 73.80
1010110010101110011010101110101010011000010073.80 73.10† 74.70
1010110010101110010010100101101110001000010074.80† 73.40† 74.00†

1000110011101110011010101110101010011000010074.30† 72.80† 74.60†

1000110010101110011010100101101110001000010074.80† 73.30† 74.10
cbnews 0101101001111100111110011001111000111000101164.80† 60.30 59.10†

0011101011111100111110010001101000011001101165.10 60.60 58.90
cnpaper 1001101011011111000111100011011000111100100067.40 60.00† 55.00

1101100011001111000011000011111000101111101066.40 58.20† 56.10†

0001111111001001000101111011011100001100100166.20 59.60 55.20†

1001101101001111000111001011011000001101100066.60 58.30† 55.90†

1101100011001111001011000011111010101111101066.70 59.40† 55.70†

cnwire 1111000011101101011110110001111110011000010063.90 60.90 58.50
1101110011101101011110110001011110111000010064.30 61.40 58.10
0101110010101111000010100010011000111110001063.70 60.70 59.20
0101111010101011000110100010011100111110001063.00 61.00 58.70
0101111110101111000110111110011000011110001064.50 60.20 58.40
1101110010101111000010000010011000111110001063.80 60.30 58.90
0100110110101111000010100010011000111110001063.90 60.60 58.80
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