
A Transformation-based Sentence Splitting Method for Statistical Ma-

chine Translation 

Jonghoon Lee, Donghyeon Lee and Gary Geunbae Lee 

Department of Computer Science and Engineering 

Pohang University of Science & Technology (POSTECH) 

{jh21983, semko, gblee}@postech.ac.kr 

 

 

 

Abstract 

We propose a transformation based sen-

tence splitting method for statistical ma-

chine translation. Transformations are ex-

panded to improve machine translation 

quality after automatically obtained from 

manually split corpus. Through a series of 

experiments we show that the transforma-

tion based sentence splitting is effective 

pre-processing to long sentence translation. 

1 Introduction 

Statistical approaches to machine translation have 

been studied actively, after the formalism of statis-

tical machine translation (SMT) is proposed by 

Brown et al. (1993). Although many approaches of 

them were effective, there are still lots of problems 

to solve. Among others, we have an interest in the 

problems occurring with long sentence decoding. 

Various problems occur when we try to translate 

long input sentences because a longer sentence 

contains more possibilities of selecting translation 

options and reordering phrases. However, reorder-

ing models in traditional phrase-based systems are 

not sufficient to treat such complex cases when we 

translate long sentences (Koehn et al, 2003). 

Some methods which can offer powerful reor-

dering policies have been proposed like syntax 

based machine translation (Yamada and Knight, 

2001) and Inversion Transduction Grammar (Wu, 

1997). Although these approaches are effective, 

decoding long sentences is still difficult due to 

their computational complexity. As the length of 

an input sentence becomes longer, the analysis and 

decoding become more complex. The complexity 

causes approximations and errors inevitable during 

the decoding search. 

In order to reduce this kind of difficulty caused 

by the complexity, a long sentence can be paraph-

rased by several shorter sentences with the same 

meaning. Generally, however, decomposing a 

complex sentence into sub-sentences requires in-

formation of the sentence structures which can be 

obtained by syntactic or semantic analysis. Unfor-

tunately, the high level syntactic and semantic 

analysis can be erroneous and costs as expensive as 

SMT itself. So, we don’t want to fully analyze the 

sentences to get a series of sub-sentences, and our 

approach to this problem considers splitting only 

compound sentences. 

In the past years, many research works were 

concerned with sentence splitting methods to im-

prove machine translation quality. This idea had 

been used in speech translation (Furuse et al, 1998) 

and example based machine translation (Doi and 

Sumita, 2004). These research works achieved 

meaningful results in terms of machine translation 

quality. Unfortunately, however, the method of 

Doi and Sumita using n-gram is not available if the 

source language is Korean. In Korean language, 

most of sentences have special form of ending 

morphemes at the end. For that reason, we should 

determine not only the splitting position but also 

the ending morphemes that we should replace in-

stead of connecting morphemes. And the Furuse et 

al’s method involves parsing which requires heavy 

cost. 

In this paper we propose a transformation based 

splitting method to improve machine translation 

quality which can be applied to the translation 

tasks with Korean as a source language. 



2 Methods 

Our task is splitting a long compound sentence into 

short sub-sentences to improve the performance of 

phrase-based statistical machine translation system. 

We use a transformation based approach to 

accomplish our goal. 

2.1 A Concept of Transformation 

The transformation based learning (TBL) is a kind 

of rule learning methods. The formalism of TBL is 

introduced by Brill (1995). In past years, the TBL 

approach was used to solve various problems in 

natural language processing such as part of speech 

(POS) tagging and parsing (Brill, 1993). 

A transformation consists of two parts: a trigger-

ing environment and a rewriting rule. And the re-

writing rule consists of a source pattern and a tar-

get pattern. Our consideration is how to get the 

right transformations and apply them to split the 

long sentences. 

A transformation works in the following man-

ner; some portion of the input is changed by the 

rewriting rule if the input meets a condition speci-

fied in the triggering environment. The rewriting 

rule finds the source pattern in the input and rep-

laces it with the target pattern. For example, sup-

pose that a transformation which have a triggering 

environment A, source pattern B and target pattern 

C. We can describe this transformation as a sen-

tence: if a condition A is satisfied by an input sen-

tence, then replace pattern B in the input sentence 

with pattern C. 

2.2 A Transformation Based Sentence Split-

ting Method 

Normally, we have two choices when there are 

two or more transformations available for an input 

pattern at the same time. The first choice is apply-

ing the transformation one by one, and the second 

choice is applying them simultaneously. The 

choice is up to the characteristics of the problem 

that we want to solve. In our problem, we choose 

the former strategy which is applying the transfor-

mations one by one, because it gives direct intui-

tion about the process of splitting sentences. By 

choosing this strategy, we can design splitting 

process as a recursive algorithm. 

At first, we try to split an input sentence into 

two sub-sentences. If the sentence has been split by 

some transformation, the result involves exactly 

two sub-sentences. And then we try to split each 

sub-sentence again. We repeat this process in re-

cursive manner until no sub-sentences are split. 

In the above process, a sentence is split into at 

most two sub-sentences through a single trial. In a 

single trial, a transformation works in the follow-

ing manner:  If an input sentence satisfies the envi-

ronment, we substitute the source pattern into the 

target pattern. That is, replace the connecting mor-

phemes with the proper ending morphemes. And 

then we split the sentence with pre-defined posi-

tion in the transformation. And finally, we insert 

the junction word that is also pre-defined in the 

transformation between the split sentences after the 

sub sentences are translated independently. 

From the above process, we can notice easily 

that a transformation for sentence splitting consists 

of the four components: a triggering environment, 

a rewriting rule, a splitting position and a junction 

type. The contents of each component are as fol-

lows. (1) A triggering environment contains a se-

quence of morphemes with their POS tags. (2) A 

rewriting consists of a pair of sequences of POS 

tagged morphemes. (3) A junction type can have 

one of four types: ‘and’, ‘or’, ‘but’ and ‘NULL’. 

(4) A splitting position is a non-negative integer 

that means the position of starting word of second 

sub-sentence. 

2.3 Learning the Transformation for Sen-

tence Splitting 

At the training phase, TBL process determines 

the order of application (or rank) of the transforma-

tions to minimize the error-rate defined by a spe-

cific measure. The order is determined by choosing 

the best rule for a given situation and applying the 

best rule for each situation iteratively. In the sen-

tence splitting task, we maximize the machine 

translation quality with BLEU score (Papineni et 

al., 2001) instead of minimizing the error of sen-

tence splitting. 

During the training phase, we determine the or-

der of applying transformation after we build a set 

of transformations. To build the set of transforma-

tions, we need manually split examples to learn the 

transformations. 

Building a transformation starts from extracting 

a rewriting rule by calculating edit-distance matrix 

between an original sentence and its split form 

from the corpus. We can easily extract the different 

parts from the matrix. 



BaseBLEU :=  BLEU score of the baseline system 

S := Split example sentence 

T := Extracted initial transformation  

for each t∈ T  

    for each s∈S 

        while true 

             try to split s with t 

             if mis-splitting is occurred 

                  Expand environment 

             else exit while loop 

             if environment cannot be expanded 

                  exit while loop 

S’ := apply t to S 

    Decode S’ 

    BLEU := measure BLEU 

    Discard t if BLEU < BaseBLEU 

sort  T w.r.t. BLEU 

From the difference pattern, we can make the 

source pattern of a rewriting rule by taking the dif-

ferent parts of the original sentence side. Similarly, 

the target pattern can be obtained from the differ-

ent parts of split form. And the junction type and 

splitting position are directly obtained from the 

difference pattern. Finally, the transformation is 

completed by setting the triggering environment as 

same to the source pattern. The set of initial trans-

formations is obtained by repeating this process on 

all the examples. 

The Transformations for sentence splitting are 

built from the initial transformations through ex-

panding process. In the expanding process, each 

rule is applied to the split examples. We expand 

the triggering environment with some heuristics (in 

section 2.4), if a sentence is a mis-split. 

And finally, in order to determine the rank of 

each transformation, we sorted the extracted trans-

formations by decreasing order of resulted BLEU 

scores after applying the transformation to each 

training sentence. And some transformations are 

discarded if they decrease the BLEU score. This 

process is different from original TBL. The mod-

ified TBL learning process is described in figure 1. 

2.4 Expanding Triggering Environments 

Expanding environment should be treated very 

carefully. If the environment is too specific, the 

transformation cannot be used in real situation. On 

the other hand, if it is too general, then the trans-

formation becomes erroneous. 

Our main strategy for expanding the environ-

ment is to increase context window size of the 

triggering environment one by one until it causes 

no error on the training sentences. In this manner, 

we can get minimal error-free transformations on 

the sentence splitting corpus. 

We use two different windows to define a trig-

gering environment: one for morpheme and anoth-

er for its part of speech (POS) tag. Figure 2 shows 

this concept of two windows. The circles corres-

pond to sequences of morphemes and POS tags in 

a splitting example. Window 1 represents a mor-

pheme context and window 2 represents a POS tag 

context. The windows are independently expanded 

from the initial environment which consists of a 

morpheme ‘A’ and its POS tag. In the figure, win-

dow 1 is expanded to one forward morpheme and 

one backward morpheme while window 2 is ex-

panded to two backward POS tags. 

In order to control these windows, we defined 

some heuristics by specifying the following three 

policies of expanding windows: no expansion, 

forward only and forward and backward. From 

those three polices, we have 9 combinations of 

heuristics because we have two windows. By ob-

serving the behavior of these heuristics, we can 

estimate what kind of information is most impor-

tant to determine the triggering environment. 

Figure 1. Modified TBL for sentence splitting 
 

 

 

Figure 2. Window-based heuristics for triggering 

environments 

 

 

 

 
  

 



Test No. Window1 policy Window2 policy 

Test 1 

No expansion 

No expansion 

Test 2 Forward only 

Test 3 Free expansion 

Test 4 

Forward only 

No expansion 

Test 5 Forward only 

Test 6 Free expansion 

Test 7 

Free expansion 

No expansion 

Test 8 Forward only 

Test 9 Free expansion 
 

Table 2.Experimental setup 
 

 

 

 

We have at most 4 choices for a single step of 

the expanding procedure: forward morpheme, 

backward morpheme, forward POS tag, and back-

ward POS tag. We choose one of them in a fixed 

order: forward POS tag, forward morpheme, 

backward POS tag and backward morpheme. 

These choices can be limited by 9 heuristics. For 

example, suppose that we use a heuristic with for-

ward policy on morpheme context window and no 

expansion policy for POS tag context window. In 

this case we have only one choice: forward mor-

pheme. 

3  Experiments 

We performed a series of experiments on Korean 

to English translation task to see how the sentence 

splitting affects machine translation quality and 

which heuristics are the best. Our baseline system 

built with Pharaoh (Koehn, 2004) which is most 

popular phrase-based decoder. And trigram lan-

guage model with KN-discounting (Kneser and 

Ney, 1995) built by SRILM toolkit (Stolcke, 2002) 

is used. 

Test 

No. 

# of  af-

fected sen-

tences 

BLEU score 

Before 

splitting 

After 

splitting 

Test 1 209 0.1778 0.1838 

Test 2 142 0.1564 0.1846 

Test 3 110 0.1634 0.1863 

Test 4 9 0.1871 0.2150 

Test 5 96 0.1398 0.1682 

Test 6 100 0.1452 0.1699 

Test 7 8 0.2122 0.2433 

Test 8 157 0.1515 0.1727 

Test 9 98 0.1409 0.1664 

Table 1 shows the corpus statistics used in the 

experiments. The training corpus for MT system 

has been built by manually translating Korean sen-

tences which are collected from various sources. 

We built 123,425 sentence pairs for training SMT, 

1,577 pairs for splitting and another 1,577 pairs for 

testing. The domain of the text is daily conversa-

tions and travel expressions. The sentence splitting 

corpus has been built by extracting long sentences 

from the source-side mono-lingual corpus. The 

sentences in the splitting corpus have been manual-

ly split. 

The experimental settings for comparing 9 heu-

ristics described in the section 2.4 are listed in ta-

ble 2. Each experiment corresponds to a heuristic. 

To see the effect of sentence splitting on transla-

tion quality, we evaluated BLEU score for affected 

sentenced by the splitting.  The results are shown 

in table 3. Each test number shows the effect of 

transformation-based sentence splitting with dif-

ferent window selection heuristics listed in table 2. 

The scores are consistently increased with signifi-

cant differences. After analyzing the results of ta-

ble 3, we notice that we can expect some perfor-

 
SMT Splitting 

Korean English Before Split After Split 

Train # of Sentences 123,425 1,577 1,906 

# of Words 1,083,912 916,950 19,918 20,243 

Vocabulary 15,002 14,242 1,956 1,952 

Test #of Sentences 1,577 - - 

 

Table 1. Corpus statistics 

Table 3. BLEU scores of affected sentences 

 



mance gain when the average sentence length is 

long. 

The human evaluation shows more promising 

results in table 4. In the table, the superior change 

means that the splitting results in better translation 

and inferior means the opposite case. Two ratios 

are calculated to see the effects of sentence split-

ting. The ratio ‘sup/inf’ shows the ratio of superior 

over inferior splitting. And ratio trans/change 

shows how many sentences are affected by a trans-

formation in an average. In most of the experi-

ments, the number of superior splitting is over 

three times larger than that of inferior ones. This 

result means that the sentence splitting is a helpful 

pre-processing for machine translation. 

We listed some example translations affected by 

sentence splitting in the table 5. In the three cases, 

junction words don’t appear in the results of trans-

lation after split because their junction types are 

NULL that involves no junction word. Although 

several kinds of improvements are observed in su-

perior cases, the most interesting case occurs in 

out-of-vocabulary (OOV) cases. A translation re-

sult has a tendency to be a word salad when 

OOV’s are included in the input sentence. In this 

case, the whole sentence may lose its original 

meaning in the result of translation. But after split-

ting the input sentence, the OOV’s have a high 

chance to be located in one of the split sub-

sentences. Then the translation result can save at 

least a part of its original meaning. This case oc-

curs easily if an input sentence includes only one 

OOV. The Superior change of table 5 is the case. 

Although both baseline and split are far from the 

reference, split catches some portion of the mean-

ing. 

Test 

No. 

# of trans-

formations 

(rules) 

# of 

changes 

(sentences) 

# of supe-

rior 

changes 

# of infe-

rior 

changes 

# of insig-

nificant 

changes 

Ratio 

Sup/Inf 

Ratio 

trans/chang

e 

1 34 209 60 30 119 2.00 6.15 

2 177 142 43 9 90 4.78 0.802 

3 213 110 29 9 72 3.22 0.516 

4 287 9 4 1 4 4.00 0.031 

5 206 96 25 4 67 6.25 0.466 

6 209 100 23 8 69 2.88 0.478 

7 256 8 3 1 4 3.00 0.031 

8 177 157 42 10 102 4.20 0.887 

9 210 98 21 4 73 5.25 0.467 

Table 4. Human evaluation results 

Superior change 

Reference I saw that some items are on sale on window . what are they ? 

Baseline 
What kind of items do you have this item in OOV some discount, I get a 

discount ? 

Split 
You have this item in OOV some discount . what kind of items do I get 

a discount ? 

Insignificant 

change 

Reference What is necessary to be issued a new credit card? 

Baseline I ‘d like to make a credit card . What do I need? 

Split I ‘d like to make a credit card . What is necessary? 

Inferior change 

 

Reference 
I ‘d like to make a reservation by phone and tell me the phone number 

please . 

Baseline 
I ‘d like to make a reservation but can you tell me the phone number , 

please . 

Split I  ‘d like to make a reservation . can you tell me the , please . 

Table 5. Example translations (The sentences are manually re-cased for readability) 



Most of the Inferior cases are caused by mis-

splitting. Mis-splitting includes a case of splitting a 

sentence that should not be split or splitting a sen-

tence on the wrong position. This case can be re-

duced by controlling the heuristics described in 

section 2.4. But the problem is that the effort to 

reducing inferior cases also reduces the superior 

cases. To compare the heuristics each other in this 

condition, we calculated the ratio of superior and 

inferior cases. The best heuristic is test no. 5 in 

terms of the ratio of sup/inf. 

The test no. 4 and 7 show that a trans-formation 

becomes very specific when lexical information is 

used alone. Hence the ratio trans/change becomes 

below 0.01 in this case.  And test no. 1 shows that 

the transformations with no environment expan-

sion are erroneous since it has the lowest ratio of 

sup/inf. 

4 Conclusion 

We introduced a transformation based sentence 

splitting method for machine translation as a effec-

tive and efficient pre-processing. A transformation 

consists of a triggering environment and a rewrit-

ing rule with position and junction type informa-

tion. The triggering environment of a transforma-

tion is extended to be error-free with respect to 

training corpus after a rewriting rule is extracted 

from manually split examples. The expanding 

process for the transformation can be generalized 

by adding POS tag information into the triggering 

environment. 

The experimental results show that the effect of 

splitting is clear in terms of both automatic evalua-

tion metric and human evaluation. The results con-

sistently state that the statistical machine transla-

tion quality can be improved by transformation 

based sentence splitting method. 

Acknowledgments 

This research was supported by the MIC (Ministry 

of Information and Communication), Korea, under 

the ITRC (Information Technology Research Cen-

ter) support program supervised by the IITA (Insti-

tute of Information Technology Assessment) (II-

TA-2006-C1090-0603-0045). The parallel corpus 

was courteously provided by Infinity Telecom, Inc. 

References 

Eric Brill. 1993. Transformation-based error-driven 

parsing. In Proc. of third International Workshop on 

Parsing.  

Eric Brill. 1995. Transformation-based error-driven 

learning and natural language processing: A Case 

Study in Part-of-Speech Tagging. Computational 

Linguistics 21(4):543-565. 

Peter F. Brown, Stephen A. Della Pietra, Vincent 

J.Della Pietra and Robert L. Mercer. 1993. The Ma-

thematics of Statistical Machine Translation: Parame-

ter estimation. Computational Linguistics, 19(2):263-

312. 

Takao Doi and Eiichiro Sumita. 2004. Splitting input 

sentence for machine translation using language 

model with sentence similarity. In Proc. of the 20th 

international conference on Computational Linguis-

tics. 

Osamu Furuse, Setsuo Yamada and Kazuhide Yamamo-

to. 1998. Splitting Long or Ill-formed Input for Ro-

bust Spoken-language Translation. In Proc of the 36
th
 

annual meeting on Association for Computational 

Linguistics. 

Reinhard Kneser and Hermann Ney. 1995. Improved 

backing-off for m-gram lnguage modeling. In Proc. 

of the International Conference on Acoustics, Speech, 

and Signal Processing (ICASSP). 

Philipp Koehn. 2004. Pharaoh: a beam search decoder 

for phrase-based statistical machine translation mod-

els. In Proc. of the 6th Conference of the Association 

for Machine translation in the Americas. 

Philipp Koehn, Franz Josef Och and Kevin Knight. 

2003. Statistical Phrase-Based Translation. In Proc of 

the of the 2003 Conference of the North American 

Chapter of the Association for Computational Lin-

guistics on Human Language Technology. 

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2001. BLEU: A method for automatic 

evaluation of Machine Translation. Technical Report 

RC22176, IBM. 

Andreas Stolcke. 2002. SRILM - an extensible language 

modeling toolkit. In Proc. of the 7th International 

Conference on Spoken Language Processing (ICSLP). 

 Dekai Wu. 1997. Stochastic inversion transduction 

grammars and bilingual parsing of parallel corpora. 

Computational Linguistics 23(3):377-404. 

Kenji Yamada and Kevin Knight. 2001. A syntax-based 

statistical translation Model. In Proc. of the confe-

rence of the Association for Computational Linguis-

tics (ACL). 

 


