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Abstract 

We study an adaptive learning framework 

for phonetic similarity modeling (PSM) that 

supports the automatic acquisition of trans-

literations by exploiting minimum prior 

knowledge about machine transliteration to 

mine transliterations incrementally from the 

live Web. We formulate an incremental 

learning strategy for the framework based 

on Bayesian theory for PSM adaptation. 

The idea of incremental learning is to bene-

fit from the continuously developing his-

tory to update a static model towards the in-

tended reality. In this way, the learning 

process refines the PSM incrementally 

while constructing a transliteration lexicon 

at the same time on a development corpus. 

We further demonstrate that the proposed 

learning framework is reliably effective in 

mining live transliterations from Web query 

results. 

1 Introduction 

Transliteration is a process of rewriting a word 

from one language into another by preserving its 

pronunciation in its original language, also known 

as translation-by-sound. It usually takes place be-

tween languages with different scripts, for example, 

from English to Chinese, and words, such as proper 

nouns, that do not have “easy” or semantic transla-

tions. 

The increasing size of multilingual content on 

the Web has made it a live information source rich 

in transliterations. Research on automatic acquisi-

tion of transliteration pairs in batch mode has 

shown promising results (Kuo et al., 2006). In 

dealing with the dynamic growth of the Web, it is 

almost impossible to collect and store all its con-

tents in local storage. Therefore, there is a need to 

develop an incremental learning algorithm to mine 

transliterations in an on-line manner. In general, an 

incremental learning technique is designed for 

adapting a model towards a changing environment. 

We are interested in deducing the incremental 

learning method for automatically constructing an 

English-Chinese (E-C) transliteration lexicon from 

Web query results.  

In the deduction, we start with a phonetic simi-

larity model (PSM), which measures the phonetic 

similarity between words in two different scripts, 

and study the learning mechanism of PSM in both 

batch and incremental modes. The contributions of 

this paper include: (i) the formulation of a batch 

learning framework and an incremental learning 

framework for PSM learning; (ii) a comparative 

study of the batch and incremental unsupervised 

learning strategies. 

In this paper, Section 2 briefly introduces prior 

work related to machine transliteration. In Section 

3, we formulate the PSM and its batch and incre-

mental learning algorithms while in Section 4, we 

discuss the practical issues in implementation. Sec-

tion 5 provides a report on the experiments con-

ducted and finally, we conclude in Section 6. 

2 Related Work 

Much of research on extraction of transliterations 

has been motivated by information retrieval tech-

niques, where attempts to extracting transliteration 

pairs from large bodies of corpora have been made. 

Some have proposed extracting translations from 

parallel or comparable bitexts using co-occurrence 

analysis or a context-vector approach (Fung and 

Yee, 1998; Nie et al., 1999). These methods com-

pare the semantic similarities between source and 

target words without taking their phonetic similari-

ties into account.  

Another direction of research is focused on es-
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tablishing the phonetic relationship between trans-

literation pairs. This typically involves the encod-

ing of phoneme- or grapheme-based mapping rules 

using a generative model trained from a large bi-

lingual lexicon. Suppose that EW and CW form an 

E-C transliteration pair. The phoneme-based ap-

proach (Knight & Graehl, 1998) first converts EW 

into an intermediate phonemic representation and 

then converts the phonemic representation into its 

Chinese counterpart CW. The grapheme-based ap-

proach, also known as direct orthographical map-

ping (Li et al., 2004), which treats transliteration as 

a statistical machine translation problem under 

monotonic constraints, has also achieved promising 

results. 

Many efforts have also been channeled to tap-

ping the wealth of the Web for harvesting translit-

eration/translation pairs. These include studying the 

query logs (Brill et al., 2001), unrelated corpora 

(Rapp, 1999), and comparable corpora (Sproat et al. 

2006). To establish cross-lingual correspondence in 

the harvest, these algorithms usually rely on one or 

more statistical clues (Lam et al., 2004), such as 

the correlation between word frequencies, and cog-

nates of similar spelling or pronunciations. In doing 

so, two things are needed: first, a robust mecha-

nism that establishes statistical relationships be-

tween bilingual words, such as a phonetic similar-

ity model which is motivated by transliteration 

modeling research; and second, an effective learn-

ing framework that is able to adaptively discover 

new events from the Web.  

In Chinese/Japanese/Korean (CJK) Web pages, 

translated terms are frequently accompanied by 

their original Latin words, with the Latin words 

serving as the appositives of the CJK words. In 

other words, the E-C pairs are always closely col-

located. Inspired by this observation in CJK texts, 

some algorithms were proposed (Kuo et al., 2006) 

to search over the close context of an English word 

in a Chinese predominant bilingual snippet for 

transliteration.  

Unfortunately, many of the reported works have 

not taken the dynamic nature of the Web into ac-

count. In this paper, we study the learning frame-

work of the phonetic similarity model, which 

adopts a transliteration modeling approach for 

transliteration extraction from the Web in an in-

cremental manner.   

3 Phonetic Similarity Model 

Phonetic similarity model (PSM) is a probabilistic 

model that encodes the syllable mapping between 

E-C pairs. Let 1{ ,... ,... }m MES e e e= be a sequence of 

English syllables derived from EW and 

1{ ,... ,... }n NCS s s s=  be the sequence of Chinese syl-

lables derived from CW, represented by a Chinese 

character string 1,... ,...,n NCW w w w→ . If each of the 

English syllables is drawn from a vocabulary of X 

entries, 1{ ,..., }m Ie x x∈ , and each of the Chinese 

syllable from a vocabulary of Y entries, 

1{ ,..., }n Js y y∈ , then the E-C transliteration can be 

considered as a generative process formulated by 

the noisy channel model, which recovers the input 

CW from the observed output EW. Applying 

Bayesian rule, we have Eq. (1), where ( | )P EW CW  

is estimated to characterize the noisy channel, 

known as the transliteration probability and 

( )P CW  is a language model to characterize the 

source language.  

( | ) ( | ) ( ) / ( )P CW EW P EW CW P CW P EW= . (1) 

Following the translation-by-sound principle, 

( | )P EW CW can be approximated by the phonetic 

probability ( | )P ES CS , which is given by Eq. (2).  

( | ) max ( , | ),P ES CS P ES CS
∆∈Γ

= ∆     (2) 

where Γ  is the set of all possible alignment paths 

between ES and CS. To find the best alignment 

path ∆ , one can resort to a dynamic warping algo-

rithm (Myers and Rabiner, 1981). Assuming condi-

tional independence of syllables in ES and CS, we 

have 
1

( | ) ( | )
k k

K

m nk
P ES CS P e s

=
=∏  where k is the 

index of alignment. We rewrite Eq.(1) as, 
( | ) ( | ) ( ) / ( )P CW EW P ES CS P CW P EW≈ .  (3) 

The language model ( )P CW in Eq.(3) can be repre-

sented by the n-gram statistics of the Chinese char-

acters derived from a monolingual corpus. Using 

bigram to approximate the n-gram model, we have 

1 1
2

( ) ( ) ( | )
N

n n
n

P CW P w P w w −=
≈ ∏ .  (4) 

Removing ( )P EW  from Eq.(3) which is not a func-

tion of CW, a PSM Θ now consists of both 

( | )P ES CS and ( )P CW  parameters (Kuo et al., 

2007). We now look into the mathematic formula-

tion for the learning of ( | )P ES CS  parameters from 

a bilingual transliteration lexicon.  

3.1 Batch Learning of PSM  
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A collection of manually selected or automatically 

extracted E-C pairs can form a transliteration lexi-

con. Given such a lexicon for training, the PSM 

parameters can be estimated in a batch mode. An 

initial PSM is bootstrapped using limited prior 

knowledge such as a small amount of translitera-

tions, which may be obtained by exploiting co-

occurrence information (Sproat et al., 2006). Then 

we align the E-C pairs using the PSM Θ and derive 

syllable mapping statistics.  

Suppose that we have the event counts ,i jc =  

( , )m i n jcount e x s y= = , and ( )j n jc count s y= =  for a 

given transliteration lexicon D with alignments Λ . 

We would like to find the parameters 

|i jP = ( | )m i n jP e x s y= = , ,m ne s< >∈Λ , that maxi-

mize the probability, 
,

|
( , | ) ( | )

i jc

m n j i i j
P D P e s P

Λ
Λ Θ = =∏ ∏ ∏ ,       (5) 

where |{ , 1,..., , 1,..., }i jP i I j JΘ = = = , with maximum 

likelihood estimation (MLE) criteria, subject to the 

constraints of | 1,i ji
P j= ∀∑ . Rewriting Eq.(5) in 

log-likelihood ( LL )  

, |

( , | )

log ( | ) logm n i j i j

j i

LL D

P e s c P
Λ

Λ Θ

= =∑ ∑∑                 (6) 

It is described as the cross-entropy of the true data 

distribution ,i jc with regard to the PSM model. 

Given an alignment ∆∈Λ , the MLE estimate of 

PSM is: 

| , /i j i j jP c c= .              (7) 

With a new PSM, one is able to arrive at a new 

alignment. This is formulated as an expectation-

maximization (EM) process (Dempster, 1977), 

which assumes that there exists a mappingD→Λ , 

where Λ  is introduced as the latent information, 

also known as missing data in the EM literature. 

The EM algorithm maximizes the likelihood prob-

ability ( | )P D Θ  over Θ  by exploiting 

( | ) ( , | )P D P D
Λ

Θ = Λ Θ∑ .  

The EM process guarantees non-decreasing like-

lihood probability ( | )P D Θ through multiple EM 

steps until it converges. In the E-step, we derive the 

event counts ,i jc  and jc  by force-aligning all the 

E-C pairs in the training lexicon D  using a PSM. 

In the M-step, we estimate the PSM parameters Θ  

by Eq.(7). The EM process also serves as a refining 

process to obtain the best alignment between the E-

C syllables. In each EM cycle, the model is updated 

after observing the whole corpus D . An EM cycle 

is also called an iteration in batch learning. The 

batch learning process is described as follows and 

depicted in Figure 1. 

 

 
Figure 1. Batch learning of PSM   

 

Batch Learning Algorithm: 

Start: Bootstrap PSM parameters |i jP using prior 

phonetic mapping knowledge; 

E-Step: Force-align corpus D  using |i jP  to obtain 

Λ  and hence the counts of ,i jc  and jc ; 

M-Step: Re-estimate | , /i j i j jP c c=  using the counts 

from E-Step; 

Iterate: Repeat E-Step and M-Step until ( | )P D Θ  

converges; 

3.2 Incremental Learning of PSM  

In batch learning all the training samples have to be 

collected in advance. In a dynamically changing 

environment, such as the Web, new samples always 

appear and it is impossible to collect all of them. 

Incremental learning (Zavaliagkos, 1995) is de-

vised to achieve rapid adaptation towards the work-

ing environment by updating the model as learning 

samples arrive in sequence. It is believed that if the 

statistics for the E-step are incrementally collected 

and the parameters are frequently estimated, incre-

mental learning converges quicker because the in-

formation from the new data contributes to the pa-

rameter estimation more effectively than the batch 

algorithm does (Gotoh et al., 1998). In incremental 

learning, the model is typically updated progres-

sively as the training samples become available and 

the number of incremental samples may vary from 

as few as one to as many as they are available. In 

the extreme case where all the learning samples are 

Iterate 

Initial 
PSM 

E-Step 

 

Training 
Corpus 

M-Step 
Final 
PSM 
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available and the updating is done after observing 

all of them, the incremental learning becomes batch 

learning. Therefore, the batch learning can be con-

sidered as a special case of the incremental learning. 

The incremental learning can be formulated 

through maximum a posteriori (MAP) framework, 

also known as Bayesian learning, where we assume 

that the parameters Θ  are random variables subject 

to a prior distribution. A possible candidate for the 

prior distribution of |i jP  is the Dirichlet density 

over each of the parameters |i jP (Bacchiani et al., 

2006). Let |{ , 1,..., }j i jP i IΘ = = , we introduce, 

| 1

|( ) ,i jh

j i j
i

P P j
α −

Θ ∝ ∀∏ ,   (8) 

where | 1i j
i
h =∑ , and α , which can be empirically 

set, is a positive scalar. Assuming H is the set of 

hyperparameters, we have as many hyperparame-

ters |i jh H∈ as the parameters |i jP . The probability 

of generating the aligned transliteration lexicon is 

obtained by integrating over the parameter space, 

( ) ( | ) ( )P D P D P d= Θ Θ Θ∫ . 

This integration can be easily written down in a 

closed form due to the conjugacy between Dirichlet 

distribution | 1

|
i jh

i j
i
P

α −∏  and the multinomial dis-

tribution 
,

|

i jc

i i j
P∏ . Instead of finding Θ  that 

maximizes ( | )P D Θ with MLE, we maximize a 

posteriori (MAP) probability as follows: 
argmax ( | ) argmax ( | ) ( ) / ( )

argmax ( | ) ( ) (9)

MAP P D P D P P D

P D P

Θ Θ

Θ

Θ = Θ = Θ Θ

= Θ Θ

The MAP solution uses a distribution to model the 

uncertainty of the parameters Θ , while the MLE 

gives a point estimation (Jelinek, 1990; MacKay, 

1994). We rewrite Eq.(9) as Eq.(10) using Eq.(5) 

and Eq.(8).  

, | 1

|argmax i j i j

j

c hmap
j i ji

P
α+ −

Θ

Θ ≈ ∏                        (10) 

Eq.(10) can be seen as a Dirichlet function of Θ  

given H , or a multinomial function of H given Θ . 

With given prior H , the MAP estimation is there-

fore similar to the MLE problem which is to find 

the mode of the kernel density in Eq.(10).  

| | |(1 )i j i j i jP h fλ λ= + − ,             (11) 

where | , /i j i j jf c c= , ,/( )i j
i
cλ α α= +∑ . 

One can find that λ  serves as a weighting factor 

between the prior and the current observations. The 

difference between MLE and MAP strategy lies in 

the fact that MAP introduces prior knowledge into 

the parameter updating formula. Eq.(11) assumes 

that the prior parameters H  are known and static 

while the training samples are available all at once.  

The idea of incremental learning is to benefit 

from the continuously developing history to update 

the static model towards the intended reality. As is 

often the case, the Web query results in an on-line 

application arrive in sequence. It is of practical use 

to devise such an incremental mechanism that 

adapts both parameters and the prior knowledge 

over time. The quasi-Bayesian (QB) learning 

method offers a solution to it (Bai and Li, 2006). 

Let’s break up a training corpus D into a se-

quence of sample subsets 1 2{ , ,..., }TD D D D=  and 

denote an accumulated sample subset ( )tD =  

1 2{ , ,..., },1tD D D t T≤ ≤  as an incremental corpus. 

Therefore, we have ( )TD D= . The QB method ap-

proximates the posterior probability ( 1)( | )tP D −Θ  

by the closest tractable prior density ( 1)( | )tP H −Θ  

with ( 1)tH − evolved from historical corpus ( 1)tD − ,  

( 1)
,

( ) ( )

( 1)

1

|
1

argmax ( | )

argmax ( | ) ( | )

argmax , .
t

i j i

t t
QB

t
t

I c h

i j
i

P D

P D P D

P j
α −

Θ

−

Θ

+ −

=Θ

Θ = Θ

≈ Θ Θ

= ∀∏

          (12) 

QB estimation offers a recursive learning 

mechanism. Starting with a hyperparameter set 
(0)H  and a corpus subset 1D , we estimate (1)H  and 

(1)
QBΘ , then (2)H  and (2)

QBΘ  and so on until ( )tH  and 

( )t
QBΘ  as observed samples arrive in sequence. The 

updating of parameters can be iterated between the 

reproducible prior and posterior estimates as in Eq. 

(13) and Eq. (14). Assuming T →∞ , we have the 

following: 

 

Incremental Learning Algorithm: 

Start: Bootstrap (0)
QBΘ  and (0)H using prior phonetic 

mapping knowledge and set 1t = ; 

E-Step: Force-align corpus subset tD  using ( 1)t
QB
−Θ , 

compute the event counts ( )
,
t
i jc  and reproduce prior 

parameters ( 1) ( )t tH H− → . 
( ) ( 1) ( )

,| | /
t t t

i ji j i jh h c
−= + α           (13) 
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M-Step: Re-estimate parameters ( )( ) tt
QBH →Θ  and 

|i jP  using the counts from E-Step. 

( ) ( ) ( )
| | |/t t t
i j i j i ji
P h h= ∑           (14) 

EM cycle: Repeat E-Step and M-Step until 
( )( | )tP DΘ  converges. 

Iterate: Repeat T EM cycles covering the entire 

data set D in an iteration. 

 

The algorithm updates the PSM as training sam-

ples become available. The scalar factor α  can be 

seen as a forgetting factor. When α  is big, the up-

date of hyperparameters favors the prior. Otherwise, 

current observation is given more attention. As for 

the sample subset size | |tD , if we set | | 100tD = , 

each EM cycle updates Θ  after observing every 

100 samples. To be comparable with batch learning, 

we define an iteration here to be a sequence of EM 

cycles that covers the whole corpus D. If corpus D 

has a fixed size ( )| |TD , an iteration means T EM 

cycles in incremental learning.  

4 Mining Transliterations from the Web 

Since the Web is dynamically changing and new 

transliterations come out all the time, it is better to 

mine transliterations from the Web in an incre-

mental way. Words transliterated by closely ob-

serving common guidelines are referred to as regu-

lar transliterations. However, in Web publishing, 

translators in different regions may not observe the 

same guidelines. Sometimes they skew the translit-

erations in different ways to introduce semantic 

implications, also known as wordplay, resulting in 

casual transliterations. Casual transliteration leads 

to multiple Chinese transliteration variants for the 

same English word. For example, “Disney” may be 

transliterated into “迪士尼/Di-Shi-Ni/
1
”, “迪斯耐

/Di-Si-Nai/” and “狄斯耐/Di-Si-Nai/”.  

Suppose that a sufficiently large, manually vali-

dated transliteration lexicon is available, a PSM 

can be built in a supervised manner. However, this 

method hinges on the availability of such a lexicon.  

Even if a lexicon is available, the derived model 

can only be as good as what the training lexicon 

offers. New transliterations, such as casual ones, 

may not be well handled. It is desirable to adapt the 

PSM as new transliterations become available, also 

                                                 
1 The Chinese words are romanized in Hanyu Pinyin. 

referred to as the learning-at-work mechanism. 

Some solutions have been proposed recently along 

this direction (Kuo et al., 2006). However, the ef-

fort was mainly devoted to mitigating the need of 

manual labeling. A dynamic learning-at-work 

mechanism for mining transliterations has not been 

well studied. 

Here we are interested in an unsupervised learn-

ing process, in which we adapt the PSM as we ex-

tract transliterations. The learning-at-work frame-

work is illustrated in Figure 2. As opposed to a 

manually labeled training corpus in Figure 1, we 

insert into the EM process an automatic translitera-

tion extraction mechanism, search and rank, as 

shown in the left panel of Figure 2. The search and 

rank shortlists a set of transliterations from the 

Web query results or bilingual snippets. 

 

 
Figure 2. Diagram of unsupervised transliteration 

extraction – learning-at-work. 

4.1 Search and Rank 

We obtain bilingual snippets from the Web by 

iteratively submitting queries to the Web search 

engines (Brin and Page, 1998). Qualified sentences 

are extracted from the results of each query. Each 

qualified sentence has at least one English word.  

Given a qualified sentence, first, the competing 

Chinese transliteration candidates are denoted as a 

set Ω , from which we would like to pick the most 

likely one. Second, we would like to know if there 

is indeed a Chinese transliteration CW in the close 

context of the English word EW. 

We propose ranking the candidates using the 

PSM model to find the most likely CW for a given 

EW. The CW candidate that gives the highest poste-

rior probability is considered the most probable 

Final 
PSM 

Initial PSM 

E-Step 

M-Step 

The Web 

 
Transliterations 

Search and 
Rank 

Final  
Lexicon 

Iterate 
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candidate CW ′ .  

argmax ( | )

argmax ( | ) ( )

CW

CW

CW P CW EW

P ES CS P CW

∈Ω

∈Ω

′ =

≈
          (15) 

The next step is to examine if CW ′  and EW indeed 

form a genuine E-C pair. We define the confidence 

of the E-C pair as the posterior odds similar to that 

in a hypothesis test under the Bayesian interpreta-

tion. We have 0H , which hypothesizes that 

CW ′ and EW  form an E-C pair, and 1H , which 

hypothesizes otherwise, and use posterior odd σ  

(Kuo et al., 2006) for hypothesis tests. 

Our search and rank formulation can be seen as 

an extension to a prior work (Brill et al., 2001). 

The posterior odd σ  is used as the confidence 

score so that E-C pairs extracted from different 

contexts can be directly compared. In practice, we 

set a threshold for σ  to decide on a cutoff point for 

E-C pairs short-listing. In this way, the search and 

rank is able to retrieve a collection of translitera-

tions from the Web given a PSM. 

4.2 Unsupervised Learning Strategy 

Now we can carry out PSM learning as formulated 

in Section 3 using the transliterations as if they 

were manually validated. By unsupervised batch 

learning, we mean to re-estimate the PSM after 

search and rank over the whole database, i.e., in 

each iteration. Just as in supervised learning, one 

can expect the PSM performance to improve over 

multiple iterations. We report the F-measure at 

each iteration. The extracted transliterations also 

form a new training corpus in next iteration. 

In contrast to the batch learning, incremental 

learning updates the PSM parameters as the train-

ing samples arrive in sequence. This is especially 

useful in Web mining. With the QB incremental 

optimization, one can think of an EM process that 

continuously re-estimates PSM parameters as the 

Web crawler discovers new “territories”. In this 

way, the search and rank process gathers qualified 

training samples tD after crawling a portion of the 

Web. Note that the incremental EM process up-

dates parameters more often than batch learning 

does. To evaluate performance of both learning, we 

define an iteration to be T EM cycles in incre-

mental learning on a training corpus ( )T
D D=  as 

discussed in Section 3.2.  

5 Experiments 

To obtain the ground truth for performance evalua-

tion, each possible transliteration pair is manually 

checked based on the following criteria: (i) only the 

phonetic transliteration is extracted to form a trans-

literation pair; (ii) multiple E-C pairs may appear in 

one sentence; (iii) an EW can have multiple valid 

Chinese transliterations and vice versa. The valida-

tion process results in a collection of qualified E-C 

pairs, also referred to as distinct qualified translit-

eration pairs (DQTPs), which form a translitera-

tion lexicon. 

To simulate the dynamic Web, we collected a 

Web corpus, which consists of about 500 MB of 

Web pages, referred to as SET1. From SET1, 

80,094 qualified sentences were automatically ex-

tracted and 8,898 DQTPs were further selected 

with manual validation.  

To establish a reference for performance bench-

marking, we first initialize a PSM, referred to as 

seed PSM hereafter, using randomly selected 100 

seed DQTPs. By exploiting the seed PSM on all 

8,898 DQTPs, we train a PSM in a supervised 

batch mode and improve the PSM on SET1 after 

each iteration. The performance defined below in 

precision, recall and F-measure in the 6
th
 iteration 

is reported in Table 1 and the F-measure is also 

shown in Figure 3.  
# _ /# _ ,

# _ /# _ ,

2 /( )

precision extracted DQTPs extracted pairs

recall extracted DQTPs total DQTPs

F measure recall precision recall precision

=

=

− = × × +

  

 

 Precision Recall F-measure 

Closed-test 0.834 0.663 0.739 

Table 1. The performance achieved by supervised 

batch learning on SET1. 

 

We use this closed test (supervised batch learning) 

as the reference point for unsupervised experiments. 

Next we further implement two PSM learning 

strategies, namely unsupervised batch and unsu-

pervised incremental learning. 

5.1 Unsupervised Batch Learning 

We begin with the same seed PSM. However, we 

use transliterations that are extracted automatically 

instead of manually validated DQTPs for training. 

Note that the transliterations are extracted and col-

lected at the end of each iteration. It may differ 

from one iteration to another. After re-estimating 
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the PSM in each iteration, we evaluate performance 

on SET1. 

Comparing the two batch mode learning strate-

gies in Figure 3, it is observed that learning sub-

stantially improves the seed PSM after the first it-

eration. Without surprise, the supervised learning 

consistently outperforms the unsupervised one, 

which reaches a plateau at 0.679 F-measure. This 

performance is considered as the baseline for com-

parison in this paper. The unsupervised batch learn-

ing presented here is similar to that in (Kuo et al., 

2006).  

0.45

0.55

0.65

0.75

1 2 3 4 5 6

#Iteration

F
-m

ea
su
re

Supervised Batch

Unsupervised Batch

U-Incremental (100)

U-Incremental (5,000)

 
Figure 3. Comparison of F-measure over iterations 

(U-Incremental: Unsupervised Incremental). 

5.2 Unsupervised Incremental Learning 

We now formulate an on-line
2
 unsupervised incre-

mental learning algorithm: 

(i) Start with the seed PSM, set 1t = ; 

(ii) Extract | |tD  quasi-transliterations pairs fol-

lowed by E-Step in incremental learning algo-

rithm; 

(iii) Re-estimate PSM using | |tD  (M-Step), 1t t= + ; 

(iv) Repeat (ii) and (iii) to crawl over a corpus. 
 

To simulate the on-line incremental learning just 

described, we train and test on SET1 because of the 

availability of gold standard and comparison with 

performance by batch mode. We empirically set 

0.5α =  and study different | |tD settings. An itera-

tion is defined as multiple cycles of steps (ii)-(iii) 

that screen through the whole SET1 once. We run 

multiple iterations. 

The performance of incremental learning with 

| | 100tD = and | | 5,000tD = are reported in Figure 3. 

It is observed that incremental learning benefits 

from more frequent PSM updating. With | | 100tD = , 

it not only attains good F-measure in the first itera-

                                                 
2 In an actual on-line environment, we are not supposed to 

store documents, thus no iteration can take place. 

tion, but also outperforms that of unsupervised 

batch learning along the EM process. The PSM 

updating becomes less frequent for larger | |tD . 

When | |tD  is set to be the whole corpus, then in-

cremental learning becomes a batch mode learning, 

which is evidenced by | | 5,000tD =  and it performs 

close to the batch mode learning. The experiments 

in Figure 3 are considered closed tests. Next we 

move on to an actual on-line experiment. 

5.3 Learning from the Live Web  

In practice, it is possible to extract bilingual snip-

pets of interest by repeatedly submitting queries to 

the Web. With the learning-at-work mechanism, 

we can mine the query results for up-to-date trans-

literations in an on-line environment. For example, 

by submitting “Amy” to search engines, we may 

get “Amy-愛咪/Ai-Mi/” and, as a by-product, “Jes-

sica-潔西卡/Jie-Xi-Ka/” as well. In this way, new 

queries can be generated iteratively, thus new pairs 

are discovered.  

Following the unsupervised incremental learning 

algorithm, we start the crawling with the same seed 

PSM as in Section 5.2. We adapt the PSM as every 

100 quasi-transliterations are extracted, i.e. 

| | 100tD = . The crawling stops after accumulating 

67,944 Web pages, where there are 100 snippets at 

most in a page, with 2,122,026 qualified sentences. 

We obtain 123,215 distinct E-C pairs when the 

crawling stops. For comparison, we also carry out 

unsupervised batch learning over the same 

2,122,026 qualified sentences in a single iteration 

under such an on-line environment. As the gold 

standard for this live corpus is not available, we 

randomly select 500 quasi-transliteration pairs for 

manual checking of precision (see Table 2). It is 

found that incremental learning is more productive 

than batch learning in discovering transliteration 

pairs. This finding is consistent with the test results 

on SET1. 

 

 
Unsupervised 

Batch 

Unsupervised 

Incremental  

#distinct E-C pairs 67,708 123,215 

Estimated Precision 0.758 0.768 

Table 2. Comparison between the unsupervised 

batch and incremental learning from live Web. 

 

The live Web corpus was used in transliteration 

extraction using active learning (Kuo et al., 2006). 
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Kuo et al. reported slightly better performance by 

annotating some samples manually and adapting 

the learning process in a batch manner. However, it 

is apparent that, in an on-line environment, the un-

supervised learning is more suitable for discovering 

knowledge without resorting to human annotation; 

incremental learning is desirable as it does not re-

quire storing all documents in advance.  

6 Conclusions 

We have proposed a learning framework for min-

ing E-C transliterations using bilingual snippets 

from a live Web corpus. In this learning-at-work 

framework, we formulate the PSM learning method 

and study strategies for PSM learning in both batch 

and incremental manners. The batch mode learning 

benefits from multiple iterations for improving per-

formance, while the unsupervised incremental one, 

which does not require all the training data to be 

available in advance, adapts to the dynamically 

changing environment easily without compromis-

ing the performance. Unsupervised incremental 

learning provides a practical and effective solution 

to transliteration extraction from query results, 

which can be easily extended to other Web mining 

applications.  
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