Acharya - A Text Editor and Framework for working with Indic Scripts

Krishnakumar V
Software Developer,
A-10/11 DMC New Colony,
Salem-636012

v.krishnakumar@gmail.com

Abstract

This paper discusses an open source project!
which provides a framework for working
with Indian language scripts using a uniform
syllable based text encoding scheme. It also
discusses the design and implementation of
a multi-platform text editor for 9 Indian lan-
guages which was built based on this encod-
ing scheme.

Keywords: Syllabic Encoding, Text Editor
implementation, Transliteration

1 Introduction

1.1 Background

Back in 2004, ETV (Eenadu Television), Hyder-
abad, felt a need for a text editor to prepare news
scripts for its regional news channels. A news pro-
duction environment has its unique set of require-
ments including speed, efficiency, robustness etc.
The software that was in use had various technical
limitations including high CPU usage, lack of porta-
bility across the diverse set of platforms that were in
use in ETV. Using UNICODE editors were unsuitable
as the correctness of the output largely depended on
the quality of the shaping engine in use and back
then it produced inconsistent results. Apart from that
ETV’s real-time graphics engines had trouble shap-
ing UNICODE text in Indic scripts.

A multilingual editor for Indic scripts had been
developed at IIT Madras®. The team at IIT Madras
favoured further development under an open source
project. As a result an Open Source Project was

"http://imli.sourceforge.net
http://acharya.iitm.ac.in

99

Indrani Roy
Fellow,
Central Institute of Indian Languages,
Manasagangotri, Mysore-570006
indraniroy@gmail.com

started. The immediate aim of the project was to
rewrite the editor, remove its limitations and re-
design it for use in a News Production environment
using modern design and development tools.

1.2 Acharya Text Editor

Acharya is a multi-platform text editor that supports
Asamiya, Bangla, Devanagari, Gujarati, Kannada,
Malayalam, Oriya, Punjabi, Tamil and Telugu. In
addition to these scripts, it can also display text in
Braille and RomanTrans using transliteration. It
achieves this functionality by storing Indic text in
syllabic units instead of characters as most other ed-
itors do. Although it uses a custom encoding, the
editor supports conversion of text to standard encod-
ings like 1sc11 (ISCII, 1993) and UNICODE (UTF-8).
It can export documents as RTF and PDF files. In
the case of PDF documents the fonts are embedded
within so that they can be exchanged freely with-
out the need for local language fonts to be available
on the viewing system. The editor supports editing
multiple documents through a tabbed interface. It in-
cludes standard features like clipboard support, find-
ing strings and interfacing with the platform’s print-
ing system. To assist text entry, it has a word com-
pletion mechanism based on a dynamic dictionary.
Currently, it runs on all major platforms including
Windows, Mac OS X and various Linux distribu-
tions.

The editor consists of a small but extensible li-
brary for processing syllables, a text editing com-
ponent and the rest of the user interface. Section 2
of this paper describes the library. The syllabic en-
coding along with its features is described in section
2.1. Section 3 describes the text editing component.
Conclusion is offered in section 4 along with some

Proceedings of the IICNLP-08 Workshop on NLP for Less Privileged Languages, pages 99—104,
Hyderabad, India, January 2008. (©)2008 Asian Federation of Natural Language Processing

information on related work-in-progress.

2 Syllable Library

The syllable library provides an implementation of
the syllabic encoding (described in the Section 2.1)
which allows text to be represented directly as syl-
lables instead of as characters. The library imple-
ments the rules of syllable composition, provides in-
put methods, and routines for conversion of syllables
to/from other encodings like ISCIT and UNICODE.
All of this functionality is exposed through opaque
data types and a small API operating on them.

2.1 Encoding

As mentioned above, text is encoded directly as syl-
lables. The encoding used is a modified version
of the syllabic encoding scheme (Kalyanakrishnan,
1994) developed by Prof. R. Kalyana Krishnan at
the Systems Development Lab, IIT Madras. This
encoding tries to capture the syllabic nature of In-
dic scripts. In this encoding, each syllable can be
specified as

C’m:O..4Vn:0..1

Where C is the consonant and V is the vowel. This
means that each syllable can be one of V, C, CV,
CCV, CCCV and CCCCV combinations. The ini-
tial C is the base consonant and the subsequent Cs
represent conjunct combinations. The memory rep-
resentation of each syllable is a 16-bit value with the
following bit distribution®:

012345678 9101112131415

v cnj c

Figure 1: syllabic encoding

With this arrangement, it is possible to have upto
64 consonants with 16 vowels each. The bits 4-9 in-
dicated by the cnj field hold the index into the base
consonant’s conjunct table. This table holds the val-
ues of the constituent consonants OR’ed into a 32-
bit integer. For example:

The syllable ndrA is stored in the following way.

3shown in little-endian byte order

100

012345678 9101112131415

1 25 20

Figure 2: ndrA syllable

Comparing with figure 1, the vowel code is 1
which stands for the vowel aa. Similarly, the base
consonant code is 20 and represents the consonant
na. The conjunct code 25 is an index into the con-
junct table of the consonant na. The value that will
be stored at index 25 is shown in figure 3:

012345678 91011121314151617 18192021 222324252627 28293031

18

30 0 0

Figure 3: value at index 25 of the conjunct table of
na

Bits 0-7 contain the consonant code of the first
level conjunct, bits 8-15 of the second level conjunct
and bits 16-23 of the third level. Bits 23-31 are re-
served for future expansion. In this case, there are
2 consonants in addition to the base consonant na.
The values 18 and 30 represent the consonants da
and ra respectively.

These codes are specified in the files
generic.vow”, generic.con, generic.spl for vowels,
consonants and special characters respectively.
The conjunct combinations are specified in the file
generic.cnj in this fashion:

ra: ta (ta (ya))

Here ra is the base consonant and the line defines
three conjuncts namely r#(ra + ta), rtt(ra + ta + ta)
and rtty(ra + ta + ta + ya). The last conjunct is an
example of a conjunct where all the four levels are
used ra + ta + ta + ya. It occurs for example in the
Oriya word marttya. Each pair of parenthesis stands
for a level of conjunct. More complex conjuncts
can be added by nesting them within parentheses.
However, the current implementation supports only
up to three levels of nesting. The generic.cnj file
as it stands now defines 1240 conjuncts. When the
16 vowels are taken into account, we get a total of
19840 syllables. An additional set of 32 syllables for

“These files are named generic because the values they de-
fine are common to all scripts supported by the framework

local language numbers, punctuation and other spe-
cial characters increases the total number of valid
syllables to 19872.

This scheme also accommodates English text in
the ASCII encoding by using a consonant code of 62
and the lower eight bits representing the ASCII code.
It also has a few special syllable codes for switch-
ing scripts to be embedded within the data stream
although they are not used within the editor.

2.1.1 Compactness

The 16-bit syllable value stands on its own and
does not correspond to UNICODE or ISCII or any
other encoding for that matter. One particular fea-
ture of this scheme is the compactness and the in-
herent compression. For example,

ARAQA

the above word — marttya (m + r + halant + t
+ halant + t + halant + y), in UNICODE UTF-16
encoding will be encoded as 8 16-bit values. UTF-8
requires 26 bytes to encode the word. In ISCII, it can
be encoded in 8 bytes whereas in this encoding, the
above word requires just 2 syllables of 16 bits each.

2.1.2 Rendering

One other aspect of this encoding is that there
is a separation of content and its visual representa-
tion. On one hand, this means that text processing
applications need not worry about dealing with dis-
play related issues like glyph reordering and proper
placement of glyphs using the various zero width
space characters as is the case with character based
encoding schemes including UNICODE. On the other
hand, this separation means that to display a syllable
some kind of map is required between the syllable
and its visual representation (glyphs). This mapping
is font dependent when non standard fonts using the
1S08859-1 encoding are used but UNICODE fonts
can also be used. Currently static tables are used
to provide a one to one mapping between the sylla-
bles and its corresponding glyphs. This is a trade-off
where memory is traded for quick display of glyphs.
There is no need for cluster identification as the in-
formation is already there in the form of syllables.
This lookup is O(1) whereas in shaping engines like
Pango, this operation is O(n). These static tables
can also be useful in environments where shaping
engines like Uniscribe and Pango are not available

101

or cannot be used.

2.2 Input Methods

The library provides routines for input methods
which can be used in conjunction with the platform
specific keyboard processing functions to support di-
rect key-in of syllables. Currently, it includes in-
put methods for INSCRIPT (ISCII, 1993) and Pho-
netic keyboards. However, the mechanism is general
enough to add additional keyboard layouts includ-
ing ones that work only with specific scripts. In the
current implementation, the input methods load their
respective data and delegate the bulk of the work to
the syllable processing routine.

2.3 Unicode Conversion

UNICODE is the de-facto standard for storing and
rendering text so conversion to/from UNICODE is es-
sential for integration with other tools. UNICODE in-
tegration can be achieved either by having a static
syllable-to-glyphs map with UNICODE fonts or a
separate text codec to do the syllable to UNICODE
conversion. In the current implementation, the text
codec strategy is used to convert the syllables to its
corresponding UTF-8

3 Editor Implementation

3.1 Text Storage

The most important data structure in a text editor is
the one that stores text sequences. A poor choice
will directly affect the performance of the editor as
almost all editing operations work on these text se-
quences. A survey of popular data structures for text
sequences is presented in (Crowley, 1998). The two
most popular choices are gap buffer and piece ta-
ble. A gap buffer is basically an array that has a
gap which is moved to the point of edit so that the
text that is entered is copied to the gap without fur-
ther allocation of storage. The gap shrinks and ex-
pands on insertion and deletion of text respectively.
Gap buffers have the advantages of being simple to
implement and offer direct access to the text. The
downside is they incur a copying overhead when the
gap is not at the point of editing operations as text
needs to be copied to either side of the gap. Also gap
buffers are not suitable if the text has attributes and
runs (run is a chunk of text that belongs to the same

script) of text need to be stored. A multilingual text
editor has both these requirements. To implement
this in a gap buffer would require a parallel style or
script buffer (Gillam, 2002) to track and demarcate
the runs and its corresponding font changes. When-
ever the gap is moved and text added or deleted, the
style buffer would need to be updated as well. This
can quickly get cumbersome when multiple scripts
are used in the same document.

A piece table is an alternative to the gap buffer
that does not suffer from these problems. In a piece
table, the text is immutable and is always appended
to the sequence. However, the logical order that is
shown in the view is maintained by a separate list of
piece descriptors. A piece includes information such
as the script, the start and end positions within the
sequence etc. So, when the user copies/deletes the
text, it is the piece descriptors that are moved around
and not the actual text. By introducing this level
of indirection, the piece table solves the problem of
copying overhead when text is moved around. How-
ever, the drawback is that the text is no longer ac-
cessible directly. To locate a position in the text se-
quence the editor has to traverse the piece table and
locate the piece which contains the position. Despite
this drawback, the piece table data structure offers a
number of advantages — it is a persistent data struc-
ture and because the original text is never destroyed
operations like undo and redo lend to a straightfor-
ward implementation by restoring the links between
the removed pieces from the undo and redo stacks
respectively. The other advantage of piece tables
is that there is a direct mapping from script runs to
pieces.

The piece table in this editor is implemented as a
piece chain (Brown, 2006) — a circular linked list
with a sentinel node. Since the piece chain is a
linked list, the problem of linear addressing is pro-
nounced (O(n)). To deal with this problem, the
piece chain caches the last accessed (piece, position)
pair to utilize the locality of reference (Wirth and
Gutknecht, 1992). This small optimization has so
far worked out well in practice as there is a strong
locality of reference in text editing. To store the syl-
lables itself, the deque class from the standard C+ li-
brary is used. It is a scalable data structure that guar-
antees efficient insertion of large amounts of text at
the tail position. Another important issue is that of

102

cursor movement. In the editor, syllables are dis-
played using a variable number of glyphs. Allowing
the cursor to be positioned in the middle of a syllable
would make it possible to delete that particular syl-
lable partially which would make the data inconsis-
tent. Therefore all cursor related operations includ-
ing selection should be limited to syllable bound-
aries. This is achieved by using a separate deque
object for storing the width of each syllable where
width is the number of glyphs that the syllable is
represented by visually. This additional information
is used when mapping the syllable position in the
text storage to its corresponding glyph position in
the view and vice-versa.

3.2 File Format

As mentioned in section 2, the editor works in terms
of syllables and not characters. While syllables can
be stored to disk files directly, to retain compatibil-
ity with other Indian language applications, the edi-
tor stores the text to files in the 7-bit ISCII encoding.
7-bit 1SCII is a simple and efficient format where En-
glish text in ASCII is stored as is and the text in Indic
scripts are stored using code points from the upper
half of the character set (128-255). Like the syllabic
encoding and unlike UNICODE, ISCII uses a uniform
representation for all the Indic scripts. Each script
run starts off with a code that identifies the language
of the run. This makes run detection very simple
to implement. When the editor saves a document,
all the syllables are broken down to their constituent
ISCII characters and written to disk. Similarly, when
a file is opened, the ISCII data is converted to the syl-
labic representation using the ISCIT codec routines
from the syllable library and from then on only the
syllables are used.

3.3 [Utilities
3.3.1 Transliteration

Because of the uniformity of the encoding all the
supported scripts have a means of displaying the
same set of syllables hence transliteration in this en-
coding is basically changing the script code for the
user-selected piece of text and notifying the view
that is displaying the text to re-render the selected
text using the font of the target script. What this
means is that transliteration as supported by this en-
coding will survive a round-trip conversion without

any loss of data. An example to illustrate the last
point:

Supposing in a multilingual document, the user
selects the character 1 (ga in Hindi) and translit-
erates to RomanTrans, the editor will display ga.
Internally, the ga syllable is stored in the following
way:

012345678 9101112131415

0 0 3

Figure 4: ga syllable

The text storage tracks the script code for every
syllable. When the above syllable is converted to
RomanTrans, the text storage object does not modify
the syllable but changes only the script code to Ro-
manTrans and notifies the view displaying the text.
The view upon receiving the notification from the
storage object then re-renders the ga syllable using
RomanTrans’s font map. Similarly, when the user
once again changes to Tamil, the editor correctly dis-
plays & (ka in Tamil) this time using Tamil’s font
map which specifies that ga should be mapped to the
same glyph as ka. If the user once again changes the
script back to Hindi, the letter 1 (ga in Hindi) is
displayed correctly.

The above scheme is possible because the text
content is kept separate from the actual display of
text and more importantly the text content itself is
stored as syllables which are the fundamental units
of transliteration.

3.3.2 Word Completion

Word completion, also known as auto-completion
under certain applications, is a handy feature to have
specially for typing lengthy and frequently used
words fast. In its current implementation, this ed-
itor does not automatically complete words. The
user needs to trigger it explicitly. This is mainly to
keep the editor less disruptive (in terms of the typing
flow) and also to keep the implementation simple.
When typing long words, the user after typing the
first few characters can trigger the pop-up with pos-
sible completions by means of the designated key-
board shortcut. The list of words that appear in the
completion box is obtained by doing a prefix search

103

(of what the user had typed so far) on a dynamic
dictionary. This dictionary is implemented using
ternary search trees (Bentley and Sedgewick, 1998).
A ternary search tree (henceforth TST) is a versatile
data structure that combines the time efficiency of
tries and the space efficiency of binary search trees.
TSTs are generally faster than hashtables and offer
much more functionality than simple key look-ups
because they maintain the ordering of the data stored
within. When augmented with additional informa-
tion, TSTs can also be used for implementing spell
checking and by using a fixed edit distance, alter-
native word suggestions as well. A full description
is beyond the scope of this short paper. However,
(Bentley and Sedgewick, 1997) provide all the de-
tails.

4 Conclusion & Future Work

Inside ETYV, this editor has been in production use
since 2005. It serves as the primary tool for docu-
ment preparation in Indian languages. The fact that
it is being used in a news production environment is
a testament to its stability and the overall soundness
of the syllabic encoding scheme.

At the time of writing, support for speech out-
put of text is being worked on. Since the text is
stored in terms of syllables, speech output is ob-
tained by breaking the syllables into phonemes and
sending them to a concatenative speech synthesis en-
gine (currently we are using Mbrola). The editor
already has support for Braille output using translit-
eration and this output can be fed to a braille printer
after minor post processing the tools for which are
being worked on. Work is on for incorporating tools
like morphological analyzers into this framework for
building advanced linguistic applications.

This is an ongoing effort in the form of an open
source project. The full source code for the entire
system is provided on the website and help is avail-
able on the mailing list.

Acknowledgements

We are grateful to Prof. R.Kalyana Krishnan, Sys-
tems Development Lab, IIT Madras for guidance
throughout this project, Mr. B.Ganesh ex-CTO of
Technical Services Department of ETV for initiat-
ing this project and contributing to it, Mr. Anir-

ban Sam of ETV for coordinating the testing of
this software and providing detailed bug reports, Mr.
G.Venugopal, Systems Manager, ETV for the ad-
ministrative support that facilitated distributed de-
velopment. Finally, ETV deserves a special mention
for supporting the development of this open source
project.

References

Charles Crowley. 1998. Data Structures for
Text Sequences. http://www.cs.unm.edu/
~crowley/papers/sds.pdf

1993. Indian Script Code for Information Interchange.
In Bureau of Indian Standards.

James Brown. 2006. Editing Text with Piece Chains.
http://catch22.net/tuts/editorl7.asp

James Brown. 2006. Unicode Text Editing. http://
catch22.net/tuts/editorl8.asp

Jon Bentley and Robert Sedgewick. 1998. Ternary
Search Trees In Dr. Dobbs Journal. http://www.
ddj.com/windows/184410528

Jon Bentley and Robert Sedgewick. 1997. Fast Algo-
rithms for Sorting and Searching Strings. In Proceed-
ings of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, New Orleans, USA.

Niclaus Wirth and Jurg Gutknecht. 1992. Project
Oberon - The Design of an Operating System and
Compiler. ACM Press/Addison-Wesley Publishing
Co. New York, USA.

R.Kalyanakrishnan. 1994. Syllable level coding for
Indian languages. http://acharya.iitm.ac.
in/software/docs/scheme.php.

Richard Gillam. 2002. Unicode Demystified - A
Practical Programmer’s Guide to the Encoding Stan-
dard. Addison-Wesley Longman Publishing Co., Inc.,
Boston, USA.

104

