
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 27–34,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Joint Grammar Development by Linguists and Computer
Scientists

Michael Maxwell
Center for Advanced Study of Language/

University of Maryland
College Park, Maryland, USA
mmaxwell@casl.umd.edu

Anne David
Center for Advanced Study of Language/

University of Maryland
College Park, Maryland, USA
adavid@casl.umd.edu

Abstract

For languages with inflectional morpho-
logy, development of a morphological
parser can be a bottleneck to further
development. We focus on two difficulties:
first, finding people with expertise in both
computer programming and the linguistics
of a particular language, and second, the
short lifetime of software such as parsers.
We describe a methodology to split parser
building into two tasks: descriptive
grammar development, and formal
grammar development. The two grammars
are combined into a single document using
Literate Programming. The formal
grammar is designed to be independent of a
particular parsing engine’s programming
language, so that it can be readily ported to
a new parsing engine, thus helping solve
the software lifetime problem.

1 Problems for Grammar Development

After several decades of widespread effort in
computational linguistics, the vast majority of the
world’s languages lack significant computational
resources. For many languages, this is attributable
to the lack of even more basic resources, such as
standardized writing systems or dictionaries. But
even for many languages that have been written for
centuries, computational resources are scarce.

One resource that is needed for languages with
significant inflectional morphology is a morpho-
logical parser.1 To the degree that a language has
complex morphology, parsers are difficult to build.

1 In fact, it is more common to create a morphological
transducer, that is, a program which functions to both parse
and generate inflected words. However, because it is more
familiar, in this paper we will frequently use the term ‘parser.’

While there has been considerable research into
automatically deriving a morphological parser
from a corpus (see for example Creutz and Lagus,
2007; Goldsmith, 2001; Goldsmith and Hu, 2004;
and the papers in Maxwell, 2002), the results are
still far from producing reliable, wide-coverage
parsers. Hence most morphological parsers are still
built by hand. This paper focuses on practical
aspects of how such parsers can best be built, and
presents a model for collaborative development.

Hand-built parsers suffer from at least two
drawbacks, which we will call the ‘Expertise
Problem’ and the ‘Half-Life Problem.’ The
Expertise Problem concerns a difficulty for
building a parser in the first place: it is hard to find
one person with the necessary knowledge of both
the linguistics of the target language and the
computational technology for building parsers.

The Half-Life Problem concerns the fact that
once a parser has been built, its life is limited by
the life of the software it has been implemented in,
and this lifetime is often short.

The following subsections further describe these
two problems, while the remainder of the paper
focuses largely on the Expertise Problem. We
focus specifically on the development of
morphological grammars. The techniques
described here may be usable with syntactic
grammars as well, but we have not investigated
that problem. We also focus in this paper on the
development issue; testing and debugging
grammars is not discussed in this paper.

1.1 The Expertise Problem

Writing software requires two kinds of expertise:
knowledge of the problem to be solved, and
knowledge of how to program software. For
parsers, the problem-specific knowledge requires
understanding the grammar of the target language.
Since everyone speaks at least one language, it

27

might seem that finding someone who understands
the grammar of any particular language should be
easy. Unfortunately, as generations of field
linguists have discovered, this is not true. A native
speaker’s knowledge of a language is notoriously
implicit; converting that knowledge into explicit
rules is no simple task. Furthermore, finding a
speaker of the language who combines explicit
understanding of the grammar with software
engineering skills is even more difficult. The
difficulty is compounded when the number of
speakers of the language is small. We therefore
believe that for many languages of the world, for
the near future, the way to develop computational
tools in general, and morphological parsers in
particular, lies in teamwork.

An example of the team approach was the
BOAS project (Oflazer et al., 2001). A BOAS
team consisted of two people—a ‘language
informant’ and a programmer—plus a computer
program which interviewed the informant and
created the grammar rules. The computer program
is described as a ‘linguist in a box’ (Oflazer et al.,
61). The method we describe uses computational
tools, but purely human teamwork.

A potential problem with the team approach lies
in facilitating communication between team
members. While electronic communication makes
distributed teams possible, there is still a question
of how best to enable people with disparate skills
to actually understand each other. We return to this
below, when we discuss our collaborative method.

1.2 The Half-Life Problem

Another problem with computational tools is their
lack of longevity. While it would be difficult to
formally investigate, we estimate the average
lifetime for computational linguistic tools to be
five or ten years. In part, this is due to the (lack of)
longevity of the underlying software.2 Of course,
some vendors provide backwards compatibility,
and not all software becomes extinct that
quickly—but that is the meaning of ‘half-life.’

Software obsolescence can be postponed by the
judicious choice of programming languages,

 2 One of us (Maxwell) was involved in a project in which two

of the programming languages became defunct before the
program was complete. In both cases, the cost of porting to
alternative dialects of the programming language was deemed
prohibitive.

avoiding platform- or OS-specific commands, the
use of open source methods, etc. However, this can
only prolong the life of a program, not extend it
indefinitely.3 There are few if any programs that
were written in 1980 that still run on any but
computers outside of a museum—and 1980 was
only twenty-seven years ago.

In contrast, natural languages change slowly,
apart from the infusion of new vocabulary. The
grammar of a language spoken today is unlikely to
be significantly different from the grammar of that
same language fifty or a hundred years ago; and
barring catastrophe, any changes which do happen
are likely to be incremental.

One might argue that the short half-life of
software is unimportant, since twenty years from
now it may be possible to generate a
morphological parser automatically from a corpus
and a dictionary. Perhaps, but this remains to be
seen. In the meanwhile, the time and effort that go
into writing such tools mandates that the tools be
usable for long after the project is completed.

Another motivation for wanting to build parsing
tools with a longer half-life is that they constitute a
description of (part of) the grammar of a language,
in two senses: first, the grammar that the parser
uses is in effect a formal description of the
language’s morphology (or syntax). This formal
description has the advantage over traditional
grammar descriptions of being unambiguous.

A second way in which a parser constitutes
documentation of a language is that it can be used
to analyze language texts, and—if it supports a
generation mode—to produce paradigms. That is, a
parser is an active description, not a static one.

However, linguists have drawn attention to the
issue of longevity for computer-based language
documentation and description. In their seminal
paper, Bird and Simons (2003) point out that the
use of digital technologies brings the potential that
archive language data can become unusable much
more quickly than printed grammatical
descriptions. Indeed, scholars of today can
understand grammars of South Asian languages
penned thousands of years ago.

3 Old software can of course be kept on “life support” by
running it on old machines running old operating systems. But
that is a solution for museums, not for software that is
intended to be actively used.

28

Since a parser embodies a description of the
grammar of a language, it should be written to
provide an explicit, computationally
implementable description of the language,
portable to future parsing engines even after the
language is extinct. As we show below, this is not
an impossible goal.

2 A method for Grammar Development

We have embarked on a project to build
morphological parsers of languages in a way that
overcomes the Expertise and Half-Life problems
described in the previous section. The first parser
was for the Bengali, or Bangla, language. Our
choice of Bangla was driven by a number of
considerations, many of which are not relevant
here. Most any language with a significant amount
of inflectional morphology would have worked.
However, in retrospect the choice was a good one,
as it forced us to deal with a number of both
computational and linguistic issues that a more
highly resourced language such as Spanish would
not have presented. At the same time, Bangla is
sufficiently documented by traditional grammars
that the task was achievable, although not as easy
as we had anticipated.

We are writing two kinds of grammars
simultaneously: the first is a traditional descriptive
or reference grammar, written in English prose by
a linguist (Anne David), intended to be read by
linguists. The other is a formal grammar, written in
a formal specification language, by a
computational linguist (Mike Maxwell) and
intended for conversion into the programming
language of a parsing engine. (Neither of us is a
speaker of the Bangla language.) The two
grammars are intertwined, as described below, so
that each supports the other in such a way that we
can combine our differing expertise while also
avoiding the lack of longevity that plagues
traditional parser development.

The following subsections describe the
methodology we are using, and its advantages.

2.1 Descriptive Grammar

The descriptive grammar we have written is not, of
itself, ground-breaking. Like most reference
grammars of the morphology of a language, it has
a chapter on the phonology and writing system of
Bangla, and chapters for the various parts of

speech. The latter chapters describe the inflectional
(and some derivational) affixes each part of speech
takes, and how the resulting inflected forms define
the paradigms. The usage of these forms is also
described, with examples sufficient to illustrate the
usage; it is not, however, a pedagogical grammar.

We were surprised to discover that no thorough
and reliable English-language descriptive grammar
of modern colloquial Bangla exists, despite its
having well over 200 million native speakers.
Instead, we had to glean our description of Bangla
morphology from half a dozen or so grammars of
varying quality (some of them pedagogical4),
several journal articles, and a couple of
dissertations. Doing so meant comparing and
reconciling sometimes widely differing
descriptions and analyses; three major problems
we encountered were contradictory accounts, lack
of clarity, and gaps in coverage. Writing a formal
grammar forced us to both resolve these issues and
clarify our descriptive grammar.

For example, we knew from our sources that the
locative/ instrumental case in Bangla has several
allomorphs; however, the descriptions of their
distribution differed, and one of our chief sources
was, in fact, quite vague on the conditioning
environments. Moreover, one particular vowel
alternation that takes place in certain verb forms
goes unmentioned in nearly all of our sources and
is inaccurately described in one of the two that do
mention it. In this instance, a native speaker
confirmed the correct forms for us. Opinions
among the written sources on how to classify
Bangla verbs differed widely as well, with
anywhere from two to seven classes proposed. We
ended up choosing the system that defined seven
stem classes, since it is the only one that enables
the generation of any verb form, given a stem.

Resolving such problems was made easier by
the help of a consultant in the Bangla language.
Professor Clint Seely, Emeritus of the University
of Chicago. He corrected our many mistakes and
helped clear up ambiguities in our sources.

The difficulties we encountered in
understanding grammatical descriptions, recon-
ciling different grammatical accounts, and filling
in gaps in coverage underline the fact that we
could not have simply picked up a grammar and

4 In fact, the clearest and most reliable sources of information
were pedagogical grammars.

29

written a formal grammar from it. For languages
which have any degree of inflectional
complexity—and Bengali does, although there are
languages with still more complicated mor-
phologies—the problems are too great for such a
simple approach. One might ask why it is so
difficult to convert a published grammar into a
morphological parser. One answer is that
languages are inherently complex. It is common
for published descriptions to overlook complexity,
either in the interest of presenting a simple and
general description, or perhaps because the author
is unaware of some of the issues.

Also, as any reader or writer of technical papers
knows, it is all too easy to talk about complex
topics unclearly. In our case, writing the formal
grammar at the same time as the descriptive
grammar forced a clarity and breadth of coverage
in our descriptive grammar which we would not
otherwise have attained. Moreover, by
incorporating a formal grammar into the
descriptive grammar, we have gone beyond
previous work on Bangla, or most other languages.
The following section describes this.

2.2 Formal Grammar

For the formal grammar of Bangla morphology, we
need a description which is unambiguous and
capable of being used to build a morphological
parser. As discussed above, ambiguity is a fact
about natural language, and one which has long
plagued software specification efforts (Berry and
Kamsties, 2003). Building a parser from a
descriptive grammar is analogous to building
traditional software from a software specification.

Since our descriptive grammar is a natural
language specification, it is not what an
implementer would want to rely on. We therefore
needed a formal language for grammar writing.

One approach would be to use the programming
language of an existing parsing tool. Amith and
Maxwell (2005a) propose using the xfst language
(the language of one of the Xerox finite state tools,
see Beesley and Karttunen, 2003). While this
would meet the need for an unambiguous
representation, it would fail to meet our goal of
longevity: the Xerox tools will likely not be used
in ten years, and there is no reason to think that
whatever morphological parsing engines are
available then will use the same programming

language—nor that grammar engineers will
understand the xfst programming language.

Our formal grammar needs to be unambiguous,
iconic, and self-documenting. We have therefore
chosen to represent our formal grammar in XML,
and have developed an XML schema for encoding
linguistic structures, based on a UML model
developed by SIL researchers.5 The design goals
of our XML schema are described in more detail in
Maxwell and David (forthcoming).

2.3 Combining Descriptive and Formal
Grammars

However, as we have argued elsewhere (Amith and
Maxwell, 2005a; 2005b), neither a descriptive nor
a formal grammar is adequate to our purposes by
itself. Descriptive grammars are inherently
ambiguous and sometimes vague, while formal
grammars are hard to understand. If a formal
grammar could be combined with the descriptive
grammar, we would have an antidote to these
problems: the combination could be neither
ambiguous nor vague.

The question is then whether there is a way to
combine the two sorts of grammars. Such a method
would need to support the following:
(1) Developing the grammars in parallel.
(2) Combining the grammars so that the

description of each aspect of the grammar is
presented to the human reader along with the
corresponding aspect of the formal grammar.

(3) Extracting the formal grammar for use by the
parsing engine.

In fact, there already is a method that accomplishes
(2) and (3): Literate Programming, developed by
Donald Knuth (1984, 1992) as a way of document-
ing computer programs. We use an XML/
DocBook implementation of Literate Programming
(Walsh and Muellner, 1999; Walsh, 2002), since
XML provides numerous advantages for long-term
archiving (cf. Bird and Simons, 2002).

There remains the need for a methodology for
developing the descriptive and formal grammars in
parallel, point (1) in the above list. We turn to this
question in the next section.

5 The SIL model can be downloaded from
http://fieldworks.sil.org/.

30

2.4 Collaborative Grammar Development

We are writing our descriptive grammar of Bangla
in a commercial program, XMLmind (http://
www.xmlmind.com/xmleditor/). The formal
grammar is being written in a programmer’s editor,
although with suitable style sheets, it could be
written in XMLmind. The formal grammar
consists of a number of ‘fragments,’ each paired
with a section in the descriptive grammar, so that
the descriptive and formal grammatical
descriptions are mutually supportive (see the
appendix for a short excerpt).

Our working arrangement is one of iterative
development, with descriptive grammar writing
leading formal grammar writing. Crucially, this
iterative development allows frequent exchanges
for clarification. A typical interchange (one which
actually took place) is the following. The language
expert writes a section of the descriptive grammar
on Bengali noun qualifiers. The computational
grammar writer reads the description and tries to
implement it, but a question arises: is the
diminutive qualifier used in all the environments
that the three allomorphs of the non-diminutive
qualifier are used, or only one of those
environments? The language expert finds examples
showing the diminutive in all environments,
enabling the computational grammar writer to
proceed. Crucially, the descriptive grammar was
then modified to clarify this issue, and to include
the new examples.

Although we are writing our grammars a short
hallway apart, this interchange was accomplished
largely by email; we could as well have been a
continent apart.

In summary, our division of labor, together with
the fact that we are simultaneously developing the
two kinds of grammar using our computational
tools and incorporating immediate feedback, has
made possible a much better result than if one of us
wrote the descriptive grammar, and the other later
wrote the formal grammar.

2.5 Conversion to publishable grammar

As evident from the small portion of our grammar
in the appendix, the formal grammar is
understandable in its XML form, but it is not
“pretty”; nor does it bear any obvious resemblance

to modern linguistic formalisms.6 At the same
time, the use of XML means that a variety of tools
are available for editing the grammar, checking its
validity against the schema, and converting it into
the programming language of a parsing engine.

Fortunately, the flexibility of XML makes it
possible to display (and eventually publish) the
formal grammar using linguistic formalisms, such
as the following:

__V# /
k
t
p

k
t
p

h
h

h

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

→
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

The ability to create such display forms of the
underlying XML data—referred to by Knuth as
“weaving”–is important as we look to publishing
the combined descriptive and formal grammar. The
creation of the style sheets necessary for this is
planned for next year.

2.6 Conversion to parser

To build a parser from our grammar, we first
extract the formal grammar as an XML document
from the combined descriptive and formal
grammar. This is a standard process in Literate
Programming, called ‘tangling’; we use a simple
XSLT (Extensible Stylesheet Language
Transformation), developed by Norman Walsh
(http://docbook.sourceforge.net/release/litprog/
current/fo/ldocbook.xsl).

Second, the extracted XML formal grammar is
read by a small Python program, then converted
into the programming language of the target
morphological parsing engine.

A computer-readable lexicon must also be
converted into the programming language of the
parsing engine, a comparatively simple task.

Finally, the converted grammar and lexicon are
read by the parsing engine to produce the parser.
Currently, the target parsing engine is the Stuttgart
Finite State Transducer Tools (http://www.ims.uni-

6 We have resisted the temptation to make our linguistics too
modern, since linguistic theories also have a short half-life.
We model an eclectic but largely 1950s era version of
linguistics. For example, phonological natural classes are
defined by listing the phonemes of which they are composed,
rather than using distinctive features; we use ordered
phonological rules, rather than Optimality Theory-style
constraints rankings. While these may be outmoded, they are
quite understandable.

31

stuttgart.de/projekte/gramotron/SOFTWARE/
SFST.html). We fully expect that any choice of
parsing engine we make today will be superseded
in the future by better and more capable parsing
engines. Targeting a different parsing engine will
require rewriting only that part of the conversion
program that re-writes the program-internal
representation into the target programming
language (plus a converter for the lexicon).

Verifying that the conversion process works
correctly with a new parsing engine will require
standard test data. Much of this test data can be
automatically extracted from the paradigm tables
and example sentences of the descriptive grammar.

3 Previous work

Collaborative work on natural language processing
programs is not of itself a new idea. It is quite
common to split up the task of developing a
grammar among people with skills in linguistics,
lexicography, and software development. In that
sense, our work is very traditional.

Ours is not even the first effort at developing a
framework for collaborative development of
computational linguistic tools. Butt et al. (1999)
describe the development of grammars in several
languages, including English, French and German
(with other languages added later). However, their
focus was on enabling collaboration among
grammar writers working in different languages;
each author was assumed to be more or less skilled
in one target language and in computational
linguistics. Their focus thus differs from ours in its
scope and in the nature of the collaboration.

Copestake and Flickinger (2000) devote a
section to “Collaborative grammar coding,” but
conclude that in order to work on a (syntactic)
parser, a developer needs to combine skills in the
linguistic theory being implemented, grammar
debugging, and the grammar of the target
language. In our work, we are attempting to make
it possible to split this expertise between different
people, and to provide them with a collaborative
tool.

Significant effort has been directed at enabling
collaborative annotation of corpora, e.g.
Cunningham et al. 2002, and Ma et al. 2002. This
is similar to our approach in allowing collaboration
between annotators and experts (annotation

supervisors); but unlike our project, collaborative
annotation does not address grammar development.

Finally, there are linguistic development
environments such as SIL’s FLEx
(www.sil.org/computing/fieldworks/flex/), and the
planned Montage project (Bender et al., 2004),
which are intended to help linguists write
computational grammars, incorporating or
generating descriptive grammars. While these are
useful tools—we are in fact looking into using
FLEx to produce interlinear sentences for our
grammars—they are not intended for the same
kind of collaborative effort that we describe here.

4 Conclusion

What is new about the project we describe is
therefore the development of a computational
framework within which computationally
implemented grammar development can be split
into distinct tasks: one task for a person (or a team)
with knowledge of a particular language, and
another task for a person (or team) with skills in
computer science. (Lexicography may constitute a
third task, depending on whether suitable machine-
readable dictionaries are already available.)

If this division of labor we describe here were
applicable only to the working relationship
between the authors, it would be of little general
interest. However, we believe a similar division of
skills between language expert and computational
expert to be quite commonplace, making the same
division of labor workable in a variety of
scenarios. This has implications for the develop-
ment of linguistic software in low density
languages: finding someone who is expert in both a
language and its grammar, and in computational
techniques, is likely to be particularly difficult in
the case of languages which have not been well-
documented, or minority languages, or languages
spoken in countries where there is not a history of
work in natural language processing.

It is easy to imagine other scenarios where this
division of labor would work. For example, the
linguistic team might be part of the language or
linguistics department of a university, while the
computational team might be part of a computer
science department. Grammar development could
easily be an open source project, with the
developers never meeting face-to-face.

32

A question which occurred to us many times
during this project is, who can best build a
grammar or parser for a language: people like us,
who are linguists but do not know the language, or
native speakers of the language? The answer is not
at all obvious. We suggest that the answer is
neither one—alone. None of the language speakers
or researchers we talked with in the course of this
project had the expertise to build and test formal
grammars or morphological parsers. At the same
time, when the grammars we consulted were not
clear, or contradicted each other, we needed to
consult with native speakers or researchers to
determine the correct answers.

Hence, we feel strongly that parsers and
grammars should be built by teams including
people with a variety of skills. Given modern
technology, it seems clear that the division of labor
which our method allows means that there is no
reason the people involved in the project need even
be in the same country, or all speak the target
language.

In sum, we are developing a methodology to
build certain kinds of NLP resources in lower
density languages, and we have demonstrated this
technology for morphological parsing.

References
Amith, Jonathan D., and Maxwell, Michael. 2005a.

Language Documentation: The Nahuatl Grammar. In
Alexander Gelbuck (ed.) Computational Linguistics
and Intelligent Text Processing. Lecture Notes in
Computer Science. 474-485. Berlin: Springer.

Amith, Jonathan D., and Maxwell, Michael. 2005b.
“Language Documentation: Archiving Grammars.”
Chicago Linguistic Society 41.

Beesley, Kenneth R., and Karttunen, Lauri. 2003. Finite
State Morphology: CSLI Studies in Computational
Linguistics. Chicago: University of Chicago Press.

Bender, Emily M.; Dan Flickinger; Jeff Good; and Ivan
A. Sag. 2004. “Montage: Leveraging Advances in
Grammar Engineering, Linguistic Ontologies, and
Mark-up for the Documentation of Underdescribed
Languages.” Proceedings of the Workshop on First
Steps for Language Documentation of Minority
Languages: Computational Linguistic Tools for
Morphology, Lexicon and Corpus Compilation,
LREC 2004.

Berry, Daniel M., and Kamsties, Erik. 2003. Ambiguity
in Requirements Specification. In Julio Cesar

Sampaio do Prado Leite and Jorge Horacio Doorn
(eds.) Perspectives on Software Requirements. The
Springer International Series in Engineering and
Computer Science. Vol. 753. Berlin: Springer.

Bird, Steven, and Simons, Gary. 2002. Seven
Dimensions of Portability for Language
Documentation and Description. In Proceedings of
the Workshop on Portability Issues in Human
Language Technologies, Third International
Conference on Language Resources and Evaluation.
Paris: European Language Resources Association.

Bird, Steven, and Simons, Gary. 2003. Seven
dimensions of portability for language documentation
and description. Language 79:557-582.

Butt, Myriam, King, Tracy Holloway, Niño, María-
Eugenia, and Segond, Frédérique. 1999. A Grammar
Writer's Cookbook: CSLI Lecture Notes, 95.
Stanford, CA: CSLI Publications.

Copestake, Ann, and Flickinger, Dan. 2000. An open
source grammar development environment and
broad-coverage English grammar using HPSG. In
Proceedings of the Second conference on Language
Resources and Evaluation (LREC-2000). Athens,
Greece.

Creutz, Mathias, and Lagus, Krista. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and
Language Processing 4.

Cunningham, H., Tablan, V., Bontcheva, K., and
Dimitrov, M. 2002. Language engineering tools for
collaborative corpus annotation.
http://citeseer.ist.psu.edu/734322.html.

Goldsmith, John. 2001. Unsupervised Learning of the
Morphology of a Natural Language. Computational
Linguistics 27:153-198.

Goldsmith, John , and Hu, Yu. 2004. From Signatures to
Finite State Automata. Midwest Computational
Linguistics Colloquium, Bloomington IN.

Knuth, Donald E. 1984. Literate programming. The
Computer Journal 27:97-111.

Knuth, Donald E. 1992. Literate Programming: CSLI
Lecture Notes. Stanford: Center for the Study of
Language and Information.

Ma, Xiaoyi, Lee, Haejoong, Bird, Steven, and Maeda,
Kazuaki. 2002. Models and Tools for Collaborative
Annotation. In Proceedings of the Third
International Conference on Language Resources
and Evaluation. Paris: European Language
Resources Association.

33

Maxwell, Michael B. 2002. Proceedings of the
Workshop on Morphological and Phonological
Learning. New Brunswick, NJ: ACL.

Maxwell, Michael B., and Anne David. Forthcoming.
“Interoperable Grammars.” Paper to be presented at
The First International Conference on Global
Interoperability for Language Resources (ICGL
2008), Hong Kong.

Nirenburg, Sergei, Biatov, Konstantin, Farwell, David,
Helmreich, Stephen, McShane, Marjorie, Ponsford,
Dan, Raskin, Victor, and Sheremetyeva, Svetlana.
1999. Toward Descriptive Computational
Linguistics.

http://crl.nmsu.edu/expedition/publications/boas-
acl99.pdf.

Oflazer, Kemal, Nirenburg, Sergei, and McShane,
Marjorie. 2001. Bootstrapping Morphological
Analyzers by Combining Human Elicitation and
Machine Learning. Computational Linguistics 27:59-
85.

Walsh, Norman, and Muellner, Leonard. 1999.
DocBook: The Definitive Guide. Sebastopol,
California: O'Reilly & Associates, Inc.

Walsh, Norman. 2002. Literate Programming in XML.
XML 2002, Baltimore, MD.

Appendix: Sample Grammar Excerpt

3.2. Future Tense
The future tense is used to express:

 a future state or action
 propriety or ability [etc.]

…

Person Suffix (C)VC- (C)aC- (C)V- (C)a- (C)V(i)- Causative 3-������
 ����

/�on-a/
to hear

����
/thak-a/
to stay

����
/h�-oya/
to become

�����
/kha-oya/
to eat

�����
/ca-oya/
to want

������
/�ekha-no/
to teach

����
�����
/kam�a-no/
to bite

1st -��
/-bo/

����
��
/� n bo/

����
��
/thak bo/

��
/h�-bo/

���
/kha-bo/

����
/cai-bo/

�����
/�ekha-bo/

����
����
/kam�a bo/

Table 6.2: FutureTense Verb Forms
[Additional rows omitted to save space]
The formal grammar's listing of future tense suffixes appears below.

<Mo:InflectionalAffix gloss="-1Fut" id="af1Fut">
 <!--The two "allomorphs" are really allographs-->
 <Mo:Allomorph form="��">
 <!--Spelled 'bo'; usually (not always) after a C-stem -->
 </Mo:Allomorph>
 <Mo:Allomorph form="�">
 <!--Spelled 'b'; usually (not always) after a vowel stem -->
 </Mo:Allomorph>
 <Mo:inflectionFeatures>
 <Fs:f name="Tense"><Fs:symbol value="Future"/></Fs:f>
 <Fs:f name="Mood"><Fs:symbol value="Indicative"/></Fs:f>
 <Fs:f name="Person"><Fs:symbol value="1"/></Fs:f>
 </Mo:inflectionFeatures>
/Mo:InflectionalAffix>

<!-- Etc. for the remaining future tense suffixes -->

34

