
Netgraph – Making Searching in Treebanks Easy

Jiří Mírovský
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
mirovsky@ufal.mff.cuni.cz

1 Introduction

Searching in a linguistically annotated treebank is
a principal task that requires a sophisticated tool.
Netgraph has been designed to perform the search-
ing with maximum comfort and minimum require-
ments on its users. Although it has been developed
primarily for the Prague Dependency Treebank 2.0
(Hajič et al. 2006), it can be used with other tree-
banks too, both dependency and constituent-struc-
ture types, as long as the treebank is transformed to
a suitable format.

In this paper, we present Netgraph query lan-
guage and on many examples show how it can be
used to search for frequent linguistic phenomena.

In section 1 (after this introduction) we extreme-
ly briefly describe the Prague Dependency Tree-
bank 2.0, just to make the examples in the subse-
quent text more understandable. In the next subsec-
tion we mention the history of Netgraph and its
properties as a tool.

In section 2 we offer an introduction to the
query language of Netgraph along with the idea of
meta-attributes and what they are good for, and
present linguistically motivated examples of
queries in the Prague Dependency Treebank.

Finally, in section 3 we offer some concluding
remarks.

1.1 Prague Dependency Treebank 2.0

The Prague Dependency Treebank 2.0 (PDT 2.0,
see Hajič et al. 2006, Hajič 2004) is a manually an-
notated corpus of Czech. It is a sequel to the
Prague Dependency Treebank 1.0 (PDT 1.0, see
Hajič et al. 2001a, Hajič et al. 2001b).

The texts in PDT 2.0 are annotated on three lay-
ers - the morphological layer, the analytical layer

and the tectogrammatical layer. The corpus size is
almost 2 million tokens (115 thousand sentences),
although “only” 0.8 million tokens (49 thousand
sentences) are annotated on all three layers. By 'to-
kens' we mean word forms, including numbers and
punctuation marks.

On the morphological layer (Hana et al. 2005),
each token of every sentence is annotated with a
lemma (attribute m/lemma), keeping the base form
of the token, and a tag (attribute m/tag), keeping
its morphological information. Sentence bound-
aries are annotated here, too.

The analytical layer roughly corresponds to the
surface syntax of the sentence; the annotation is a
single-rooted dependency tree with labeled nodes
(Hajič et al. 1997, Hajič 1998). Attribute afun de-
scribes the type of dependency between a depen-
dent node and its governor. The nodes on the ana-
lytical layer (except for technical roots of the trees)
also correspond 1:1 to the tokens of the sentences.
The order of the nodes from left to right corre-
sponds exactly to the surface order of tokens in the
sentence (attribute ord). Non-projective construc-
tions (that are quite frequent both in Czech (Ha-
jičová et al. 2004) and in some other languages
(see Havelka 2007)) are allowed.

The tectogrammatical layer captures the linguis-
tic meaning of the sentence in its context. Again,
the annotation is a dependency tree with labeled
nodes (see Hajičová 1998). The correspondence of
the nodes to the lower layers is more complex here.
It is often not 1:1, it can be both 1:N and N:1. It
was shown in detail in Mírovský (2006) how Net-
graph deals with this issue.

Attribute functor describes the dependency
between a dependent node and its governor. A tec-

945

togrammatical lemma (attribute t_lemma) is as-
signed to every node. Grammatemes, which keep
additional annotation, are rendered as a set of 16
attributes grouped by the “prefix” gram (e.g.
gram/verbmod for verbal modality).

Topic and focus (Hajičová et al. 1998) are
marked (attribute tfa), together with so-called
deep word order reflected by the order of nodes in
the annotation (attribute deepord).

Coreference relations between nodes of certain
category types are captured (Kučová et al. 2003),
distinguishing also the type of the relation (textual
or grammatical). Each node has an identifier (at-
tribute id) that is unique throughout the whole
corpus. Attributes coref_text.rf and
coref_gram.rf contain ids of coreferential
nodes of the respective types.

1.2 Netgraph as a Tool

The development of Netgraph started in 1998 as a
topic of Ondruška's Master's thesis (Ondruška
1998), and has been proceeding along with the on-
going annotations of the Prague Dependency Tree-
bank 1.0 and later the Prague Dependency Tree-
bank 2.0. Now it is a fully functional tool for com-
plex searching in PDT 2.0 and other treebanks.

Netgraph is a client-server application that al-
lows multiple users to search the treebank on-line
and simultaneously through the Internet. The serv-
er (written in C) searches the treebank, which is lo-
cated at the same computer or local network. The
client (written in Java2) serves as a very comfort-
able graphical user interface and can be located at
any node in the Internet. The client exists in two
forms: as an applet and as a stand-alone applica-
tion. The applet version can be run from Netgraph
home page and searches in PDT 2.0. The stand-
alone version can be downloaded from the same
page and can connect anonymously to PDT 2.0
server. More information can be found on Net-
graph home page (http://quest.ms.mff.cuni.cz/net-
graph).

The client sends user queries to the server and
receives results from it. Both the server and the
client also can, of course, reside at the same com-
puter. Authentication by the means of login names
and passwords is provided. Users can have various
access permissions.

A detailed description of the inner architecture
of Netgraph and of the communication between the

server and the client was given in Mírovský, On-
druška and Průša (2002).

Netgraph server requires the treebank in FS for-
mat, encoded in UTF-8. A formal description of
the format can be found in Hajič et al. 2001a. Net-
graph query language, presented in the next sec-
tion, is an extension of FS format.

2 Netgraph Query Language

In this section we give an introduction to Netgraph
query language. We show on a series of examples
how some frequent linguistic phenomena can be
searched for.

2.1 The Query Is a Tree

The query in Netgraph is a tree that forms a subtree
in the result trees. The treebank is searched tree by
tree and whenever the query is found as a subtree
of a tree (we say the query and the tree match), the
tree becomes part of the result. The result is dis-
played tree by tree on demand. The query can also
consist of several trees joined either by AND or OR
relation. In that case, all the query trees at the same
time (or at least one of the query trees, respective-
ly) are required to match the result tree.

The query has both a textual form and a graphi-
cal form. In the following text, we will use its tex-
tual form for simple queries and its graphical form
(or both forms) for more advanced queries.

The syntax of the language is very simple. In the
textual form, square brackets enclose a node, at-
tributes (pairs name=value) are separated by a
comma, quotation marks enclose a regular expres-
sion in a value. Parentheses enclose a subtree of a
node, brothers are separated by a comma. In multi-
ple-tree queries, each tree is on a new line and the
first line contains only a single AND or OR. Alterna-
tive values of an attribute, as well as alternative
nodes, are separated by a vertical bar. It almost
completes the description of the syntax, only one
thing (references) will be added in the following
subsection.

The simplest possible query (and probably of lit-
tle interest on itself) is a simple node without any
evaluation: []. It matches all nodes of all trees in
the treebank, each tree as many times as how many
nodes there are in the tree. Nevertheless, we may
add conditions on its attributes, optionally using
regular expressions in values of the attributes. Thus

946

we may search e.g. for all nodes that are Subjects
and nouns but not in first case:

[afun=Sb, m/tag="N...[^1].*"].

We may notice here that regular expressions al-
low the first (very basic) type of negation in
queries.

More interesting queries usually consist of sev-
eral nodes, forming a tree structure. The following
example query searches for trees containing a
Predicate that directly governs a Subject and an
Object:
[afun=Pred]([afun=Sb],[afun=Obj]).

Please note that there is no condition in the
query on the order of the Subject and the Object,
nor on their left-right position to their father. It
does not prevent other nodes to be directly gov-
erned by the Predicate either.

2.2 Meta-Attributes

This simple query language, described briefly in
only a few examples, is quite useful but not power-
ful enough. There is no possibility to set a real
negation, no way of restricting the position of the
query in the result tree or the size of the result tree,
nor the order of nodes can be controlled. To allow
these and other things, meta-attributes have been
added to the query system.

Meta-attributes are not present in the corpus but
they pretend to be ordinary attributes and the user
uses them the same way like normal attributes.
Their names start with an underscore. There are
eleven meta-attributes, each adding some power to
the query language, enhancing its semantics, while
keeping the syntax of the language on the same
simple level. We present several of the meta-at-
tributes in this subsection, some others will be pre-
sented in the subsequent section, when they are
needed. A detailed description of the principal
meta-attributes was given in Mírovský (2006).

Coordination is a frequent phenomenon in lan-
guages. In PDT (and in most other treebanks, too)
it is represented by a coordinating node. To be able
to skip (and effectively ignore) the coordination in
the queries, we have introduced the meta-attribute
_optional that marks an optional node. The
node then may but does not have to be in the result.
If we are interested, for example, in Predicates
governing Objects, we can get both cases (with co-
ordination and without it) in one query using this
meta-attribute:

[afun=Pred]([afun=Coord,_op-
tional=1]([afun=Obj])).

The Coordination becomes optional. If there is a
node between the Predicate and its Object in the
result tree, it has to be the Coordination. But the
Object may also be a direct son of the Predicate,
omitting the optional Coordination. The picture
demonstrates that the graphical representation of
the query is much more comprehensible than its
textual version:

There is a group of meta-attributes of rather
technical nature, which allow setting a position of
the query in the result tree, restricting the size of
the result tree or its part, and restricting number of
direct sons of a node. Meta attribute _depth con-
trols the distance of a node from the root (useful
when searching for a phenomenon in subordinated
clauses, for example), _#descendants controls
number of nodes in the subtree of a node (useful
e.g. when searching for „nice“ small examples of
something), _#sons controls number of (direct)
sons of a node.

Controlling number of direct sons (mainly in its
negative sense) is important for studying valency
of words (Hajičová and Panevová 1984). The fol-
lowing example searches on the tectogrammatical
layer of PDT. We want a Predicate that governs di-
rectly an Actor and a Patient and nothing else (di-
rectly):

[functor=PRED,_#sons=2]([func-
tor=ACT],[functor=PAT]).

The graphical representation of the query is:

If we replaced PAT with ADDR, we might
search for errors in the evaluation, since the theory

947

forbids Actor and Addressee being the only parts
of a valency frame.

So far, we could only restrict number of nodes.
But we often want to restrict a presence of a certain
type of node. We want to specify that there is not a
node of a certain quality. For example, we might
want to search (again on the tectogrammatical lay-
er) for an Effect without an Origo in a valency
frame. The meta-attribute that allows this real type
of negation is called _#occurrences. It controls
the exact number of occurrences of a certain type
of node, in our example of Origos:

[functor=PRED]([functor=EFF],
[functor=ORIG,_#occurrences=0])

with graphical representation:

It says that the Predicate has at least one son –
an Effect, and that the Predicate does not have an
Origo son.

There is still one important thing that we cannot
achieve with the meta-attributes presented so far.
We cannot set any relation (other than dependen-
cy) between nodes in the result trees (such as or-
der, agreement in case, coreference). All this can
be done using the meta-attribute _name and a sys-
tem of references. The meta-attribute _name sim-
ply names a node for a later reference from other
nodes.

Curly brackets enclose a reference to a value of
an attribute of the other node (with a given name)
in the result tree. This, along with the dot-referenc-
ing inside the reference and some arithmetic possi-
bilities, completes our description of the syntax of
the query language from subsection 2.1.
In the following example (back on the analytical
layer and knowing that attribute ord keeps the or-
der of the nodes (~ tokens) in the tree (~ sentence))
from left to right, we search for a Subject that is on
the right side from an Object (in the tree and also
in the sentence):

[afun=Pred]
([afun=Sb,ord>{N1.ord}],
[afun=Obj,_name=N1])

with graphical representation:

We have named the Object node N1 and speci-
fied that ord of the Subject node should be bigger
than ord of the N1 node. If we used
ord>{N1.ord}+5, we would require them to be
at least five words apart.

Meta-attribute _#lbrothers (_#rbrothers) con-
tains number of left (right) brothers of a particular
node in the result tree. Thus, we can define that a
node (e.g. an Attribute) is the leftmost son of an-
other node (e.g. an Object):

[afun=Obj]([afun=Atr,_#lbroth-
ers=0]).

Meta-attribute _transitive defines a transi-
tive edge. The following example searches for a
verb node that governs transitively another verb
node:
[m/tag="V.*"]([m/tag="V.*",_tran-
sitive=true]).

If we do not want them to be direct father and
son, we have two possibilities: Either we put an-
other node without any evaluation in between them
in the query:

[m/tag="V.*"]([]([m/tag="V.*",
_transitive=true]))

with graphical representation:

or, we can use meta-attribute _depth and refer-
ences:

[m/tag="V.*",_name=N1]
([m/tag="V.*",_transitive=true,
_depth>{N1._depth}+1])

which is perhaps a little bit more complex. The
graphical representation of the query is:

948

Using several meta-attributes in one query can
form a powerful combination. The following ex-
ample searches for the rightmost list descendant of
a Predicate:

[afun=Pred]([_transitive=true,
_#sons=0,_name=N1],[_transi-
tive=true,_#sons=0,
ord>{N1.ord},_#occurrences=0])

with graphical representation:

 :

The first transitive descendant of the Predicate is
the list (_#sons=0) we are looking for. The sec-
ond transitive descendant is a list that we do not
want to be in the result (with higher ord). There-
fore, we set _#occurrences to zero.

3 Conclusion

We have presented Netgraph query language, its
basics and also its advanced techniques, namely
meta-attributes, references and their combination.

We have demonstrated that many linguistic phe-
nomena can be searched for using this language. It
can be shown (Mírovský 2008) that Netgraph
querying power outperforms the querying power of
TGrep (Pito 1994), which is a traditional (and
nowadays outdated) treebank searching tool. On
the other hand, it seems (it has not been studied
thoroughly yet) that Netgraph has slightly lesser
searching power than TGrep2 (Rohde 2005),
which can use any boolean combination of its
searching patterns.

Acknowledgement The research reported in this
paper was supported by the Grant Agency of the

Academy of Sciences of the Czech Republic,
project IS-REST (No. 1ET101120413).

References

Hajič J. et al. 2006. Prague Dependency Treebank 2.0.
CD-ROM LDC2006T01, LDC, Philadelphia, 2006.

Hajič J. 2004. Complex Corpus Annotation: The Prague
Dependency Treebank. Jazykovedný ústav Ĺ. Štúra,
SAV, Bratislava, 2004.

Hajič J., Vidová-Hladká B., Panevová J., Hajičová E.,
Sgall P., Pajas P. 2001a. Prague Dependency Tree-
bank 1.0 (Final Production Label). CD-ROM LD-
C2001T10, LDC, Philadelphia, 2001.

Hajič J., Pajas P. and Vidová-Hladká B. 2001b. The
Prague Dependency Treebank: Annotation Structure
and Support. In IRCS Workshop on Linguistic
databases, 2001, pp. 105-114.

Hana J., Zeman D., Hajič J., Hanová H., Hladká B.,
Jeřábek E. 2005. Manual for Morphological Annota-
tion, Revision for PDT 2.0. ÚFAL Technical Report
TR-2005-27, Charles University in Prague, 2005.

Hajič J. et al. 1997. A Manual for Analytic Layer Tag-
ging of the Prague Dependency Treebank. ÚFAL
Technical Report TR-1997-03, Charles University in
Prague, 1997.

Hajič J. 1998. Building a Syntactically Annotated Cor-
pus: The Prague Dependency Treebank. In Issues of
Valency and Meaning, Karolinum, Praha 1998, pp.
106-132.

Hajičová E., Havelka J., Sgall P., Veselá K., Zeman D.
2004. Issues of Projectivity in the Prague Dependen-
cy Treebank. MFF UK, Prague, 81, 2004.

Havelka J. 2007. Beyond Projectivity: Multilingual
Evaluation of Constraints and Measures on Non-Pro-
jective Structures. In Proceedings of ACL 2007,
Prague, pp. 608-615.

Hajičová E. 1998. Prague Dependency Treebank: From
analytic to tectogrammatical annotations. In: Pro-
ceedings of 2nd TST, Brno, Springer-Verlag Berlin
Heidelberg New York, 1998, pp. 45-50.

Hajičová E, Panevová J. 1984. Valency (case) frames.
In P. Sgall (ed.): Contributions to Functional Syntax,
Semantics and Language Comprehension, Prague,
Academia, 1984, pp. 147-188.

Mírovský J. 2006. Netgraph: a Tool for Searching in
Prague Dependency Treebank 2.0. In Proceedings of
TLT 2006, Prague, pp. 211-222.

949

Hajičová E., Partee B., Sgall P. 1998. Topic-Focus Ar-
ticulation, Tripartite Structures and Semantic Con-
tent. Dordrecht, Amsterdam, Kluwer Academic Pub-
lishers, 1998.

Kučová L., Kolářová-Řezníčková V., Žabokrtský Z.,
Pajas P., Čulo O. 2003. Anotování koreference v
Pražském závislostním korpusu. ÚFAL Technical
Report TR-2003-19, Charles University in Prague,
2003.

Ondruška R. 1998. Tools for Searching in Syntactically
Annotated Corpora. Master Thesis, Charles Univer-
sity in Prague, 1998.

Mírovský J., Ondruška R., Průša D. 2002. Searching
through Prague Dependency Treebank - Conception
and Architecture. In Proceedings of The First Work-
shop on Treebanks and Linguistic Theories, Sozopol,
2002, pp. 114--122.

Mírovský J.: Netgraph Home Page: http://quest.ms.mff.-
cuni.cz/netgraph

Mírovský J. 2008. Towards a Simple and Full-Featured
Treebank Query Language. In Proceedings of First
International Conference on Global Interoperability
for Language Resources, Hong Kong, 2008, in print.

Pito R. 1994. TGrep Manual Page. Available from
http://www.ldc.upenn.edu/ldc/online/treebank/

Rohde D. 2005. TGrep2 User Manual. Available from
http://www-cgi.cs.cmu.edu/~dr/TGrep2/tgrep2.pdf

950

