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Abstract 

Recently, NLP researches have advanced 
using F-scores, precisions, and recalls with 
gold standard data as evaluation measures. 
However, such evaluations cannot capture 
the different behaviors of varying NLP 
tools or the different behaviors of a NLP 
tool that depends on the data and domain in 
which it works. Because an increasing 
number of tools are available nowadays, it 
has become increasingly important to grasp 
these behavioral differences, in order to 
select a suitable set of tools, which forms a 
complex workflow for a specific purpose. 
In order to observe such differences, we 
need to integrate available combinations of 
tools into a workflow and to compare the 
combinatorial results. Although generic 
frameworks like UIMA (Unstructured 
Information Management Architecture) 
provide interoperability to solve this 
problem, the solution they provide is only 
partial. In order for truly interoperable 
toolkits to become a reality, we also need 

sharable and comparable type systems with 
an automatic combinatorial comparison 
generator, which would allow systematic 
comparisons of available tools. In this 
paper, we describe such an environment, 
which we developed based on UIMA, and 
we show its feasibility through an example 
of a protein-protein interaction (PPI) 
extraction system. 

1 Introduction 

Recently, an increasing number of TM/NLP tools 
such as part-of-speech (POS) taggers (Tsuruoka et 
al., 2005), named entity recognizers (NERs) 
(Settles, 2005) syntactic parsers (Hara et al., 2005) 
and relation or event extractors (ERs) have been 
developed. Nevertheless, it is still very difficult to 
integrate independently developed tools into an 
aggregated application that achieves a specific 
task. The difficulties are caused not only by 
differences in programming platforms and 
different input/output data formats, but also by the 
lack of higher level interoperability among 
modules developed by different groups.  
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UIMA, Unstructured Information Management 
Architecture (Lally and Ferrucci, 2004), which was 
originally developed by IBM and has recently 
become an open project in OASIS and Apache, 
provides a promising framework for tool 
integration. Although it has a set of useful 
functionalities, UIMA only provides a generic 
framework, thus it requires a user community to 
develop their own platforms with a set of actual 
software modules. A few attempts have already 
been made to establish platforms, e.g. the CMU 
UIMA component repository 1 , GATE 
(Cunningham et al., 2002) with its UIMA 
interoperability layer, etc.  

However, simply wrapping existing modules to 
be UIMA compliant does not offer a complete 
solution. Most of TM/NLP tasks are composite in 
nature, and can only be solved by combining 
several modules. Users need to test a large number 
of combinations of tools in order to pick the most 
suitable combination for their specific task. 

Although types and type systems are the only 
way to represent meanings in the UIMA 
framework, UIMA does not provide any specific 
types, except for a few purely primitive types. In 
this paper, we propose a way to design sharable 
type systems. A sharable type system designed in 
this way can provide the interoperability between 
independently developed tools with fewer losses in 
information, thus allowing for the combinations of 
tools and comparisons on these combinations. 

We show how our automatic comparison 
generator works based on a type system designed in 
that way. Taking the extraction of protein-protein 

                                                 
1 http://uima.lti.cs.cmu.edu/ 

interaction (PPI) as a typical example of a 
composite task, we illustrate how our platform 
helps users to observe the differences between 
tools and to construct a system for their own needs. 

2 Motivation and Background 

2.1 Goal and Data Oriented Evaluation, 
Module Selection and Inter-operability 

There are standard evaluation metrics for NLP 
modules such as precision, recall and F-value. For 
basic tasks like sentence splitting, POS tagging, 
and named-entity recognition, these metrics can be 
estimated using existing gold-standard test sets.  

Conversely, accuracy measurements based on 
the standard test sets are sometimes deceptive, 
since its accuracy may change significantly in 
practice, depending on the types of text and the 
actual tasks at hand. Because these accuracy 
metrics do not take into account the importance of 
the different types of errors to any particular 
application, the practical utility of two systems 
with seemingly similar levels of accuracy may in 
fact differ significantly. To users and developers 
alike, a detailed examination of how systems 
perform (on the text they would like to process) is 
often more important than standard metrics and 
test sets. Naturally, far greater weight is placed in 
measuring the end-to-end performance of a 
composite system than in measuring the 
performance of the individual components. 

In reality, because the selection of modules 
usually affects the performance of the entire 
system, it is crucial to carefully select modules that 
are appropriate for a given task. This is the main 
reason for having a collection of interoperable 
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Figure 1. Part of our type system 
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modules. We need to show how the ultimate 
performance will be affected by the selection of 
different modules and show the best combination 
of modules in terms of the performance of the 
whole aggregated system for the task at hand. 

 Since the number of possible combinations of 
component modules is typically large, the system 
has to be able to enumerate and execute them 
semi-automatically. This requires a higher level of 
interoperability of individual modules than just 
wrapping them for UIMA.  

2.2 UIMA 

2.2.1 CAS and Type System 

The UIMA framework uses the “stand-off 
annotation” style (Ferrucci et al., 2006). The raw 
text in a document is kept unchanged during the 
analysis process, and when the processing of the 
text is performed, the result is added as new stand-
off annotations with references to their positions in 
the raw text. A Common Analysis Structure (CAS) 
maintains a set of these annotations, which in itself 
are objects. The annotation objects in a CAS 
belong to types that are defined separately in a 
hierarchical type system. The features of an 
annotation2  object have values that are typed as 
well. 

2.2.2 Component and Capability 

Each UIMA Component has the capability 
property which describes what types of objects the 
component may take as the input and what types of 
objects it produces as the output. For example, a 
named entity recognizer detects named entities in 

                                                 

tools. Types should be defined in a distinct and 

2 In the UIMA framework, Annotation is a base type which 
has begin and end offset values. In this paper we call any 
objects (any subtype of TOP) as annotations. 

the text and outputs annotation objects of the type 
NamedEntity. 

It is possible to deploy any UIMA component as 
a SOAP web service, so that we can combine a 
remote component on a web service with the local 
component freely inside a UIMA-based system.  

3 Integration Platform and Comparators 

3.1 Sharable and Comparable Type System 

Although UIMA provides a set of useful 
functionalities for an integration platform of 
TM/NLP tools, users still have to develop the 
actual platform by using these functionalities 
effectively. There are several decisions for the 
designer to make an integration platform. 

Determining how to use types in UIMA is a 
crucial decision. Our decision is to keep different 
type systems by individual groups as they are, if 
necessary; we require that individual type systems 
have to be related through a sharable type system, 
which our platform defines. Such a shared type 
system can bridge modules with different type 
systems, though the bridging module may lose 
some information during the translation process.  

Whether such a sharable type system can be 
defined or not is dependent on the nature of each 
problem.  For example, a sharable type system for 
POS tags in English can be defined rather easily, 
since most of POS-related modules (such as POS 
taggers, shallow parsers, etc.) more or less follow 
the well established types defined by the Penn 
Treebank (Marcus et al., 1993) tag set. 

Figure 1 shows a part of our sharable type 
system. We deliberately define a highly organized 
type hierarchy as described above.  

Secondly we should consider that the type 
system may be used to compare a similar sort of 
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Figure 2. PPI system workflow  
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hierarchical manner. For example, both tokenizers 
and POS taggers output an object of type Token, 
but their roles are different when we assume a 
cascaded pipeline. We defined Token as a 
supertvpe, POSToken as subtypes of Token. Each 
tool should have an individual type to make clear 
which tool generated which instance, because each 
tool may have a slightly different definition. This 
is important because the capabilities are 
represented by these types, and the capabilities are 
the only attributes which are machine readable. 

3.2 General Combinatorial Comparison 

stem is defined in the previously 

tually shows the workflow of our 
wh

 pattern expansion mechanism which 
ge

cases, a single tool can play two or 
m

                                                

Generator 

Even if the type sy
described way, there are still some issues to 
consider when comparing tools. We illustrate these 
issues using the PPI workflow that we utilized in 
our experiments. 

Figure 2 concep
ole PPI system. If we can prepare two or more 

components for some type of the components in 
the workflow (e.g. two sentence detectors and three 
POS taggers), then we can make combinations of 
these tools to form a multiplied number of 
workflow patterns (2x3 = 6 patterns). See Table 1 
for the details of UIMA components used in our 
experiments. 

We made a
nerates possible workflow patterns automatically 

from a user-defined comparable workflow. A 
comparable workflow is a special workflow that 
explicitly specifies which set of components 
should be compared. Then, users just need to group 
comparable components (e.g. ABNER3 and MedT-
NER as a comparable NER group) without making 
any modifications to the original UIMA 
components. This aggregation of comparable 
components is controlled by our custom workflow 
controller.  

In some 
ore roles (e.g. the GENIA Tagger performs 

tokenization, POS tagging, and NER; see Figure 
4). It may be possible to decompose the original 
tool into single roles, but in most cases it is 
difficult and unnatural to decompose such a 

 

ponent requires two or more input 
ty

4 Experiments and Results 

 using our PPI 

e have several 
co

igure 6 show a part of the 
co

Table 2.   

3 In the example figures, ABNER requires Sentence to 
make the explanation clearer, though ABNER does not 
require it in actual usage. 

complex tool. We designed our comparator to 
detect possible input combinations automatically 
by the types of previously generated annotations, 
and the input capability of each posterior 
component. As described in the previous section, 
the component should have appropriate 
capabilities with proper types in order to permit 
this detection.  

When a com
pes (e.g. our PPI extractor requires outputs of a 

deep parser and a protein NER system), there 
could be different components used in the prior 
flow (e.g. OpenNLP and GENIA sentence 
detectors in Figure 5). Our comparator also 
calculates such cases automatically. 

 OO UO GOO U G A
UU 8 89 8

We have performed experiments
extraction system as an example (Kano et al., 
2008). It is similar to our BioCreative PPI system 
(Sætre et al., 2006) but differs in that we have 
deconstructed the original system into seven 
different components (Figure 2).  

As summarized in Table 1, w
mparable components and the AImed corpus as 

the gold standard data. In this case, possible 
combination workflow patterns are POSToken for 
36, PPI for 589, etc.   

Table 2, 3, 4 and F
mparison result screenshots between these 

patterns on 20 articles from the AImed corpus. In 
the tables, abbreviations like “OOG” stands for a 
workflow of O(Sentence) -> O(Token) - 

Sentence
comparisons (%). 

Table 3. Part of Token
comparisons, 
precision/recall (%).

OOO UOS GOO 
UUO 87/74 81/68 85/68 
GUG 74/65 73/65 78/65 
GGO 92/95 81/84 97/95 
OGO 100/100 89/88 100/94 

G 0 0 - 85
U

 9/75 /75 8/70
GU 89/75 89/75 88/70
GG 92/95 91/95 97/95
OG 

86 - 0 7
A 6 6 60 -
O - 10 10/100 99/99 00/9481 0 7

Table 4. Part of POSToken comparisons, 
precision/recall (%) 
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G(POSToken), where O stands for OpenNLP, G 
stands for Genia, U stands for UIMA, etc.  

When neither of the compared results include 
th

e comparison on Sentences 
sh

%  

0 

e gold standard data (AImed in this case), the 
comparison results show a similarity of the tools 
for this specific task and data, rather than an 
evaluation. Even if we lack an annotated corpus, it 
is possible to run the tools and compare the results 
in order to understand the characteristics of the 
tools depending on the corpus and the tool 
combinations.  

Although th
ows low scores of similarities, Tokens are 

almost the same; it means that input sentence 
boundaries do not affect tokenizations so much. 
POSToken similarities drop approximately 0-10
100 

  
                      100

Fi  6  NER (Protein) comp rison di

ences in 

5 Conclusion and Future Work 

ponents, 

 design, which the UIMA 
fra

   0  
gure . a stribution of 

precisions (x-axis, %) and recalls (y-axis, %). 

from the similarities in Token; the differ
Token are mainly apostrophes and punctuations; 
POSTokens are different because each POS 
tagger uses a slightly different set of tags: normal 
Penn tagset for Stepp tagger, BioPenn tagset 
(includes new tags for hyphenation) for GENIA 
tagger, and an original apostrophe tag for 
OpenNLP tagger. 

NLP tasks typically consist of many com
and it is necessary to show which set of tools are 
most suitable for each specific task and data. 
Although UIMA provides a general framework 
with much functionality for interoperability, we 
still need to build an environment that enables the 
combinations and comparisons of tools for a 
specific task.  

The type system
mework does not provide, is one of the most 

critical issues on interoperability. We have thus 
proposed a way to design a sharable and 
comparable type system. Such a type system allows 
for the automatic combinations of any UIMA 
compliant components and for the comparisons of 
these combinations, when the components have 
proper capabilities within the type system. We are 

Sentence Token POSToken RichToken Protein Phrase PPI
GENIA Tagger: Trained on the WSJ, GENIA and PennBioIE corpora (POS). Uses Maximum Entropy (Berger 
et al., 1996) classification, trained on JNLPBA (Kim et al., 2004) (NER). Trained on GENIA corpus (Sentence 
Splitter). 

Enju: HPSG parser with predicate argument structures as well as phrase structures. Although trained with Penn 
Treebank, it can compute accurate analyses of biomedical texts owing to its method for domain adaptation (Hara 
et al., 2005). 

STePP Tagger: Based on probabilistic models, tuned to biomedical text trained by WSJ, GENIA (Kim et al., 
2003)  and PennBioIE corpora. 

MedT-NER: Statistical recognizer trained on the JNLPBA data. 

ABNER: From the University of Wisconsin (Settles, 2005), wrapped by the Center for Computational 
Pharmacology at the University of Colorado.  

Akane++: A new version of the AKANE system (Yakushiji, 2006), trained with SVMlight-TK (Joachims, 1999; 
Bunescu and Mooney, 2006; Moschitti, 2006) and the AImed Corpus. 

UIMA Examples: Provided in the Apache UIMA example. Sentence Splitter and Tokenizer. 

OpenNLP Tools: Part of the OpenNLP project (http://opennlp.sourceforge.net/), from Apache UIMA examples. 

AImed Corpus: 225 Medline abstracts with proteins and PPIs annotated (Bunescu and Mooney, 2006).   

Legend:         Input type(s) required for that tool          Input type(s) required optionally          Output type(s)  
Table 1. List of UIMA Components used in our experiment. 

863



preparing to make a portion of the components and 
services described in this paper publicly available 
(http://www-tsujii.is.s.u-tokyo.ac.jp/uima/). 

The final system shows which combination of 
co

or this work includes 
co
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