An Experimental Comparison of the Voted Perceptron and Support Vector
Machines in Japanese Analysis Tasks

Manabu Sassano
Yahoo Japan Corporation
6-10-1 Roppongi, Minato-ku, Tokyo 106-6182 Japan
msassano@yahoo-corp.jp

Abstract

We examine various aspects of the voted
perceptron and support vector machines in
classification tasks in NLP rather than rank-
ing tasks. These aspects include training
time, accuracy and learning curves. We
used Japanese dependency parsing as a main
task for experiments, and Japanese word
segmentation and bunsetsu (base phrase in
Japanese) chunking as auxiliary tasks. In our
experiments we have observed that the voted
perceptron is comparable to SVM in terms
of accuracy and, in addition, as to learning
time and prediction speed the voted percep-
tron is considerably better than SVM.

1 Introduction

Support vector machines (SVM) (Vapnik, 1995)
have been shown to be effective for many natural
language processing (NLP) tasks (e.g., (Kudo and
Matsumoto, 2001; Kudo and Matsumoto, 2002)).
However, there are still some practical difficulties
when we apply SVM to NLP tasks. The weakness of
SVM is that they are not easy to implement and their
learning process is slow, especially with polynomial
kernels.

(Freund and Schapire, 1999) propose the voted
perceptron, which is an improved version of Per-
ceptron (Rosenblatt, 1958), and they give theoreti-
cal analysis and have proved a good performance for
the hand-written digit recognition. Although Collins
and his colleagues use the voted perceptron for rank-
ing in various NLP tasks (Collins, 2002b; Collins
and Duffy, 2002; Collins, 2002a) and obtain impres-
sive results, the use as a classifier has been not suffi-

ciently examined. In particular, it would be an inter-
esting question whether or not the voted perceptron
is comparable to SVM for NLP tasks that are for-
malized as a classification one.

In this paper we focus on comparison of SVM and
the voted perceptron to investigate the usefulness of
the voted perceptron in NLP tasks. We would like to
know the strength and weakness of the voted per-
ceptron. We choose three tasks for this purpose.
These tasks are Japanese word segmentation, bun-
setsu (base phrase in Japanese) chunking, and de-
pendency parsing.

Experiments indicate that SVM and the voted per-
ceptron are equally good for the three tasks in terms
of accuracy. However, the voted perceptron is su-
perior to SVM in terms of learning time, prediction
time, and memory footprint.

2 The Voted Perceptron

Following (Freund and Schapire, 1999), we show
the training and prediction algorithm of the voted
perceptron in Figure 1. The voted perceptron as
well as SVM can use a kernel function. We show
in Figure 2 the algorithm of the voted perceptron
with a kernel function. This algorithm seems to re-
quire O(k?) kernel calculations. However, we can
avoid them by taking advantage of the recurrence
Vi1 @ =0T+ yy, K(zy,,).

3 Task Description

We used Japanese dependency parsing as a main
task for experiments and Japanese word segmenta-

"Herbrich describes an optimized version of the algorithm
of the kernel perceptron (Herbrich, 2002, page 322). We can
use the same technique in training of the kernel version of the
voted perceptron.

829

Training
Input: a labeled training set:

((1131, yl): R (fl!m, yM)>-
number of epochs: T'

Output: a list of weighted perceptrons:
((’01, Cl): B (vkack»
e Initialize: k := 0,v; := 0,¢;1 := 0.
e Repeat T times:
— Fori:=1,...,m:
* Compute prediction: § := sign(vy, - x;)
#* If § = ythenc, :=ci + 1.
else vr41 1= Vi + yiTi;
Chiy1 1= 1;k:=k+1.
Prediction

Given: the list of weighted perceptrons:

<(’U1,Cl), A (vk7 Ck))
an unlabeled instance: @

compute a predicted label 3 as follows:
k
§:= Zci sign(v; - x); § := sign(s).
i=1

Figure 1: The voted-perceptron algorithm

Training
Input: ((z1,y1),.-.,(Tm,ym)) and T
Output: a list of mistaken examples and weights:
((u17 Cl): B (uk7 Ck))
e Initialize: k := 0,v; := 0,¢;1 := 0.
e Repeat T times:

- Fori:=1,...,m:
x Compute prediction:

k
Vg - X = Zyu].K(muj,a:i);g} := sign(vg, - ;)
j=1

#* If § = ythenc, :=cp + 1.
else w41 :=1¢;
Chiy1 1= 1;k:=k+1.
Prediction

Given: ((ui,c1), -, (ur,ce)) and &

compute a predicted label 3 as follows:

=1

i k
v; T i= Zyu].K(mu].,m); § = Zci sign(v; - x);
j=1

g := sign(s).
Figure 2: Algorithm of the voted-perceptron with a
kernel function

tion and bunsetsu chunking as auxiliary tasks.

3.1 Japanese Dependency Parsing (JDP)

Japanese dependency parsing is to determine the de-
pendency structure of a given sentence which is rep-
resented as a sequence of bunsetsus (base phrases in
Japanese). We employ the Stack Dependency Anal-
ysis (SDA) algorithm (Sassano, 2004; Nivre, 2003),
which is very simple and easy to implement. Sas-
sano (2004) has proved its efficiency in terms of time
complexity and reported the best accuracy on the
Kyoto University Corpus Version 2 (Kurohashi and
Nagao, 1998). This algorithm, which can be used
with any classifier that determines whether a given
bunsetsu modifies another, is suitable for our study
since we intend to test both SVM and the voted per-
ceptron.

We use a set of standard features for this task. By
the “standard features” here we mean the feature set
commonly used in (Uchimoto et al., 1999; Sekine
et al., 2000; Kudo and Matsumoto, 2000; Kudo and
Matsumoto, 2002; Sassano, 2004). We employ the
features below for each bunsetsu:

1. Rightmost Content Word - major POS, minor
POS, conjugation type, conjugation form, sur-
face form (lexicalized form)

2. Rightmost Function Word - major POS, minor
POS, conjugation type, conjugation form, sur-
face form (lexicalized form)

3. Punctuation (periods, and commas)
4. Open parentheses and close parentheses

5. Location - at the beginning of the sentence or
at the end of the sentence.

In addition, features as to the gap between two bun-
setsus are also used. They include: distance, parti-
cles, parentheses, and punctuation.

3.2 Japanese Bunsetsu Chunking (JBC)

Following (Ramshaw and Marcus, 1995), we en-
code bunsetsu chunking as a tagging problem. In
bunsetsu chunking, we use the chunk tag set {B, I}
where B marks the first word of some bunsetsu and
words marked I are inside a bunsetsu.

In our experiments on bunsetsu chunking, we
estimated the chunk tag of each word using five

830

Table 1: The Size of the Training Data

JWS JBC JDP
of features 11916 121081 40842
of examples 350584 198514 98689

words and their derived attributes. These five words
are the word to be estimated and its two preced-
ing/following words. Features are extracted from
the followings for each word: word (token) itself,
major POS, minor POS, conjugation type, conjuga-
tion form, the leftmost character, the character type
of the leftmost character, the rightmost character,
and the character type of the rightmost character. A
character type has a value which indicates a script.
This value can be one of the following: kanji (Chi-
nese character), hiragana (Japanese syllabic charac-
ter), katakana (another syllabic character), number,
Latin letter, or symbol.

3.3 Japanese Word Segmentation (JWS)

Japanese word segmentation can be formulated as a
classification task (Shinnou, 2000). Let a Japanese
character sequence be s = c1c3 - - - ¢, and a bound-
ary b; exist between ¢; 1 and ¢;. The b; is either +1
(word boundary) or —1 (non-boundary). The word
segmentation task can be defined as determining the
class of the b;.

We assume that each character ¢; has two at-
tributes. The first attribute is a character type (¢;).
The second one is a character code (k;). We use here
five characters to decide a word boundary. A set of
the attributes of ¢; 9, ¢; 1, ¢, ¢iq1, and ¢;40 is used
to predict the label of the b;.

4 Experimental Results and Discussion

4.1 Corpus

We used the Kyoto University Corpus Version 2
(Kurohashi and Nagao, 1998). Analysis systems
used in any of our experiments were trained on the
articles on January 1st through 8th (7,958 sentences)
and tested on the articles on January 9th (1,246 sen-
tences). The articles on January 10th were used for
development. The usage of these articles is the same
as in (Uchimoto et al., 1999; Sekine et al., 2000;
Kudo and Matsumoto, 2002; Sassano, 2004). The
size of the training data set is given in Table 1.

4.2 Parameters

We selected the best value of the misclassification
cost C' of SVM by using the development test set.
We carried out training SVM with 0.0001, 0.001,
0.01, 0.1, and 1 as a value of C and measured ac-
curacy on the development test set. We then used
models with these best values of C' on the test set.
Similarly, as to the best value of the number of epoch
T of the voted perceptron, we applied the same pro-
cedure and found the best value of T for the devel-
opment test set.

We use polynomial kernels with the degree of 3
for all the experiments. The main reason for this is
as follows. Polynomial kernels with the degree of
3 have been widely used for Japanese analysis tasks
and they have reported better performance than that
of other kernels. A cubic kernel would be a good
first choice. In particular, cubic kernels are used for
Japanese dependency parsing in many papers (e.g.,
(Kudo and Matsumoto, 2000; Kudo and Matsumoto,
2002; Sassano, 2004)). Thus there are additional
benefits that we can compare our results with oth-
ers.

4.3 Accuracy

We show in Table 2 the summary of performance
for the three tasks with p-values of McNemar’s test
(Gillick and Cox, 1989) at .05 significance level.
SVM outperforms the voted perceptron? in all the
three tasks. In the cases of both JWS and JBC, the
differences between SVM and the voted perceptron
are statistically significant. However, in the case of
JDP the difference is not significant. Since absolute
differences are little in any of the cases, there would
be no serious impact in many practical applications
whichever you may choose.

Figures 3, 4 and 5 show how accuracy changes
at each epoch. In the cases of JWS and JBC, the
accuracy peaks at the epoch of around 15. On the
other hand, in the case of JDP, the accuracy peaks
at the epoch of 2 and then it fluctuates a little and
declines gradually.

2We actually used “averaging” instead of voting for simplic-
ity. That is, we used in Figure 2 s = Ele ¢i (vi - x) instead
of s = Ele c;i sign(v; -).

831

Table 2: Performance Summary

JWS JBC JDP
SVM 98.48 % 99.69 % 88.72%
(C=0.01) (C=1) (C=0.001)
VP 98.32% 99.63% 88.48%
(T=30) (T=6) (T=12)
p-value 1.49¢-06 0.021 0.12
0.984 -
0.982 -
oy
g
3 0.98 |
<
0.978 -
0.976 - | | Voted Perce%t\r/on 4
0 5 10 15 20 25 30
Epoch

Figure 3: Accuracy of Japanese Word Segmentation

l T T T T T
0.998 - —
> 0.9 |- W
@©
5
3
< 0.994 —
0.992 - -
Voted Perceptron —+—
0.99 : : S
0 5 10 15 20 25 30

Epoch
Figure 4: Accuracy of Bunsetsu Chunking

0.89 T T T T T

0.888 - T

0.886 - —

Accuracy

0.884 -

0.882 - 4

088 1 1 1 1 1
0 5 10 15 20 25 30

Epoch

Figure 5: Accuracy of Dependency Analysis

0.89 T T T T T T T
0.885 -
0.88 |
0.875 -

0.87 |-

Accuracy

0.865 -

0.86 |- »/

Voted Perceptron —+—
SVM ---x%---
0855 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Sentences

Figure 6: Learning Curves of Dependency Analysis

25000 T T T T T T T
Voted Perceptron —+—
SVM ---x---
20000 —
15000 [—
3
(3]
(%]
10000 [—
5000 | X .
0 L \u//'>|<//4—//

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of sentences

Figure 7: Learning Time

4.4 Learning Curves

We here show the learning curves (Figure 6) of SVM
and the voted perceptron for the JDP task. Both
curves exhibit a similar shape.

4.5 Learning Time

Now let us see the learning time of SVM and the
voted perceptron. We examined the learning time?
(Figure 7) of the JDP task.

We used LIBSVM (Chang and Lin, 2001) for
SVM and an original tool written in C++ for the
voted perceptron. LIBSVM used 300MB memory
for kernel caching, while our tool for the voted per-
ceptron used no extra memory. The learning time of
the voted perceptron is more than five times faster
than that of SVM although the tool for the voted per-
ceptron requires less memory.

*Executed on FreeBSD with Pentium III 1.4GHz and 3GB
memory.

832

2.4e+007 —— | IS P— 1 ______
2.2e+007 - h
2e+007 | h
1.8e+007 h
1.6e+007 h
1.4e+007
1.2e+007
1e+007
8e+006 |-
6e+006 -

Voted Perceptron —+—
SVM -------
4e+006 H—! ' ' ' :

Number of Dot Product Calculations

0 5 10 15 20 25 30
Epoch
Figure 8: Number of dot product calculations in the
training phase of JDP with 498 sentences.

4.6 Number of Dot Product Calculations

Learning time somewhat may be affected by the
implementation details of these tools. Therefore,
we counted the number of dot product computation,
which directly indicates the learning cost. Figure 8
shows the number of dot product calculations in the
case of training of JDP with 498 sentences. The
voted perceptron requires considerably fewer calcu-
lations of dot products than SVM does. This means
the learning of the voted perceptron can be much
faster than that of SVM.

4.7 Number of Support Vectors

We also measured the number of support vectors in
models of both SVM and the voted perceptron®. Fig-
ure 9 shows the change of support vectors of the
voted perceptron in the case of JDP with the full
training data depending on the number of epochs.
As (Freund and Schapire, 1999) pointed out, the
number of support vectors of the voted perceptron
is significantly fewer than that of SVM. This leads
to faster prediction of the voted perceptron.

5 Related Work

Carreras et al. (2003) uses a voted perceptron
for named entity recognition (NER). However, they
have not compared their results with systems using

“We use the term “support vectors” for the voted percep-
tron as well as SVM. “Support vectors” of the voted perceptron
means vectors which are selected in the training phase and con-
tribute to the prediction. Note that the number of support vec-
tors in Figure 9 is fewer than the number of prediction mistakes
in training of the voted perceptron.

35000 ,,,,,, i i P J I | I | I
0
£ 30000 | .
()
>
S 25000 —
o |
(o
>
(7]
s 20000 |
@
Qo
E 15000 |
z Voted Perceptron —+—
SVM —------
10000 1 1 1 1 1
0 5 10 15 20 25 30

Epoch
Figure 9: Number of Support Vectors

SVMs. Therefore, it is not clear that the NER sys-
tem with the voted perceptron has any advantages
over NER systems with SVM.

Collins’ work (Collins, 2002b; Collins and Duffy,
2002; Collins, 2002a) on the voted perceptron fo-
cuses mainly on ranking tasks in various problems.
It does not treat classification tasks directly and there
is no comparison with SVM.

6 Conclusion

In this paper we have compared SVM with the voted
perceptron in three tasks of Japanese analysis. In our
experiments we have observed that the voted per-
ceptron is comparable to SVM in terms of accuracy
and, in addition, as to learning time and prediction
speed the voted perceptron is considerably better
than SVM. These observations are consistent with
the theoretical analysis and experimental results in
(Freund and Schapire, 1999).

The voted perceptron is found to be a strong alter-
native to SVM in classification tasks in NLP as well
as ranking tasks. If you choose SVM eventually, the
voted perceptron would be very useful when design-
ing a kernel because the same kernel function can be
used in both SVM and the voted perceptron and you
can obtain benefits from the easiness of implementa-
tion and the learning speed of the voted perceptron.

We have a plan to apply the voted perceptron to
text classification and other diverse tasks in NLP. We
would like to report experimental results and clear
the effectiveness and the weakness of the voted per-
ceptron.

833

References

Xavier Carreras, Lluis Marquez, and Lluis Padré. 2003.
Learning a perceptron-based named entity chunker via
online recognition feedback. In Proc. of the CoNLL
2003, pages 156 — 159.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: a
library for support vector machines. Software avail-
able at http://www.csie.ntu.edu.tw/"cjlin/libsvm.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In Proc. of
ACL-2002, pages 263-270.

Michael Collins. 2002a. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Proc. of
EMNLP-2002, pages 1-8.

Michael Collins. 2002b. Ranking algorithms for named-
entity extraction: Boosting and the voted perceptron.
In Proc. of ACL-2002, pages 489—496.

Yoav Freund and Robert E. Schapire. 1999. Large mar-
gin classification using the perceptron algorithm. Ma-
chine Learning, 37(3):277 — 296.

L. Gillick and Stephen Cox. 1989. Some statistical
issues in the comparison of speech recognition algo-
rithms. In Proc. of ICASSP-89, volume 1, pages 532 —
535.

Ralf Herbrich. 2002. Learning Kernel Classifiers. The
MIT Press.

Taku Kudo and Yuji Matsumoto. 2000. Japanese depen-
dency structure analysis based on support vector ma-
chines. In Proc. of EMNLP/VLC 2000, pages 18-25.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proc. of NAACL 2001,
pages 192-199,

Taku Kudo and Yuji Matsumoto. 2002. Japanese depen-
dency analysis using cascaded chunking. In Proc. of
CoNLL-2002, pages 63—69.

Sadao Kurohashi and Makoto Nagao. 1998. Building
a Japanese parsed corpus while improving the parsing
system. In Proc. of the 1st LREC, pages 719-724.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT-03, pages
149-160.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learning. In
Proc. of VLC 1995, pages 82-94.

Frank Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65:386—407.

Manabu Sassano. 2004. Linear-time dependency anal-
ysis for Japanese. In Proc. of COLING 2004, pages
8-14.

Satoshi Sekine, Kiyotaka Uchimoto, and Hitoshi Isahara.
2000. Backward beam search algorithm for depen-
dency analysis of Japanese. In Proc. of COLING-00,
pages 754-760.

Hiroyuki Shinnou. 2000. Deterministic Japanese word
segmentation by decision list method. In Proc. of
PRICAI-2000, page 822.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara.
1999. Japanese dependency structure analysis based
on maximum entropy models. In Proc. of EACL-99,
pages 196-203.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag.

834

