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Abstract

We present a cross-lingual projection frame-
work for temporal annotations. Auto-
matically obtained TimeML annotations in
the English portion of a parallel corpus
are transferred to the German translation
along a word alignment. Direct projection
augmented with shallow heuristic knowl-
edge outperforms the uninformed baseline
by 6.64% F1-measure for events, and by
17.93% for time expressions. Subsequent
training of statistical classifiers on the (im-
perfect) projected annotations significantly
boosts precision by up to 31% to 83.95% and
89.52%, respectively.

1 Introduction

In recent years, supervised machine learning has be-
come the standard approach to obtain robust and
wide-coverage NLP tools. But manually annotated
training data is a scarce and expensive resource.An-
notation projection(Yarowsky and Ngai, 2001) aims
at overcoming this resource bottleneck by scaling
conceptually monolingual resources and tools to a
multilingual level: annotations in existing monolin-
gual corpora are transferred to a different language
along the word alignment to a parallel corpus.

In this paper, we present a projection framework
for temporal annotations.The TimeML specifica-
tion language (Pustejovsky et al., 2003a) defines an
annotation scheme for time expressions (timex for

∗ The first author was affiliated with Saarland University
(Saarbrücken, Germany) at the time of writing.

John[met]event Mary [last night]timex.

John[traf]event Mary [gestern Abend]timex.

Figure 1: Annotation projection.

short) and events, and there are tools for the auto-
matic TimeML annotation of English text (Verha-
gen et al., 2005). Similar rule-based systems exist
for Spanish and Italian (Saquete et al., 2006). How-
ever, such resources are restricted to a handful of
languages.

We employ the existing TimeML labellers to an-
notate the English portion of a parallel corpus, and
automatically project the annotations to the word-
aligned German translation. Fig. 1 shows a simple
example. The English sentence contains an event
and a timex annotation. The event-denoting verbmet
is aligned with the Germantraf, hence the latter also
receives the event tag. Likewise, the components of
the multi-word timexlast nightalign with German
gesternandabend, respectively, and the timex tag is
transferred to the expressiongestern abend.

Projection-based approaches to multilingual an-
notation have proven adequate in various domains,
including part-of-speech tagging (Yarowsky and
Ngai, 2001), NP-bracketing (Yarowsky et al., 2001),
dependency analysis (Hwa et al., 2005), and role se-
mantic analysis (Padó and Lapata, 2006). To our
knowledge, the present proposal is the first to apply
projection algorithms to temporal annotations.
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Cross-lingually projected information is typically
noisy, due to errors in the source annotations as
well as in the word alignment. Moreover, success-
ful projection relies on thedirect correspondence
assumption(DCA, Hwa et al. (2002)) which de-
mands that the annotations in the source text be
homomorphous with those in its (literal) transla-
tion. The DCA has been found to hold, to a sub-
stantial degree, for the above mentioned domains.
The results we report here show that it can also
be confirmed for temporal annotations in English
and German. Yet, we cannot precludedivergence
from translational correspondence; on the contrary,
it occurs routinely and to a certain extent systemat-
ically (Dorr, 1994). We employ two different tech-
niques to filter noise. Firstly, the projection process
is equipped with (partly language-specific) knowl-
edge for a principled account of typical alignment
errors and cross-language discrepancies in the reali-
sation of events and timexes (section 3.2). Secondly,
we apply aggressive data engineering techniques to
the noisy projections and use them to train statistical
classifiers which generalise beyond the noise (sec-
tion 5).

The paper is structured as follows. Section 2
gives an overview of the TimeML specification lan-
guage and compatible annotation tools. Section 3
presents our projection models for temporal annota-
tions, which are evaluated in section 4. Section 5
describes how we induce temporal labellers for Ger-
man from the projected annotations; section 6 con-
cludes.

2 Temporal Annotation

2.1 The TimeML Specification Language

The TimeML specification language (Pustejovsky
et al., 2003a)1 and annotation framework emerged
from the TERQAS workshop2 in the context of the
ARDA AQUAINT programme. The goal of the pro-
gramme is the development of question answering
(QA) systems which index content rather than plain
keywords. Semantic indexing based on the identifi-
cation of named entities in free text is an established

1A standardised version ISO-TimeML is in preparation, cf.
Schiffrin and Bunt (2006).

2Seehttp://www.timeml.org/site/terqas/in
dex.html

method in QA and related applications. Recent years
have also seen advances in relation extraction, a vari-
ant of event identification, albeit restricted in terms
of coverage: the majority of systems addressing
the task use a pre-defined set of—typically domain-
specific—templates. In contrast, TimeML models
events in a domain-independent manner and pro-
vides principled definitions for various event classes.
Besides the identification ofevents, it addresses their
relative ordering and anchoring in time by integrat-
ing timexesin the annotation. The major contri-
bution of TimeML is the explicit representation of
dependencies (so-calledlinks) between timexes and
events.

Unlike traditional accounts of events (e.g.,
Vendler (1967)), TimeML adopts a very broad
notion of eventualities as “situations that happen
or occur” and “states or circumstances in which
something obtains or holds true” (Pustejovsky et
al., 2003a); besides verbs, this definition includes
event nominals such asaccident, and stative mod-
ifiers (prepared, on board). Events are annotated
with EVENT tags. TimeML postulates seven event
classes:REPORTING, PERCEPTION, ASPECTUAL, I-
ACTION, I-STATE, STATE, andOCCURRENCE. For
definitions of the individual classes, the reader is re-
ferred to Saurı́ et al. (2005b).

Explicit timexes are marked by theTIMEX3 tag.
It is modelled on the basis of Setzer’s (2001)TIMEX
tag and the TIDESTIMEX2 annotation (Ferro et al.,
2005). Timexes are classified into four types: dates,
times, durations, and sets.

Events and timexes are interrelated by three kinds
of links: temporal, aspectual, and subordinating.
Here, we consider onlysubordinating links (slinks).
Slinks explicate event modalities, which are of cru-
cial importance when reasoning about the certainty
and factuality of propositions conveyed by event-
denoting expressions; they are thus directly rel-
evant to QA and information extraction applica-
tions. Slinks relate events in modal, factive, counter-
factive, evidential, negative evidential, or condi-
tional relationships, and can be triggered by lexical
or structural cues.

2.2 Automatic Labellers for English

The basis of any projection architecture are high-
quality annotations of the source (English) portion
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e ∈ E temporal entity
l ∈ E × E (subordination) link
ws ∈ Ws, wt ∈ Wt source/target words
al ∈ Al : Ws × Wt word alignment
As ∋ as : E → 2Ws source annotation
At ∋ at : projected target
(E × As × Al) → 2Wt annotation

Table 1: Notational conventions.

of the parallel corpus. However, given that the pro-
jected annotations are to provide enough data for
training a target language labeller (section 5), man-
ual annotation is not an option. Instead, we use the
TARSQI tools for automatic TimeML annotation of
English text (Verhagen et al., 2005). They have been
modelled and evaluated on the basis of the Time-
Bank (Pustejovsky et al., 2003b), yet for the most
part rely on hand-crafted rules. To obtain a full tem-
poral annotation, the modules are combined in a cas-
cade. We are using the components for timex recog-
nition and normalisation (Mani and Wilson, 2000),
event extraction (Saurı́ et al., 2005a), and identifica-
tion of modal contexts (Saurı́ et al., 2006).3

3 Informed Projection

3.1 The Core Algorithm

Recall that TimeML represents temporal entities
with EVENT andTIMEX3 tags which are anchored
to words in the text. Slinks, on the other hand, are
not anchored in the text directly, but rather relate
temporal entities. The projection of links is there-
fore entirely determined by the projection of the en-
tities they are defined on (see Table 1 for the nota-
tion used throughout this paper): a linkl = (e, e′)
in the source annotationas projects to the target an-
notationat iff both e and e′ project to non-empty
sequences of words. The projection of the enti-
ties e, e′ themselves, however, is a non-trivial task.

3TARSQI also comprises a component that introduces tem-
poral links (Mani et al., 2003); we are not using it here because
the output includes the entire tlink closure. Although Mani et al.
(2006) use the links introduced by closure to boost the amount
of training data for a tlink classifier, this technique is not suit-
able for our learning task since the closure might easily propa-
gate errors in the automatic annotations.

a.. . . [ ws ]e . . . b. . . . [ ws ]e . . .

. . . [ wt ]e . . . . . . [ wtj
wtj+1 ]e . . .

c. . . . [ wsi
wsi+1 ]e . . .

. . . [ wtj
wtj+1 wtj+2 ]e . . .

Figure 2: Projection scenarios: (a) single-word 1-to-
1, (b) single-word 1-to-many, (c) multi-word.

a. [ . . . ]e b. [ . . . ]e . . .[ . . . ]e′

wtj−2 wtj−1 wtj
wtj+1 wt

Figure 3: Problematic projection scenarios: (a) non-
contiguous aligned span, (b) rivalling tags.

Given a temporal entitye covering a sequenceas(e)
of tokens in the source annotation, the projection
model needs to determine the extentat(e, as, al) of
e in the target annotation, based on the word align-
mental . Possible projection scenarios are depicted
in Fig. 2. In the simplest case (Fig. 2a),e spans a
single wordws which aligns with exactly one word
wt in the target sentence. In this case, the model
predictse to project towt. A single tagged word
with 1-to-many alignments (as in Fig. 2b) requires
a more thorough inspection of the aligned words. If
they form a contiguous sequence,e can be projected
onto the entire sequence as a multi-word unit. This
is problematic in a scenario such as the one shown in
Fig. 3a, where the aligned words donot form a con-
tiguous sequence. There are various strategies, de-
scribed in section 3.2, to deal with non-contiguous
cases. For the moment, we can adopt a conservative
approach which categorically blocks discontinuous
projections. Finally, Fig. 2c illustrates the projec-
tion of an entity spanning multiple words. Here, the
model composes the projection span ofe from the
alignment contribution of each individual wordws

covered bye. Again, the final extent of the projected
entity is required to be contiguous.

With any of these scenarios, a problem arises
when two distinct entitiese ande′ in the source an-
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1. project(as, al ):
2. at,C = ∅
3. for each entity e defined by as:
4. at,C(e, as, al) =

S

C

ws∈as(e) proj(ws, e, as, al)

5. for each link l = (e, e′) defined over as:
6. if at,C(e, as, al) 6= ∅ and at,C(e′, as, al) 6= ∅
7. then define l to hold for at,C

8. return at,C

where

proj(ws, e, as, al) = {wt ∈ Wt | (ws, wt) ∈ al ∧
∀e

′ ∈ as. e
′ 6= e ⇒ wt 6∈ at,C(e′, as, al)}

and
[C

S =


S

S :
S

S is convex
∅ : otherwise

Figure 4: The projection algorithm.

notation have conflicting projection extents, that is,
whenat(e, as, al) ∩ at(e

′, as, al ) 6= ∅. This is il-
lustrated in Fig. 3b. The easiest strategy to resolve
conflicts like these is to pick an arbitrary entity and
privilege it for projection to the target word(s)wt in
question. All other rivalling entitiese′ project onto
their remaining target wordsat(e

′, as, al) \ {wt}.
Pseudocode for this word-based projection of

temporal annotations is provided in Fig. 4.

3.2 Incorporating Additional Knowledge

The projection model described so far is extremely
susceptible to errors in the word alignment. Re-
lated efforts (Hwa et al., 2005; Padó and Lapata,
2006) have already suggested that additional lin-
guistic information can have considerable impact on
the quality of the projected annotations. We there-
fore augment the baseline model with several shal-
low heuristics encoding linguistic or else topologi-
cal constraints for the choice of words to project to.
Linguistically motivated filters refer to the part-of-
speech (POS) tags of words in the target language
sentence, whereas topological criteria investigate the
alignment topology.

Linguistic constraints. Following Padó and La-
pata (2006), we implement a filter which discards
alignments to non-content words, for two reasons:
(i) alignment algorithms are known to perform

poorly on non-content words, and (ii) events as
well as timexes are necessarily content-bearing and
hence unlikely to be realised by non-content words.
This non-content (NC) filteris defined in terms of
POS tags and affects conjunctions, prepositions and
punctuation. In the context of temporal annotations,
we extend the scope of the filter such that it effec-
tively applies to all word classes that we deem un-
likely to occur as part of a temporal entity. There-
fore, the NC filter is actually defined stronger for
events than for timexes, in that it further blocks
projection of events to pronouns, whereas pronouns
may be part of a timex such asjeden Freitag ‘ev-
ery Friday’. Moreover, events prohibit the projec-
tion to adverbs; this restriction is motivated by the
fact that events in English are frequently translated
in German as adverbials which lack an event read-
ing (cf. head switching translations likeprefer to X
vs. Germanlieber X ‘rather X’). We also devise an
unknown word filter: it applies to words for which
no lemma could be identified in the preprocessing
stage. Projection to unknown words is prohibited
unless the alignment is supported bidirectionally.
The strictness concerning unknown words is due to
the empirical observation that alignments which in-
volve such words are frequently incorrect.

In order to adhere to the TimeML specification, a
simple transformation ensures that articles and con-
tracted prepositions such asam ‘on the’are included
in the extent of timexes. Another heuristics is de-
signed to remedy alignment errors involving auxil-
iary and modal verbs, which are not to be annotated
as events. If an event aligns to more than one word,
then this filter singles out the main verb or noun and
discards auxiliaries.

Topological constraints. In section 3.1, we de-
scribed a conservative projection principle which re-
jects the transfer of annotations to non-contiguous
sequences. That model sets an unnecessarily modest
upper bound on recall; but giving up the contiguity
requirement entirely is not sensible either, since it is
indeed highly unlikely for temporal entities to be re-
alised discontinuously in either source or target lan-
guage (noun phrase cohesion, Yarowsky and Ngai
(2001)). Based on these observations, we propose
two refined models which manipulate the projected
annotation span so as to ensure contiguity. One
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model identifies and discardsoutlier alignments,
which actively violate contiguity; the other one adds
missing alignments, which form gaps. Technically,
both models establish convexity in non-convex sets.
Hence, we first have to come up with a backbone
model which is less restrictive than the baseline, so
that the convexation models will have a basis to op-
erate on. A possible backbone modelat,0 is pro-
vided in (1).

(1) at,0(e, as, al) =
⋃

ws∈as(e)

proj(ws, e, as, al )

This model simply gathers all words aligned with
any word covered bye in the source annotation, ir-
respective of contiguity in the resulting sequence of
words. Discarding outlier alignments is then for-
malised as a reduction ofat,0’s output to (one of)
its greatest convex subset(s) (GCS). Let us call this
model at,GCS. In terms of a linear sequence of
words,at,GCS chooses the longest contiguous sub-
sequence. The GCS-model thus serves a filtering
purpose similar to the NC filter. However, whereas
the latter discards single alignment links on linguis-
tic grounds, the former is motivated by topological
properties of the alignment as a whole.

The second model, which fills gaps in the word
alignment, constructs theconvex hullof at,0 (cf.
Padó and Lapata (2005)). We will refer to this model
asat,CH. The example in (2) illustrates both models.

(2)
[ . . . ]e

⋃

C : ∅
GCS : {1, 2}

1 2 3 4 5 CH : {1, 2, 3, 4, 5}

Here, entitye aligns to the non-contiguous token
sequence[1, 2, 5], or equivalently, the non-convex
set {1, 2, 5}(= at,0(e)). The conservative base-
line at,C rejects the projection altogether, whereas
at,GCS projects to the tokens 1 and 2. The additional
padding introduced by the convex hull (at,CH) fur-
ther extends the projected extent to{1, 2, 3, 4, 5}.

Alignment selection. Although bi-alignments are
known to exhibit high precision (Koehn et al., 2003),
in the face of sparse annotations we use unidirec-
tional alignments as a fallback, as has been proposed

in the context of phrase-based machine translation
(Koehn et al., 2003; Tillmann, 2003). Furthermore,
we follow Hwa et al. (2005) in imposing a limit on
the maximum number of words that a single word
may align to.

4 Experiments

Our evaluation setup consists of experiments con-
ducted on the English-German portion of the Eu-
roparl corpus (Koehn, 2005); specifically, we work
with the preprocessed and word-aligned version
used in Padó and Lapata (2006): the source-target
and target-source word alignments were automati-
cally established by GIZA++ (Och and Ney, 2003),
and their intersection achieves a precision of 98.6%
and a recall of 52.9% (Padó, 2007). The preprocess-
ing consisted of automatic POS tagging and lemma-
tisation.

To assess the quality of the TimeML projec-
tions, we put aside and manually annotated a de-
velopment set of 101 and a test set of 236 bi-
sentences.4 All remaining data (approx. 960K bi-
sentences) was used for training (section 5). We
report the weighted macro average over all possi-
ble subclasses of timexes/events, and consider only
exact matches. The TARSQI annotations exhibit
anF1-measure of 80.56% (timex), 84.64% (events),
and 43.32% (slinks) when evaluated against the En-
glish gold standard.

In order to assess the usefulness of the linguis-
tic and topological parameters presented in section
3.2, we determined the best performing combination
of parameters on the development set. Not surpris-
ingly, event and timex models benefit from the var-
ious heuristics to different degrees. While the pro-
jection of events can benefit from the NC filter, the
projection of timexes is rather hampered by it. In-
stead, it exploits the flexibility of the GCS convexa-
tion model together with a conservative limit of 2 on
per-word alignments. In the underlying data sample
of 101 sentences, the English-to-German alignment
direction appears to be most accurate for timexes.
Table 2 shows the results of evaluating the optimised
models on the test set, along with the baseline from
section 3.1 and a “full” model which activates all

4The unconventional balance of test and development data is
due to the fact that a large portion of the annotated data became
available only after the parameter estimation phase.
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events slinks time expressions
model prec recall F prec recall F prec recall F
timex-optimised 48.53 33.73 39.80 30.09 10.71 15.80 71.01 52.76 60.54
event-optimised 50.94 44.23 47.34 30.96 14.29 19.55 56.55 42.52 48.54
combined 50.98 44.36 47.44 30.96 14.29 19.55 71.75 52.76 60.80
baseline 52.26 33.46 40.80 26.98 10.71 15.34 49.53 37.80 42.87
full 51.10 40.42 45.14 29.95 13.57 18.68 73.74 54.33 62.56

Table 2: Performance of projection models over test data.

[. . .] must todaydecide[. . .]: [. . .] (108723)

[. . .] hat heute über1 [. . .] zuentscheiden, nämlich über2 [. . .]
APPR VVINF APPR

Figure 5: Amending alignment errors.

heuristics. The results confirm our initial assump-
tion that linguistic and topological knowledge does
indeed improve the quality of the projected annota-
tions. The model which combines the optimal set-
tings for timexes and events outperforms the un-
informed baseline by 17.93% (timexes) and 6.64%
(events)F1-measure. However, exploration of the
model space on the basis of the (larger and thus pre-
sumably more representative) test set shows that the
optimised models do not generalise well. Thetest
set-optimised model activates all linguistic heuris-
tics, and employsat,CH convexation. For events,
projection considers bi-alignments with a fallback to
unidirectional alignments, preferably from English
to German; timex projection considers all alignment
links. This test set-optimised model, which we will
use to project the training instances for the maxi-
mum entropy classifier, achieves anF1-measure of
48.82% (53.15% precision) for events and 62.04%
(73.74% precision) for timexes.5

With these settings, our projection model is ca-
pable of repairing alignment errors, as shown in
Fig. 5, where the automatic word alignments are rep-
resented as arrows. The conservative baseline con-
sidering only bidirectional alignments discards all

5The model actually includes an additional strategy to ad-
just event and timex class labels on the basis of designated
FrameNet frames; the reader is referred to Spreyer (2007), ch.
4.5 for details.

event timex
data prec recall prec recall
all 53.15 45.14 73.74 53.54
best 75% 54.81 47.06 74.61 62.82

Table 3: Correlation between alignment probability
and projection quality.

alignments but the (incorrect) one toüber1. The op-
timised model, on the other hand, does not exclude
any alignments in the first place; the faulty align-
ments toüber1 andüber2 are discarded on linguistic
grounds by the NC filter, and only the correct align-
ment toentscheidenremains for projection.

5 Robust Induction

The projected annotations, although noisy, can be
exploited to train a temporal labeller for German.
As Yarowsky and Ngai (2001) demonstrate for POS
tagging, aggressive filtering techniques applied to
vast amounts of (potentially noisy) training data are
capable of distilling relatively high-quality data sets,
which may then serve as input to machine learn-
ing algorithms. Yarowsky and Ngai (2001) use the
Model-3 alignment score as an indicator for the
quality of (i) the alignment, and therefore (ii) the
projection. In the present study, discarding 25% of
the sentences based on this criterion leads to gains
in both recall and precision (Table 3). In accor-
dance with the TimeML definition, we further re-
strict training instances on the basis of POS tags by
basically re-applying the NC filter (section 3.2). But
even so, the proportion of positive and negative in-
stances remains heavily skewed—an issue which we
will address below by formulating a 2-phase classi-
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prec recall F F
model event slink
1-step 83.48 32.58 46.87 17.01
1-step unk 83.88 32.19 46.53 16.87
2-step 83.95 34.44 48.84 19.06
2-step unk 84.21 34.30 48.75 19.06

timex
1-step 87.77 49.11 62.98
1-step unk 87.22 49.55 63.20
2-step 89.52 51.79 65.62
2-step unk 88.68 50.89 64.67

Table 4: Classifier performance over test data.

fication task.
The remaining instances6 are converted to feature

vectors encoding standard lexical and grammatical
features such as (lower case) lemma, POS, govern-
ing prepositions, verbal dependents, etc.7 For slink
instances, we further encode the syntactic subordi-
nation path (if any) between the two events.

We trained 4 classifiers,8 with and without
smoothing with artificial unknowns (Collins, 2003),
and as a 1-step versus a 2-step decision in which
instances are first discriminated by a binary classi-
fier, so that only positive instances are passed on to
be classified for a subclass. The performance of the
various classifiers is given in Table 4. Although the
overallF1-measure does not notably differ from that
achieved by direct projection, we observe a drastic
gain in precision, albeit at the cost of recall. With
almost 84% and 90% precision, this is an ideal start-
ing point for a bootstrapping procedure.

6 Discussion and Future Work

Clearly, the—essentially unsupervised—projection
framework presented here does not produce state-
of-the-art annotations. But it does provide an inex-

6Note that slink instances are constructed for eventpairs, as
opposed to event and timex instances, which are constructed for
individual words.

7The grammatical features have been extracted from analy-
ses of the German ParGram LFG grammar (Rohrer and Forst,
2006).

8We used the opennlp.maxent package,
http://maxent.sourceforge.net/.

pensive and largely language-independent basis (a)
for manual correction, and (b) for bootstrapping al-
gorithms. In the future, we will investigate how
weakly supervised machine learning techniques like
co-training (Blum and Mitchell, 1998) could further
enhance projection, e.g. taking into account a third
language in a triangulation setting (Kay, 1997).
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