
Automatic generation of large-scale paraphrases

Richard Power and Donia Scott
Centre for Research in Computing

The Open University
Walton Hall

Milton Keynes MK7 6AA
{r.power,d.scott}@open.ac.uk

Abstract

Research on paraphrase has mostly fo-
cussed on lexical or syntactic variation
within individual sentences. Our con-
cern is with larger-scale paraphrases,
from multiple sentences or paragraphs
to entire documents. In this paper
we address the problem ofgenerating
paraphrases of large chunks of texts.
We ground our discussion through a
worked example of extending an exist-
ing NLG system to accept as input a
source text, and to generate a range of
fluent semantically-equivalent alterna-
tives, varying not only at the lexical and
syntactic levels, but also in document
structure and layout.

1 Introduction

Much work on paraphrase generation has fo-
cussed on lexical variation and syntactic trans-
formation within individual sentences (Barzilay
and McKeown, 2001; Carroll et al., 1999; Dras,
1999; Inui and Nogami, 2001; Kozlowski et al.,
2003; Langkilde and Knight, 1998; Takahashi
et al., 2001; Stede, 1999). Our interest in this
paper lies instead with variations at the level of
text structuring — the way in which propositions
are grouped into units like paragraphs, sections,
and bulletted lists, and linked rhetorically by dis-
course connectives such as ‘since’, ‘nevertheless’,
and ‘however’. Elsewhere, we have described a
text-structuring method in which the options for
organising propositions in a text are laid out as a

set of constraints, so that acceptable solutions can
be enumerated using constraint satisfaction and
evaluated using a cost metric (Power et al., 2003).
In this paper we show how this method, when
harnessed to a system for recognising rhetorical
structure in an input text, can be employed in or-
der to produce large-scale paraphrases fulfilling
purposes like improving coherence and achieving
a desired style of layout.

2 Text structure

The input to our text-structuring system (ICONO-
CLAST) is a rhetorical structure tree (Mann and
Thompson, 1983) in which the leaves are elemen-
tary propositions, specified either as semantic for-
mulas or as canned text. The following is a simple
example, containing one nucleus-satellite relation
(REASON) and one multinuclear relation (CON-
JUNCTION1):

reason
NUCLEUS: recommend(doctors, elixir)
SATELLITE: conjunction

1: quick-results(elixir)
2: few-side-effects(elixir)

Ignoring variations in the wording of proposi-
tions, ICONOCLAST generates over 20 texts re-
alising this input (or many more if a larger reper-
toire of discourse connectives is allowed). They
include the following two solutions, which lie at
stylistic extremes, the first compressing the mes-
sage into a sentence (suitable if space is at a pre-
mium), the second laying it out more expansively
in a list:

1This is the RST relation,LIST, which we have renamed
here to avoid possible confusion with the layout style of ver-
tical lists.

73



Solution 1
Doctors recommend Elixir since it gives quick
results and it has few side effects.

Solution 2
• Elixir gives quick results.
• Elixir has few side effects.
Therefore, it is recommended by doctors.

Comparing these solutions illustrates some of the
text-structuring options, and some ways in which
they interact.

• Propositions, or groups of propositions, can
be realised by differenttext categories. Thus
quick-results(elixir) is realised
by a text-phrase (in Nunberg’s sense (Nun-
berg, 1990)) in Solution 1, and by a text-
sentence (also a list item) in Solution 2.

• Rhetorical relations can be expressed by dif-
ferent discourse connectives or layout op-
tions. In Solution 1,REASON is realised by
‘since’ andCONJUNCTIONby ‘and’; in So-
lution 2 REASON is realised by ‘therefore’
and CONJUNCTION (more implicitly) by a
bulletted list.

• Propositions may be realised in different or-
ders: for instance, the nucleus of theREA-
SON relation comes first in Solution 1, while
the satellite comes first in Solution 2. Note
that order is constrained by the choice of
discourse connective: ‘therefore’ requires
satellite-first; ‘since’ allows both orders.

These text-structuring decisions strongly influ-
ence the options for wording the individual propo-
sitions, mostly because they determine the order
in which propositions are presented. In Solution
1, the nucleus of theREASONrelation is presented
first, so ‘Elixir’ has to be referenced by name, and
there is no particular reason for preferring passive
to active. In Solution 2, the same proposition oc-
curs at the end, when Elixir has been introduced
and established as the topic focus; it is therefore
appropriate to refer to Elixir by a pronoun, and to
promote this reference to the most salient position
in the clause by passivization.

Text structuring is controlled byhard con-
straints, which determine the set of solutions that
can be generated, and bypreferences(or soft con-
straints), which allow a ranking of solutions from

best to worst. The purpose of hard constraints
is to avoid solutions that are clearly anomalous,
such as the following text in which the arguments
of theCONJUNCTIONrelation are separated, thus
altering the rhetorical interpretation:

Since Elixir gives quick results doctors recom-
mend it, and it has few side effects.

A more marginal case is the following solution,
in which the arguments of a nucleus-satellite re-
lation are expressed as items in a bulletted list.
In the default settings this is also considered an
anomaly, since a bulletted list usually implies a
parallelism among the items that is violated when
one argument dominates the other.

• Elixir gives quick results and has
few side-effects.

• Therefore, it is recommended by doctors.

The purpose of soft constraints is to represent
stylistic preferences. These include general prin-
ciples of prose quality that are likely to apply to
any context, as well as preferences specifically
linked to the purpose of the text and the nature
of the intended reader. Here are four examples
of preferences supported in ICONOCLAST: we
would assume that the first two are general, the
second two specific.

• Avoid single-sentence paragraphs This
would penalise a solution in which our ex-
ample was laid out in two paragraphs, one
for satellite and one for nucleus.

• Avoid discontinuity of reference As Kibble
and Power (2004) have shown, centering cri-
teria can be used to penalize solutions with
relatively many topic shifts.

• Avoid passivization In contexts requiring
an informal, popular style, there might be a
stronger tendency to favour active over pas-
sive.

• Avoid complex sentences For some con-
texts we might prefer to penalize solutions
in which many propositions are presented
within the same sentence (e.g., Solution 1).

All these preferences are implemented through a
cost metric. To calculate the cost of a solution,

74



the program first recognizes all violations, then
multiplies each by a weight representing its im-
portance before summing to obtain a total score.
During execution, the program can either enumer-
ate all solutions, ranking them from low cost to
high, or it can simply search for the best solution
using branch-and-bound optimization.

3 Controlling constraints and
preferences

ICONOCLAST was originally developed as a
component of a Natural Language Generation
system. It assumes that the propositional content
of the desired text is already formally encoded,
along with a rhetorical-structure tree represent-
ing the role of each proposition in the argument.
The program can also be run on a simplified in-
put in which propositions are replaced by canned
phrases; however, the quality in this case will
obviously suffer, since referring expressions and
clause structure cannot be adapted to context. By
itself, then, ICONOCLAST cannot be used in or-
der to paraphrase an independently provided text.
However, once a semantic model is available, the
system allows an unusual degree of flexibility and
precision in controlling paraphrases. The source
of this power lies in the use of explicitly encoded
constraints and preferences, which can be edited
through a direct-manipulation user interface in or-
der to guide the generator in the desired direc-
tions.

For hard constraints, the control interface
works mostly by buttons for switching constraints
on and off, or occasionally by menus for fixing
the value of a parameter. Examples of switches
are the following (also mentioned above):

Allow indented list for arguments of a
multinuclear relation (Yes/No)

Allow indented list for arguments of a
nucleus-satellite relation (No/Yes)

Allow discourse connective introducing
a list item (Yes/No)

The default in each case is the option given first,
which would allow (but not require) a solution
to our example in which the conjunction was re-
alised by a list including the discourse connective
‘and’:

Doctors recommend Elixir because
• Elixir gives quick results
• And it has few side effects

An example of a parameter setting would be a
constraint fixing the textual unit governing the
whole text, or the maximum text level allowed for
an indented list item:

Root textual unit
(document/section/paragraph/text-sentence)

Maximum level for list item
(paragraph/text-sentence/text-clause)

By constraining the whole text to fit in a para-
graph, we could eliminate any solution requiring
multiple paragraphs (e.g., nucleus in one para-
graph and satellite in another). Under this set-
ting, both solutions 1 and 2 could be generated
(although solution 1 would have to be a single-
sentence paragraph). Further constraining the
root level tosentence would preserve solution
1 but eliminate solution 2.

For soft constraints, the user interface works
through sliders representing both the direction of
a preference and its intensity. In most cases, the
sliders are calibrated to an 11-point scale from
-5 to +5. A straightforward example is the di-
chotomy between active and passive voice, where
negative values penalize use of the passive, while
positive values penalize use of the active; the
central value (zero) represents neutrality. A cost
value is computed every time a proposition is re-
alised by a clause for which the grammar allows
passivization. Depending on the setting of the
11-point scale, a cost is incurred either for use
of the passive (negative values on the scale), or
for failure to use it (positive values on the scale);
the amount of cost varies from 1 to 5, again de-
pending on the setting. Thus if the user sets the
passivization slider to a value of -4, a cost of 4
accrues every time a proposition is realised by a
passive clause; or for a value of +2, a cost of 2
accrues every time a proposition that could have
been realised by a passive clause is realised by an
active one.

In practice, this method of evaluating solu-
tions typically means thatevery solution is flawed,
given a non-trivial semantic input and a suffi-
cient range of preferences. The reason is that
many decisions are trade-offs: avoiding cost on

75



one preference often means incurring cost else-
where. For instance, a preference to avoid the pas-
sive conflicts with the preference to preserve top-
ical coherence, which is expressed by penalizing
a ‘salience violation’ — that is, a failure to equate
the backward-looking center in a clause with the
most salient forward-looking center (i.e., Cb with
Cp) (Kibble and Power, 2004). If salience re-
quires passivization, and passivization is penal-
ized, then a cost must be incurred somewhere: the
issue is which is the lesser evil.

We have considered two ways of control-
ling a paraphrase in a constraint-based gener-
ator: imposing/relaxing a hard constraint, and
changing a preference. A possibility that
we have not yet implemented is a hard con-
straint defined onlyon the current problem,
as opposed to the general settings illustrated
above. The constraint might state, for example,
that the propositionrecommend(doctors,
elixir) should appear at the beginning of the
text, thus eliminating Solution 2. Or it might
state that the conjunction relation between the
other propositions should be realised by a bullet-
ted list, thus eliminating Solution 1. To support
constraints of this kind one would need a user in-
terface in which the user can select part of the
semantic input, perhaps by clicking on the cor-
responding part of the text, as in a WYSIWYM
interface (Power and Scott, 1998); a dialogue
box would then appear allowing a range of con-
straints specifically directed to the selected frag-
ment. Such an interface would mimic the typical
interaction between a human writer and human
critic — e.g., the critic might highlight a para-
graph and advise the writer to reformat it as a list.

4 Deriving the rhetorical-semantic input

We have shown that by defining text-structuring
as a Constraint Satisfaction Problem, our method
allows considerable flexibility and precision in
controlling the generation of paraphrases (Power
et al., 2003). The question now is whether the
system can be extended so that it accepts a text as
input, rather than a formally encoded rhetorical-
semantic representation. Obviously the extended
system will require an extra component perform-
ing interpretation of the input text — but how
much interpretation is needed in order to pro-

vide an encoding that the current ICONOCLAST
text-structurer can use? Can we extract suffi-
cient rhetorical and referential information to al-
low reasonable paraphrases, without depending
on a full semantic analysis of the original text?

In this section we consider three stages of inter-
pretation, which could be applied incrementally:

1. Rhetorical mark-up: The program marks
up the EDUs (Elementary Discourse Units)
(Marcu, 2000) in the input text — what we
have been calling the elementary proposi-
tions — and also identifies the rhetorical
relations among them, expressed through a
Rhetorical Structure Tree. Within EDUs
there is no mark-up: at this stage they are
treated as canned strings.

2. Coreference mark-up:The program identi-
fies noun-phrases referring to discourse en-
tities, and recognises chains referring to
the same entity. For each discourse entity,
enough semantic information is recovered to
allow a correct choice of pronoun (i.e., val-
ues are assigned to features likeNUMBER,
GENDER, HUMAN ), but no further semantic
analysis is assumed.

3. Clause transformations:The syntactic struc-
ture of each EDU is analysed sufficiently to
allow a reformulation that promotes a differ-
ent discourse entity as the most salient of the
clause (i.e., the Cp). Typically this would
mean a change of voice from active to pas-
sive, or vice-versa, although there might be
other variations like fronting that could be
explored.

We now discuss these stages in turn.

4.1 Recognising rhetorical structure

Maintaining the same example, suppose that the
input text is the following (a slight variation of
Solution 1):

Doctors recommend Elixir since it gives quick
results and has few side effects.

The goal at this stage is to interpret this text as
a set of elementary propositions, represented by
canned phrases, organised into a tree by rhetorical
relations. An example of the desired encoding, in

76



the format actually used as input to the current
system, is the following XML fragment:
<RhetRep relation=reason>
<SemRep prop="doctors recommend Elixir"/>
<RhetRep relation=conjunction>

<SemRep prop="it gives quick results"/>
<SemRep prop="it has few side-effects"/>

</RhetRep>
</RhetRep>

As can be seen, even though this representation
provides no analysis within propositions (EDUs),
the task of deriving the rhetorical structure and the
canned phrases is not trivial. First, the rhetorical
relationsREASONandCONJUNCTIONmust be in-
ferred. Second, the correct tree structure must be
assigned, withREASON dominating CONJUNC-
TION. Third, the discourse connectives ‘since’
and ‘and’ must be separated from the phrases
in which they occur — the aim is that these
phrases should represent only the propositions.
Finally, where parts of a phrase have been elided
through aggregation (e.g., ‘has few side-effects’),
the missing part (‘it’) should be found and re-
placed.

If this level of interpretation is achieved, the
program will be able to generate several dozen
paraphrases, but referential continuity will be
poor unless we pose the additional constraint that
the order of propositions should remain the same
as in the original. Thus a successful paraphrase,
including some reformatting, would be the fol-
lowing:

Doctors recommend Elixir since:
• it gives quick results.
• it has few side effects.

However, with satellite preceding nucleus, as in
Solution 2, the text becomes incoherent because
the first mentions of Elixir are through a pronoun.

• It gives quick results.
• It has few side effects.
Therefore, doctors recommend Elixir.

4.2 Recognising coreference

Incoherence resulting from canned propositions
can be partly remedied if the analysis of the in-
put text is taken a stage further, by recognising
some simple semantic features on noun phrases,
and marking them up for coreference. The ele-
mentary propositions in our example could for in-
stance be marked up as follows:

<edu>
<np id=1 phrase="doctors"

class="human" number="plural"/>
recommend
<np id=2 phrase="Elixir"

class="thing" number="singular"/>
</edu>
<edu>
<pronoun id=2 phrase="it"/>
gives
<np id=3 phrase="quick results"

class="thing" number="plural"/>
</edu>
<edu>
<pronoun id=2 phrase="it"/>
has
<np id=4 phrase="few side-effects"

class="thing" number="plural"/>
</edu>

This further mark-up facilitates text-structuring in
two ways. First, since centering information is
now available (the Cb and Cp of each proposi-
tion can be computed), the evaluation of solu-
tions can take account of the centering prefer-
ences proposed by Kibble and Power (2004). Sec-
ondly, when realising individual propositions, the
referring expressions can be adapted to context,
perhaps by replacing a name/description with a
pronoun, or even eliding it altogether when two
propositions are aggregated. This means that the
program will be able to generate solutions such as
the following, in which the wordings of the propo-
sitions has been revised:

Since Elixir gives quick results and has few side-
effects, doctors recommend it.

This solution illustrates three ways in of revising
a proposition:

• Pronoun → Name ‘it gives quick results’
becomes ‘Elixir gives quick results’.

• Elision ‘it has few side-effects’ becomes
‘has few side-effects’.

• Name → Pronoun ‘doctors recommend
Elixir’ becomes ‘doctors recommend it’.

The generated paraphrases should now be more
fluent, but the program is still limited by its inabil-
ity to control the most salient referent in a propo-
sition (i.e., to modify the Cp). To add this op-
tion, we need the third level of interpretation men-
tioned above, in which the structure of a clause
can be transformed (e.g., from active to passive).

77



4.3 Clause transformations

Assuming that the analysis program can com-
pletely parse a clause identified as an EDU, it may
be able to apply a syntactic transformation which
expresses the same proposition with changed in-
formation focus. An obviously useful transforma-
tion is passivization — or its opposite if the orig-
inal sentence is in the passive. Assuming that the
parser has correctly identified the main verb, and
that the program has access to a lexical database
including irregular morphology, it could derive
alternative formulations for the original proposi-
tions by a rule such as the following:

[NP1] recommends [NP2]⇒
[NP2] is recommended by [NP1]

Of course the program should not allow such
transformations for special verbs like ‘be’ and
‘have’, so as to avoid clumsy renderings like ‘few
side effects are had by Elixir’. However, when
used on an appropriate verb, passivization can im-
prove the fluency of the solution by promoting
the Cb of the proposition to the subject position,
so that it becomes the Cp; revisions of this kind
also provide more opportunities for favourable
pronominalization and elision. With this extra
resource, the solution just proposed can be im-
proved as follows:

Since Elixir gives quick results and has few side-
effects, it is recommended by doctors.

A more ambitious aim would be to transform be-
tween finite and reduced forms of a subordinate
clause. For instance, if the original text is ‘De-
spite having few side-effects, Elixir is banned
by the FDA’, we could allow the transformation
of ‘having few side-effects’ into the finite clause
‘Elixir has few side-effects, borrowing the subject
and tense from the main clause. This transforma-
tion would enable the system to generate a solu-
tion using a connective such as ‘however’ which
requires that full clauses are employed both for
the nucleus and the satellite. Alternatively, a fi-
nite clause could be transformed into the reduced
form, so allowing the connective ‘despite’.

Conclusion

It is hard to conceive of an NLG system that
cannot produce alternative realisations, and thus

paraphrases. Most systems, however, are only
capable of producing variations at the lexical or
syntactic levels (or both). As such, they operate
very much like traditional Machine Translation
systems — except that the source and target texts
are now in the same language — and have similar
limitations. Additionally, most of them work with
input that is a representation of the meaning of a
(source) text, rather than the text itself.

The system described in this paper develops an
existing NLG system into a full-blown paraphase
generator capable of producing a wide range of
alternative renditions of the source text, with vari-
ations at three linguistic levels: lexical choice,
syntactic structure, and document structure. This
is in contrast to most existing paraphrase gener-
ators, which are constrained to vary only the first
or second of these levels (Barzilay and McKeown,
2001; Carroll et al., 1999; Dras, 1999; Inui and
Nogami, 2001; Kozlowski et al., 2003; Langkilde
and Knight, 1998; Takahashi et al., 2001; Stede,
1999). The range of lexical and syntactic varia-
tion in a paraphrase generator obviously depends
on how deeply the input text is interpreted, but
even with the relatively superficial analysis pro-
posed here, we can introduce variations for dis-
course connectives, referring expressions (in par-
ticular, when to use pronouns), and some clause
patterns (e.g., whether to use active or passive).
However, the innovation in our work lies in its
controlled variation in the third level, document
structure: just as the other paraphrase generators
provide multiple lexical-syntactic structures for
the same semantic structure, so our system pro-
vides multiple document structures for the same
discourse structure (i.e., for the same rhetori-
cal structure). The document structure solutions
serve not only to realise the rhetorical input, but
also to create a context that determines which of
the alternative syntactic realisations is most suit-
able for the elementary propositions.

Our paraphrase generator links an exist-
ing general-purpose discourse parser — DAS
(Le Thanh et al., 2004)2 — which builds a dis-
course tree automatically from an input text, to an
existing NLG system —ICONOCLAST (Power
et al., 2003) — which generates a wide range of

2Similar parsers have been developed by Marcu (2000)
and Corston-Oliver (1998)

78



formulations for a given discourse structure. We
have described here the issues that need to be
taken into account when turning any NLG sys-
tem into a fully-fledged paraphraser. We believe
that our approach to text-structuring, whereby op-
tions for organising propositions in a text are laid
out as a set of constraints, and acceptable solu-
tions are enumerated using constraint satisfaction
and evaluated using a cost metric, provides a par-
ticularly useful method for achieving large-scale
paraphrases. Although we are agnostic with re-
spect to the issue of psychological validity, it is
worth noting that our method reflects many of
the processes facing any writer or editor trying to
achieve their ideal text, but constrained by the lin-
guistic resources at hand (e.g., wording, syntax,
discourse and layout) which interact with each
other such that the final text is invariably a flawed
version of the ideal.

For evaluation of our system, two points need
to be addressed. The first concernsfidelity: are the
generated solutions equivalent in meaning to the
original input text? The second concernsqual-
ity: are the generated solutions ranked, by the
cost metric, in a way that corresponds to the pref-
erences of good judges? More practically, we
would like to explore the issue ofusability: the
main question here is whether human users can
successfully manipulate the system’s constraints
and preferences in order to guide solutions in the
desired direction.

References
Regina Barzilay and Kathleen McKeown. 2001. Ex-

tracting paraphrases from a parallel corpus. InPro-
ceedings of the 39th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 50–57,
Toulouse.

J. Carroll, G. G. Minnen, D. Pearce, Y. Canning,
S. Devlin, and J. Tait. 1999. Simplifying text
for language-impaired readers. InProceedings of
the 9th Conference of the European Chapter of the
Association for Computational Linguistics (EACL-
99), pages 269–270, Bergen, Norway.

S. Corston-Oliver. 1998.Computing Representations
of the Structure of Written Discourse. Ph.D. thesis,
University of California, Santa Barbara, CA, USA.

Mark Dras. 1999.Tree Adjoining Grammar and the
Reluctant Paraphrasing of Text. Ph.D. thesis, Mac-
quarie University, Australia.

Kentaro Inui and Masaru Nogami. 2001. A
paraphrase-based exploration of cohesiveness crite-
ria. In Proceedings of the 8th European Workshop
on Natural Language Generation (EWNLG-01).

Rodger Kibble and Richard Power. 2004. Optimising
referential coherence in text generation.Computa-
tional Linguistics, 30(4).

Raymond Kozlowski, Kathleen F. McCoy, and
K. Vijay-Shanker. 2003. Generation of single-
sentence paraphrases from predicate/argument
structure using lexico-grammatical resources. In
Proceedings of the Second International Workshop
on Paraphrasing, pages 1–8.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of the 17th International Conference
on Computational Linguistics and the 36th Annual
Meeting of the Association for Computational Lin-
guistics (COLING-ACL98), pages 704–710, Mon-
treal.

H. Le Thanh, G. Abeysinghe, and C. Huyck. 2004.
Generating discourse structures for written texts.
In Proceedings of the 20th International Con-
ference on Computational Linguistics (COLING-
2004), pages 329–335.

W.C Mann and S.A. Thompson. 1983. Relational
propositions in discourse. Technical Report RR-83-
115, Information Sciences Institute.

D. Marcu. 2000. The theory and practice of dis-
course parsing and summarisation. MIT Press,
Cambridge, Massachusetts, USA.

Geoffrey Nunberg. 1990.The Linguistics of Punctu-
ation. CSLI Lecture Notes, No. 18. Center for the
Study of Language and Information, Stanford.

Richard Power and Donia Scott. 1998. Multilingual
authoring using feedback texts. InProceedings of
17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Associ-
ation for Computational Linguistics (COLING-ACL
98), pages 1053–1059, Montreal, Canada.

Richard Power, Donia Scott, and Nadjet Bouayad-
Agha. 2003. Document structure.Computational
Linguistics, 29(2):211–260.

Manfred Stede. 1999.Lexical semantics and knowl-
edge representation in multilingual text genera-
tion. Kluwer Academic Publishers, Boston.

Tetsuro Takahashi, Tomoyam Iwakura, Ryu Iida, At-
sushi Fujita, and Kentaro Inui. 2001. Kura: A
transfer- based lexico-structural paraphrasing en-
gine. InProceedings of the Workshop on Automatic
Paraphrasing. (NLPRS 2001), Tokyo.

79


