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Abstract. Document clustering has many uses in natural language tools
and applications. For instance, summarizing sets of documents that all
describe the same event requires first identifying and grouping those
documents talking about the same event. Document clustering involves
dividing a set of documents into non-overlapping clusters. In this paper,
we present two document clustering algorithms: grouping algorithm, and
chaining algorithm. We compared them with k-means and the EM algo-
rithms. The evaluation results showed that our two algorithms perform
better than the k-means and EM algorithms in different experiments.

1 Introduction

Document clustering has many uses in natural language tools and applications.
For instance, summarizing sets of documents that all describe the same event
requires first identifying and grouping those documents talking about the same
event. Document clustering involves dividing a set of texts into non-overlapping
clusters, where documents in a cluster are more similar to one another than to
documents in other clusters. The term more similar, when applied to clustered
documents, usually means closer by some measure of proximity or similarity.

According to Manning and Schutze [1], there are two types of structures pro-
duced by clustering algorithms, hierarchical clustering and flat or non-
hierarchical clustering. Flat clustering are simply groupings of similar objects.
Hierarchical clustering is a tree of subclasses which represent the cluster that
contains all the objects of its descendants. The leaves of the tree are the individ-
ual objects of the clustered set. In our experiments, we used the non-hierarchical
clustering k-means and EM [2] and our own clustering algorithms.

There are several similarity measures to help find out groups of related doc-
uments in a set of documents [3]. We use identical word method and semantic
relation method to assign a similarity score to each pair of compared texts. For
the identical word method, we use k-means algorithm, the EM algorithm, and
our own grouping algorithm to cluster the documents. For the semantic relation
method, we use our own grouping algorithm and chaining algorithm to do the
clustering job. We choose WordNet 1.6 as our background knowledge. WordNet
consists of synsets gathered in a hypernym/hyponym hierarchy [4]. We use it
to get word senses and to evaluate the semantic relations between word senses.
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2 Identical Word Similarity

To prepare the texts for the clustering process using identical word similarity,
we perform the following steps on each of the selected raw texts:

1. Preprocessing which consists in extracting file contents from the raw texts,
stripping special characters and numbers, converting all words to lower cases
and removing stopwords, and converting all plural forms to singular forms.

2. Create document word vectors: each document was processed to record the
unique words and their frequencies. We built the local word vector for each
document, each vector entry will record a single word and its frequency. We
also keep track of the unique words in the whole texts to be tested. After
processing all the documents, we convert each local vector to a global vector
using the overall unique words.

3. Compute the identical word similarity score among documents: given any
two documents, if we have their global vectors x, y, we can use the cosine
measure [5] to calculate the identical word similarity score between these
two texts.

cos(x, y) =
∑n

i=1 xiyi
√∑n

i=1 x2
i

√∑n
i=1 y2

i

(1)

where x and y are n-dimensional vectors in a real-valued space.

Now, we determined a global vector for each text. We also have the identical
word similarity scores among all texts. We can directly use these global vectors
to run the k-means or the EM algorithms to cluster the texts. We can also use
the identical word similarity scores to run grouping algorithm (defined later) to
do the clustering via a different approach.

3 Semantic Relation Similarity

To prepare the texts for clustering process using semantic relation similarity, the
following steps are performed on each raw texts:

1. Preprocessing which consists in extracting file contents, and removing special
characters and numbers.

2. Extract all the nouns from the text using part-of-speech tagger (i.e. UPenn-
sylvania tagger). The tagger parses each sentence of the input text into
several forms with specific tags. We get four kinds of nouns as the results of
running the tagger: NN, NNS, NNP and NNPS. We then run a process to
group all the nouns into meaningful nouns and non-meaningful nouns. The
basic idea is to construct the largest compound words using the possible ad-
jective and following nouns, then check whether or not the compound words
have a meaning in WordNet. If not, we break the compound words into pos-
sible smaller ones, then check again until we find the ones with meanings in
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Wordnet. When we get a noun (or a compound noun) existing in WordNet,
we insert it into the meaningful word set, which we call set of regular nouns,
otherwise we insert it into the non-meaningful word set, which we call set of
proper nouns.

During the processing of each document, we save the over-all unique
meaningful nouns in an over-all regular nouns set. Because of the big over-
head related to accessing WordNet, we try to reduce the overall access times
to a minimal level. Our approach is to use these over-all unique nouns to
retrieve the relevant information from WordNet and save them in a global
file. For each sense of each unique noun, we save its synonyms, two level
hypernyms, and one level hyponyms. If any process frequently needs the
WordNet information, it can use the global file to store the information in a
hash and thus provides fast access to its members.

3. Word sense disambiguation.
Similarly to Galley and McKeown [6], we use lexical chain approach

to disambiguate the nouns in the regular nouns for each document [7,8].
A lexical chain is a sequence of related words in the text, spanning short
(adjacent words or sentences) or long distances (entire text). WordNet is
one lexical resource that may be used for the identification of lexical chains.
Lexical chains can be constructed in a source text by grouping (chaining)
sets of word-senses that are semantically related. We designate the following
nine semantic relations between two senses:

(a) Two noun instances are identical, and used in the same sense;
(b) Two noun instances are used in the same sense (i.e., are synonyms );
(c) The senses of two noun instances have a hypernym/hyponym relation

between them;
(d) The senses of two noun instances are siblings in the hypernym/hyponym

tree;
(e) The senses of two noun instances have a grandparent/grandchild relation

in the hypernym/hyponym tree;
(f) The senses of two noun instances have a uncle/nephew relation in the

hypernym/hyponym tree;
(g) The senses of two noun instances are cousins in the hypernym/hyponym

tree (i.e., two senses share the same grandparent in the hypernym tree
of WordNet);

(h) The senses of two noun instances have a great-grandparent/great-grand-
child relation in the hypernym/hyponym tree (i.e., one sense’s grand-
parent is another sense’s hyponym’s great-grandparent in the hypernym
tree of WordNet).

(i) The senses of two noun instances do not have any semantic relation.

To disambiguate all the nouns in the regular nouns of a text, we proceed
with the following major steps:
(a) Evaluate the semantic relation between any two possible senses according

to the hypernym/hyponym tree in WordNet. For our experiments, we use
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the following scoring scheme for the relations defined above as shown in
Table 1. The score between Ai (sense i of word A) and Bj (sense j of word
B) is denoted as score(Ai, Bj). These scores are established empirically
and give more weight to closer words according to WordNet hierarchy.

Table 1. Scoring Scheme for Relations

Relation Score(Ai, Bj)
Identical log(16)
Synonyms log(15)

Hypernyms/hyponyms log(14)
Siblings log(13)

Grandparent/grandchild log(12)
Uncle/nephew log(11)

Cousins log(10)
Great-grandparent/great-grandchild log(9)

No relation 0

(b) Build the lexical chains using all possible senses of all nouns. To build
the lexical chains, we assume each noun possesses all the possible senses
from WordNet. For each sense of each noun in a text, if it is related to all
the senses of any existing chain, then we put this sense into this chain,
else we create a new chain and push this sense into the new empty chain.
After this, we will have several lexical chains with their own scores.

(c) Using the lexical chain, try to assign a specific sense to each nouns.
We sort the chains by their scores in a non-increasing order. We select
the chain with the highest score and assign the senses in that chain
to the corresponding words. These words are disambiguated now. Next,
we process the next chain with the next highest score. If it contains a
different sense of any disambiguated words, we skip it to process the
next chain until we reach the chains with a single entry. We mark the
chains which we used to assign senses to words as selected. For the single
entry chains, if the sense is the only sense of the word, we mark it as
disambiguated. For each undisambiguated word, we check each of its
senses against all the selected chains. If it has a relation with all the
senses in a selected chain, we will then remember which sense-chain
pair has the highest relation score, then we assign that sense to the
corresponding word.

After these steps, the leftover nouns will be the undisambiguated words. We
save the disambiguated words and the undisambiguated words with their
frequencies for calculating the semantic relation scores between texts.

4. Compute the similarity score for each pair of texts.
Now, we should have three parts of nouns for each text: disambiguated

nouns, undisambiguated nouns and the non-meaningful nouns (proper
nouns). We will use all of them to calculate the semantic similarity scores
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between each pair of texts. For the purpose of calculating the semantic sim-
ilarity scores among texts, we use only the first three relations (a), (b), and
(c) and the last relation (i) and their corresponding scores defined in Table 1.
For a given text pair, we proceed as in the following steps to calculate the
similarity scores:

– Using the disambiguated nouns, the score score1 of the similarity be-
tween two texts T1 and T2 is computed as follows:

score1 =

∑n
i=1

∑m
j=1 score(Ai, Bj) × freq(Ai) × freq(Bj)

√∑n
i=1 freq2(Ai)

√∑m
j=1 freq2(Bj)

(2)

where Ai is a word sense from T1 and Bj is a word sense from T2;
score(Ai, Bj) is a semantic relation score defined in Table 1; n and m
are the numbers of disambiguated nouns in T1 and T2; freq(x) is the
frequency of a word sense x.

– For the undisambiguated nouns, if two nouns are identical in their word
formats, then the probability that they take the same sense in both
texts is 1/s, where s is the number of their total possible senses. The
similarity score score2 between two texts T1 and T2 according to the
undisambiguated nouns is computed as follows:

score2 =

∑n
i=1

log(16)×freq1(Ai)×freq2(Ai)
si

√∑n
i=1 freq2

1(Ai)
√∑n

j=1 freq2
2(Aj)

(3)

where Ai is a word common to T1 and T2; n is the number of common
words to T1 and T2; freq1(Ai) is the frequency of Ai in T1; freq2(Ai) is
the frequency of Ai in T2; si is the number of senses of Ai.

– The proper nouns are playing an important role in relating texts to each
other. So, we use a higher score (i.e., log(30)) for the identical proper
nouns. The similarity score score3 between two texts T1 and T2 among
the proper nouns between is computed as follows:

score3 =
∑n

i=1 log(30) × freq1(Ai) × freq2(Ai)
√∑n

i=1 freq2
1(Ai)

√∑n
j=1 freq2

2(Aj)
(4)

where Ai is a proper noun common to T1 and T2; n is the number of
common proper nouns to T1 and T2; freq1(Ai) is the frequency of Ai in
T1; freq2(Ai) is the frequency of Ai in T2.

– Adding all the scores together as the total similarity score of the text
pair:

score = score1 + score2 + score3 (5)

Now we make it ready to use the grouping algorithm or chaining algorithm
defined shortly to cluster the texts.
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4 Clustering Algorithms

Generally, every text should have a higher semantic similarity score with the
texts from its group than the texts from a different groups [9]. There are a
few rare cases where this assumption could fail. One case is that the semantic
similarity score does not reflect the relationships among the texts. Another case
is that the groups are not well grouped by common used criteria or the topic is
too broad in that group.By all means, the texts of any well formed clusters should
have stronger relations among its members than the texts in other clusters. Based
on this idea, we developed two text clustering algorithms: grouping algorithm
and chaining algorithm . They share some common features but with different
approaches.

One major issue in partitioning texts into different clusters is choosing the
cutoff on the relation scores. Virtually, all texts are related with each other to
some extent. The problem here is how similar (or close) they should be so that
we can put them into one cluster and how dissimilar (or far away) they should
be so that we can group them into different clusters. Unless the similarity scores
among all the texts can be represented as binary values, we will always face this
problem with any kind of texts. In order to address this problem, we introduce
two reference values in our text clustering algorithms: high-threshold and low-
threshold. The high-threshold means the high standard for bringing two texts
into the same cluster. The low-threshold means the minimal standard for possibly
bringing two texts into the same cluster. If the score between any two texts
reaches or surpasses the high-threshold, then they will go to the same cluster.
If the score reaches the low-threshold but is lower than the high-threshold, then
we will carry out further checking to decide if we should bring two texts into the
same cluster or not, else, the two texts will not go to the same cluster.

We get our high-threshold and low-threshold for our different algorithms by
running some experiments using the grouped text data. The high-threshold we
used for our two algorithms is 1.0 and the low-threshold we used is 0.6. For our
experiment, we always take a number of grouped texts and mix them up to make
a testing text set. So, each text must belong to one cluster with certain number
of texts.

4.1 Grouping Algorithm

The basic idea is that each text could gather its most related texts to form
an initial group, then we decide which groups have more strength over other
groups, make the stronger groups as final clusters, and use them to bring any
possible texts to their clusters. First, we use each text as a leading text (Tl) to
form a cluster. To do this, we put all the texts which have a score greater than
the high-threshold with Tl into one group and add each score to the group’s
total score. By doing this for all texts, we will have N possible different groups
with different entries and group scores, where N is the number of the total texts
in the set. Next, we select the final clusters from those N groups. We arrange
all the groups by their scores in a non-increasing order. We choose the group
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with the highest score and check if any text in this group has been clustered
to the existing final clusters or not. If not more than 2 texts are overlapping
with the final clusters, then we take this group as a final cluster, and remove the
overlapping texts from other final clusters. We process the group with the next
highest score in the same way until the groups’ entries are less than 4. For those
groups, we would first try to insert their texts into the existing final clusters if
they can fit in one of them. Otherwise, we will let them go to the leftover cluster
which holds all the texts that do not belong to any final clusters. The following
is the pseudocode for the grouping algorithm:

Grouping Algorithm
// Get the initial clusters
for each text ti

construct a text cluster including all the texts(tj)
which score(ti, tj) >= high-threshold;
compute the total score of the text cluster;
find out its neighbor with maximum relation score;

end for

// Build the final clusters
sort the clusters by their total score in non-increasing order;
for each cluster gi in the sorted clusters

if member(gi) > 3 and overlap-mem(gi) <= 2
take gi as a final cluster ci;
mark all the texts in ci as clustered;

else
skip to process next cluster;

end if
end for

// Process the leftover texts and insert them into one of the final clusters
for each text tj

if tj has not been clustered
find cluster ci with the highest score(ci, tj);
if the average-score(ci, tj) >= low-threshold
put tj into the cluster ci;

else if the max score neighbor tm of tj is in ck

put tj into cluster ck;
else
put tj into the final leftover cluster;

end if
end if

end for

output the final clusters and the final leftover cluster;
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where: member(gi) is the number of members in group gi; overlap-mem(gi) is
the number of members that are overlapped with any final clusters; score(ci,
tj) is the sum of scores between tj and each text in ci; average-score(ci, tj) is
score(ci, tj) divide by the number of texts in ci.

4.2 Chaining Algorithm

This algorithm is based on the observation of the similarities among the texts in
groups.Within a text group, not all texts are always strongly relatedwith any other
texts. Sometimes there are several subgroups existing in a single group, i.e., cer-
tain texts have stronger relations with their subgroup members and have a weaker
relation with other subgroup members. Usually one or more texts have stronger
relation crossing different subgroups to connect them together, otherwise all the
texts in the group could not be grouped together. So, there is a chaining effect in
each group connecting subgroups together to form one entire group.

We use this chaining idea in the chaining algorithm. First, for each text Tj ,
we find all the texts which have similarity scores that are greater or equal than
the high-threshold with Tj and use them to form a closer-text-set. All the texts
in that set are called closer-text of Tj.

Next, for each text which has not been assigned to a final chain, we use its
initial closer-text-set members to form a new chain. For each of the texts in
the chain, if any of its closer-texts are relatively related (i.e., the score >= low-
threshold) to all the texts in the chain, then we add it into the current chain.
One thing needs to be noticed here is that we do not want to simply bring
all the closer-texts of each current chain’s members into the chain. The reason
is to eliminate the unwanted over-chaining effect that could bring many other
texts which are only related to one text in the existing chain. So, we check each
candidate text against all the texts in the chain to prevent the over-chaining
effect. We repeat this until the chain’s size are not increasing. If the chain has
less than 4 members, we will not use this chain for a final cluster and try to
re-assign the chain members to other chains.

After the above process, if any text has not been assigned to a chain we check
it against all existing chains and find the chain which has highest similarity score
between the chain and this text. If the average similarity score with each chain
members is over low-threshold,we insert this text into that chain, else we put it into
the final leftover chain. The following is the pseudocode for the chaining algorithm:

5 Application

We chose as our input data the documents sets used in the Document Under-
standing Conferences [10,11], organized by NIST. We collected 60 test document
directories for our experiments. Each directory is about a specific topic and has
about 10 texts and each text has about 1000 words. Our experiment is to mix
up the 60 directories and try to reconstitute them using one of our clustering
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Chaining Algorithm
// construct a closer-text-set for each text
for each text ti 0 < i <= N

for each text tj 0 < j <= N
if score(ti, tj) >= high-threshold

put tj into closer-text-set si;
end if

end for
end for

// Build the chains
c = 0;
for each text ti of all the texts

if it has not been chained in
put text ti into chain c and mark it as been chained;
bring all the text in closer text-set si into the new chain c;
mark si as processed;
while (the size of chain c is changing)
for each text tk in chain c
for each text tm in sk of tk

if the score between tm and any text in chain c >= low-threshold
put tm into chain c;
mark tm as been chained to chain c;

end if
end for

end for
end while
if the size of chain c < 4
discard chain c;
remark the texts in chain c as unchained;

end if
c++;

end if
end for

// Process the leftover texts and insert them into one of the existing chains
for each unchained text tj

find chain ci with the highest score(ci, tj);
if the average-score(ci, tj) >= low-threshold
put tj into the chain ci;

else
put tj into the final leftover chain;

end if
end for

output the valid chains and the final leftover chain.
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algorithm. Then, we measure how successful are these algorithms in reconstitut-
ing the original directories. We implemented the k-means algorithm and the EM
algorithm to compare them with our algorithms.

In our test, we found out that the chaining algorithm did not work well
for identical method. We tested grouping algorithm, chaining algorithm, and
EM algorithm with semantic method, and k-means algorithm, EM algorithm,
and grouping algorithm with identical methods. We run the k-means and the
EM algorithms 4 times with each experiment texts set and take the average
performance. As we described before, semantic method represents text relations
with scores, so k-means algorithm which needs input data in vector format will
not be applied to semantic method.

6 Evaluation

For our testing, we need to compare the system clusters with the testing clusters
(original text directories) to evaluate the performance of each system. We first
compare each system cluster with all of the testing clusters to find the best
matched cluster pair with the maximum number of identical texts. We then use
recall, precision, and F-value to evaluate each matching pair. Finally, we use the
average F-value to evaluate the whole system performance. For a best matched
pair TCj (testing cluster) and SCi (system cluster), the recall (R), precision (P),
and F-value (F) are defined as follows:

R =
m

t
(6)

P =
m

m + n
(7)

F (TCj, SCi) =
2PR

P + R
(8)

where m is the number of the overlapping texts between TCj and SCi; n is the
number of the non-overlapping texts in SCi; t is the total number of texts in
TCj.

For the whole system evaluation, we use the Average F which is calculated
using the F-values of each matched pair of clusters.

Average F =

∑
i,j max(F (SCi, TCj))

max(m, n)
(9)

Where i <= min(m, n), j <= m, m is the number of testing clusters, and n
is the number of system clusters.
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7 Results

The performance of grouping algorithm and chaining algorithm are very close
using the semantic relation approach and most of their Average F are over
90%. For the identical word approach, the grouping algorithm performance
is much better than the performances of the k-means algorithm and the EM
algorithm. The poor performance of the k-means algorithm results from ran-
domly selected k initial values. Those initial N-dimensional values usually do
not represent the whole data very well. For the semantic relation approach,
both grouping and chaining algorithms performed better than the
EM algorithm.

Table 2 and 3 are the system Average F values for the different algorithms.
The identical word similarity method used grouping algorithm, k-means algo-
rithm, and EM algorithm. The semantic similarity method used grouping algo-
rithm, chaining algorithm and EM algorithm.

Table 2. Comparisons of F-value using Identical Word Similarity

Identical Word Similarity
Grouping EM k-means

0.98 0.81 0.66

Table 3. Comparisons of F-value using Semantic Relation Similarity

Semantic Relation Similarity
Grouping Chaining EM

0.92 0.91 0.76

8 Conclusion

Document clustering is an important tool for natural language applications. We
presented two novel algorithms grouping algorithm and chaining algorithm for
clustering sets of documents, and which can handle a large set of documents
and clusters. The two algorithms use semantic similarity and identical word
measure, and their performance is much better than the performance of the K-
means algorithm and the performance of the EM algorithm, used as a baseline
for our evaluation.

Evaluating the system quality has been always a difficult issue. We presented
an evaluation methodology to assess how the system clusters are related to the
manually generated clusters using precision and recall measures.

The grouping and the chaining algorithm may be used in several natural
language processing applications requiring clustering tasks such as summarizing
set of documents relating the same event.
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