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Abstract. We build a class-based selection preference sub-model to in-
corporate external semantic knowledge from two Chinese electronic se-
mantic dictionaries. This sub-model is combined with modifier-head gen-
eration sub-model. After being optimized on the held out data by the
EM algorithm, our improved parser achieves 79.4% (F1 measure), as well
as a 4.4% relative decrease in error rate on the Penn Chinese Treebank
(CTB). Further analysis of performance improvement indicates that se-
mantic knowledge is helpful for nominal compounds, coordination, and
N�V tagging disambiguation, as well as alleviating the sparseness of in-
formation available in treebank.

1 Introduction

In the recent development of full parsing technology, semantic knowledge is sel-
dom used, though it is known to be useful for resolving syntactic ambiguities.
The reasons for this may be twofold. The first one is that it can be very difficult
to add additional features which are not available in treebanks to generative
models like Collins (see [1]), which are very popular for full parsing. For smaller
tasks, like prepositional phrase attachment disambiguation, semantic knowledge
can be incorporated flexibly using different learning algorithms (see [2,3,4,5]).
For full parsing with generative models, however, incorporating semantic knowl-
edge may involve great changes of model structures. The second reason is that
semantic knowledge from external dictionaries seems to be noisy, ambiguous and
not available in explicit forms, compared with the information from treebanks.
Given these two reasons, it seems to be difficult to combine the two different
information sources–treebank and semantic knowledge–into one integrated sta-
tistical parsing model.

One feasible way to solve this problem is to keep the original parsing model
unchanged and build an additional sub-model to incorporate semantic knowledge
from external dictionaries. The modularity afforded by this approach makes
it easier to expand or update semantic knowledge sources with the treebank
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unchanged or vice versa. Further, the combination of the semantic sub-model
and the original parsing model can be optimized automatically.

In this paper, we build a class-based selection preference sub-model, which
is embedded in our lexicalized parsing model, to incorporate external seman-
tic knowledge. We use two Chinese electronic dictionaries and their combi-
nation as our semantic information sources. Several experiments are carried
out on the Penn Chinese Treebank to test our hypotheses. The results indi-
cate that a significant improvement in performance is achieved when seman-
tic knowledge is incorporated into parsing model. Further improvement analy-
sis is made. We confirm that semantic knowledge is indeed useful for nominal
compounds and coordination ambiguity resolution. And surprisingly, semantic
knowledge is also helpful to correct Chinese N�V mistagging errors mentioned
by Levy and Manning (see [12]). Yet another great benefit to incorporating
semantic knowledge is to alleviate the sparseness of information available in
treebank.

2 The Baseline Parser

Our baseline parsing model is similar to the history-based, generative and lexical-
ized Model 1 of Collins (see [1]). In this model, the right hand side of lexicalized
rules is decomposed into smaller linguistic objects as follows:

P (h) → #Ln(ln)...L1(l1)H(h)R1(r1)...Rm(rm)# .

The uppercase letters are delexicalized nonterminals, while the lowercase letters
are lexical items, e.g. head word and head tag (part-of-speech tag of the head
word), corresponding to delexicalized nonterminals. H(h) is the head constituent
of the rule from which the head lexical item h is derived according to some head
percolation rules.1 The special termination symbol # indicates that there is no
more symbols to the left/right. Accordingly, the rule probability is factored into
three distributions. The first distribution is the probability of generating the
syntactic label of the head constituent of a parent node with label P , head word
Hhw and head tag Hht:

PrH(H |P, Hht, Hhw) .

Then each left/right modifier of head constituent is generated in two steps: first
its syntactic label Mi and corresponding head tag Miht are chosen given context
features from the parent (P ), head constituent (H, Hht, Hhw), previously gen-
erated modifier (Mi−1, Mi−1ht) and other context information like the direction
(dir) and distance2 (dis) to the head constituent:

1 Here we use the modified head percolation table for Chinese from Xia (see [6]).
2 Our distance definitions are different for termination symbol and non-termination

symbol, which are similar to Klein and Manning (see [7]).
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PrM (Mi, Miht|HCM ) .

where the history context HCM is defined as the joint event of

P, H, Hht, Hhw, Mi−1, Mi−1ht, dir, dis .

Then the new modifier’s head word Mihw is also generated with the probability:

PrMw(Mihw|HCMw ) .

where the history context HCMw is defined as the joint event of

P, H, Hht, Hhw, Mi−1, Mi−1ht, dir, dis, Mi, Miht .

All the three distributions are smoothed through Witten-Bell interpolation
just like Collins (see [1]). For the distribution PrM , we build back-off struc-
tures with six levels, which are different from Collins’ since we find our back-off
structures work better than the three-level back-off structures of Collins. For
the distribution PrMw , the parsing model backs off to the history context with
head word Hhw removed, then to the modifier head tag Miht, just like Collins.
Gildea (see [9]) and Bikel (see [10]) both observed that the effect of bilexical de-
pendencies is greatly impaired due to the sparseness of bilexical statistics. Bikel
even found that the parser only received an estimate that made use of bilexi-
cal statistics a mere 1.49% of the time. However, according to the wisdom of
the parsing community, lexical bigrams, the word pairs (Mihw, Hhw) are very
informative with semantic constraints. Along this line, in this paper, we build
an additional class-based selectional preference sub-model, which is described
in section 3, to make good use of this semantic information through selectional
restrictions between head and modifier words.

Our parser takes segmented but untagged sentences as input. The probability
of unknown words, Pr(uword|tag), is estimated based on the first character of
the word and if the first characters are unseen, the probability is estimated by
absolute discounting.

We do some linguistically motivated re-annotations for the baseline parser.
The first one is marking non-recursive noun phrases from other common noun
phrases without introducing any extra unary levels (see [1,8]). We find this basic
NP re-annotation very helpful for the performance. We think it is because of the
annotation style of the Upenn Chinese Treebank (CTB). According to Xue et al.
(see [11]), noun-noun compounds formed by an uninterrupted sequence of words
POS-tagged as NNs are always left flat because of difficulties in determining
which modifies which. The second re-annotation is marking basic VPs, which we
think is beneficial for reducing multilevel VP adjunction ambiguities (see [12]).

To speed up parsing, we use the beam thresholding techniques in Xiong et
al. (see [13]). In all cases, the thresholding for completed edges is set at ct = 9
and incomplete edges at it = 7. The performance of the baseline parser is 78.5%
in terms of F1 measure of labeled parse constituents on the same CTB training
and test sets with Bikel et al. (see [14])
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3 Incorporating Semantic Knowledge

In this section, we describe how to incorporate semantic knowledge from external
semantic dictionaries into parsing model to improve the performance. Firstly, we
extract semantic categories through two Chinese electronic semantic dictionaries
and some heuristic rules. Then we build a selection preference sub-model based
on extracted semantic categories. In section 3.3, we present our experiments
and results in detail. And finally, we compare parses from baseline parser with
those from the new parser incorporated with semantic knowledge. We empirically
confirm that semantic knowledge is helpful for nominal compound, coordination
and POS tagging ambiguity resolution. Additionally, we also find that semantic
knowledge can greatly alleviate problems caused by data sparseness.

3.1 Extracting Semantic Categories

Semantic knowledge is not presented in treebanks and therefore has to be ex-
tracted from external knowledge sources. We have two Chinese electronic se-
mantic dictionaries, both are good knowledge sources for us to extract semantic
categories. One is the HowNet dictionary3, which covers 67,440 words defined
by 2112 different sememes. The other is the ”TongYiCi CiLin” expanded version
(henceforth CiLin)4, which represents 77,343 words in a dendrogram.

HowNet (HN): Each sememe defined by the HowNet is regarded as a semantic
category. And through the hypernym-hyponym relation between different cat-
egories, we can extract semantic categories at various granularity levels. Since
words may have different senses, and therefore different definitions in HowNet,
we just use the first definition of words in HowNet. At the first level HN1, we ex-
tract the first definitions and use them as semantic categories of words. Through
the hypernym ladders, we can get HN2, HN3, by replacing categories at lower
level with their hypernyms at higher level. Table 1 shows information about
words and extracted categories at different levels.

CiLin (CL): CL is a branching diagram, where each node represents a semantic
category. There are three levels in total, and from the top down, 12 categories in
the first level (CL1), 97 categories in the second level (CL2), 1400 categories in
the third level (CL3). We extract semantic categories at level CL1, CL2 and CL3.

HowNet+CiLin: Since the two dictionaries have different ontologies and rep-
resentations of semantic categories, we establish a strategy to combine them:
HowNet is used as a primary dictionary, and CiLin as a secondary dictionary.
If a word is not found in HowNet but found in Cilin, we will look up other
words from its synset defined by CiLin in HowNet. If HowNet query succeeds,
the corresponding semantic category in HowNet will be assigned to this word.

3 http://www.keenage.com/.
4 The dictionary is recorded and expanded by Information Retrieval Laboratory,

Harbin Institute of Technology.
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Table 1. Sizes and coverage of words and semantic categories from different semantic
knowledge sources

Data HN1 HN2 HN3 CL1 CL2 CL3
words in train 9522 6040 6469
words in test 1824 1538 1581
words in both 1412 1293 1310
classes in train - 1054 381 118 12 92 1033
classes in test - 520 251 93 12 79 569
classes in both - 504 248 93 12 79 552

According to our experimental results, we choose HN2 as the primary semantic
category set and combine it with CL1, CL2 and CL3.

Heuristic Rules (HR): Numbers and time expressions are recognized using
simple heuristic rules. For a better recognition, one can define accurate regular
expressions. However, we just collect suffixes and feature characters to match
strings. For example, Chinese numbers are strings whose characters all come
from a predefined set. These two classes are merged into HowNet and labelled
by semantic categories from HowNet.

In our experiments, we combine HN2, CL1/2/3, and HR as our external
sources. In these combinations {HN2+CL1/2/3+HR}, all semantic classes come
from the primary semantic category set HN2, therefore we get the same class
coverage that we obtain from the single source HN2 but a bigger word coverage.
The number of covered words of these combinations in {train, test, both} is
{7911, 1672, 1372} respectively.

3.2 Building Class-Based Selection Preference Sub-model

There are several ways to incorporate semantic knowledge into parsing model.
Bikel (see [15]) suggested a way to capture semantic preferences by employing
bilexical-class statistics, in other words, dependencies among head-modifier word
classes. Bikel did not carry it out and therefore greater details are not available.
However, the key point, we think, is to use classes extracted from semantic
dictionary, instead of words, to model semantic dependencies between head and
modifier. Accordingly, we build a similar bilexical-class sub-model as follows:

Prclass(CMihw|CHhw, Hht, Miht, dir) .

where CMihw and CHhw represent semantic categories of words Mihw and Hhw,
respectively. This model is combined with sub-model PrMw to form a mixture
model Pmix:

Prmix = λPrMw + (1 − λ)Prclass . (1)

λ is hand-optimized, and an improvement of about 0.5% in terms of F1 measure is
gained. However, even a very slight change in the value of λ, e.g. 0.001, will have
a great effect on the performance. Besides, it seems that the connection between
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entropy, i.e. the total negative logarithm of the inside probability of trees, and F1
measure, is lost, while this relation is observed in many experiments. Therefore,
automatic optimization algorithms, like EM, can not work in this mixture model.
The reason, we guess, is that biclass dependencies among head-modifier word
classes seem too coarse-grained to capture semantic preferences between head
and modifier. In most cases, a head word has a strong semantic constraints on
the concept κ of mw, one of its modifier words, but that doesn’t mean other
words in the same class with the head word has the same semantic preferences
on the concept κ. For example, the verb eat impose a selection restriction on
its object modifier5: it has to be solid food. On the other hand, the verb drink
specifies its object modifier to be liquid beverage. At the level HN2, verb eat
and drink have the same semantic category metabolize. However, they impose
different selection preferences on their PATIENT roles.

To sum up, bilexical dependencies are too fine-grained when being used to
capture semantic preferences and therefore lead to serious data sparseness. Bi-
class dependencies, which result in an unstable performance improvement, on the
other hand, seem to be too coarse-grained for semantic preferences. We build a
class-based selection preference model:

Prsel(CMihw|Hhw, P ) .

This model is similar to Resnik (see [2]). We use the parent node label P to
represent the grammatical relation between head and modifier. Besides, in this
model, only modifier word is replaced with its semantic category. The depen-
dencies between head word and modifier word class seem to be just right for
capturing these semantic preferences.

The final mixture model is the combination of the class-based selection pref-
erence sub-model Prsel and modifier-head generation sub-model PrMw :

Prmix = λPrMw + (1 − λ)Prsel . (2)

Since the connection between entropy and F1 measure is observed again, EM
algorithm is used to optimize λ. Just like Levy (see [12]), we set aside articles 1-
25 in CTB as held out data for EM algorithm and use articles 26-270 as training
data during λ optimization.

3.3 Experimental Results

We have designed several experiments to check the power of our class-based se-
lection preference model with different semantic data sources. In all experiments,
we first use the EM algorithm to optimize the parameter λ. As mentioned above,
during parameter optimization, articles 1-25 are used as held out data and ar-
ticles 26-270 are used as training data. Then we test our mixture model with
optimized parameter λ using the training data of articles 1-270 and test data of
articles 271-300 of length at most 40 words.
5 According to Thematic Role theory, this modifier has a PATIENT role.
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Table 2. Results for incorporating different semantic knowledge sources. The baseline
parser is described in Sect. 2. in detail.

Baseline HN1 HN2 HN3 CL1 CL2 CL3
F1(%) 78.5 78.6 79.1 78.9 77.5 78.7 78.8

Table 3. Results for combinations of different semantic knowledge sources

Baseline HN2+CL1+HR HN2+CL2+HR HN2+CL3+HR
F1(%) 78.5 79.2 79.4 79.3

Firstly, we carry out experiments on HowNet and CiLin, separately. Exper-
imental results are presented in Table 2. As can be seen, CiLin has a greater
coverage of words than that of HowNet, however, it works worse than HowNet.
And at the level CL1, coarse-grained classes even yield degraded results. It’s dif-
ficult to explain this, but the main reason may be that HowNet has a fine-grained
and substantial ontology while CiLin is designed only as a synset container.

Since HowNet has a better semantic representation and CiLin better cov-
erage, we want to combine them. The combination is described in Sect. 3.1,
where HN2 is used as the primary semantic category set. Words found by CiLin
and heuristic rules are labelled by semantic categories from HN2. Results are
shown in Table 3. Although external sources HN2+CL1/2/3+HR have the iden-
tical word coverage and yield exactly the same number of classes, the different
word-class distributions in them lead to the different results.

Due to the combination of HN2, CL2 and HR, we see that our new parser
with external semantic knowledge outperforms the baseline parser by 0.9% in
F1 measure. Given we are already at the 78% level of accuracy, an improve-
ment of 0.9% is well worth obtaining and confirms the importance of semantic
dependencies on parsing. Further, we do the significance test using Bikel’s sig-
nificance tester6 which is modified to output p-value for F1. The significance
level for F-score is at most (43376+1)/(1048576+1) = 0.041. A second 1048576
iteration produces the similar result. Therefore the improvement is statistically
significant.

3.4 Performance Improvement Analysis

We manually analyze parsing errors of the baseline parser (BP ) as well as per-
formance improvement of the new parser (IP ) with semantic knowledge from
the combination of HN2, CL2 and HR. Improvement analysis can provide an
additional valuable perspective: how semantic knowledge helps to resolve some
ambiguities. We compare BP and IP on the test data parse by parse. There are
299 sentences of length at most 40 words among the total 348 test sentences. The
two parsers BP and IP found different parses for 102 sentences, among which

6 See http://www.cis.upenn.edu/ dbikel/software.html



Parsing the Penn Chinese Treebank with Semantic Knowledge 77

Table 4. Frequency of parsing improvement types. AR represents ambiguity resolution.

Type Count Percent(%)
Nominal Compound AR 19 38
Coordination AR 9 18
N�V AR in N�V+noun 6 12
Other AR 16 32

IP yields better parse trees for 47 sentences according to the gold standard trees.
We have concentrated on these 47 sentences and compared parse trees found by
IP with those found by BP . Frequencies of major types of parsing improvement
is presented in Table 4. Levy and Manning (see [12])(henceforth L&M) observed
the top three parsing error types: NP-NP modification, Coordination and N�V
mistagging, which are also common in our baseline parser. As can be seen, our
improved parser can address these types of ambiguities to some extent through
semantic knowledge.

Nominal Compounds (NCs) Disambiguation: Nominal compounds are no-
torious “every way ambiguous” constructions.7 The different semantic interpre-
tations have different dependency structures. According to L&M, this ambiguity
will be addressed by the dependency model when word frequencies are large
enough to be reliable. However, even for the treebank central to a certain topic,
many very plausible dependencies occur only once.8 A good technique for re-
solving this conflict is to generalize the dependencies from word pairs to word-
class pairs. Such generalized dependencies, as noted in section 3.2, can capture
semantic preferences, as well as alleviate the data sparseness associated with
standard bilexical statistics. In our class-based selection preference model, if the
frequency of pair [CMhw, Hhw]9 is large enough, the parser can interpret nominal
compounds correctly, that is, it can tell which modify which.

NCs are always parsed as flatter structures by our baseline parser, just like
the tree a. in Figure 1. This is partly because of the annotation style of CTB,
where there is no NP-internal structure. For these NCs without internal analysis,
we re-annotated them as basic NPs with label NPB, as mentioned in section 2.
This re-annotation really helps. Another reason is that the baseline parser, or
the modifier word generating sub-model PMw , can not capture hierarchical se-
mantic dependencies of internal structures of NCs due to the sparseness of bilex-
ical dependencies. In our new parser, however, the selection preference model is
able to build semantically preferable structures through word-class dependency
statistics. For NCs like (n1, n2, n3), where ni is a noun, dependency structures

7 “Every way ambiguous” constructions are those for which the number of analy-
ses is the number of binary trees over the terminal elements. Prepositional phrase
attachment, coordination, and nominal compounds are all ”every way ambiguous”
constructions.

8 Just as Klein et al. (see [8]) said, one million words of training data just isn’t enough.
9 Henceforth, [s1, s2] denotes a dependency structure, where s1 is a modifier word or

its semantic class (C), and s2 is the head word.
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a. NPB

��� ���
NR NN NN

b. NP
�� ��

NP
����

NPB

NR

NPB

NN

NPB

NN

Fig. 1. Nominal Compounds: The North Korean government’s special envoy. a. is the
incorrect flat parse, b. is the right one in corpus

{[Cn1 , n2], [Cn1 , n3], [Cn2 , n3]} will be checked in terms of semantic acceptability
and semantically preferable structures will be built finally. For more complicated
NCs, similar analysis follows.

In our example (see Fig. 1.), the counts of word dependencies [ /North
Korea, /government] and [ /North Korea, /special envoy] in the
training data both are 0. Therefore, it is impossible for the baseline parser to
have a preference between these two dependency structures. On the other hand,
the counts of word-class dependencies [ , /government], where
is the semantic category of in HN2, is much larger than the counts of [

, /special envoy] and [ , /special envoy], where is the semantic
category of in the training data. Therefore, the dependency structure of
[ /North Korea, /government] will be built.

Coordination Disambiguation: Coordination is another kind of “every way
ambiguous” construction. For coordination structures, the head word is meaning-
less. But that doesn’t matter, since semantic dependency between the spurious
head and modifier will be used to measure the meaning similarity of coordinated
structures. Therefore, our selection preference model still works in coordination
constructions. We have also found VP coordination ambiguity, which is similar
to that observed by L&M. The latter VP in coordinated VPs is often parsed as
an IP due to pro-drop by the baseline parser. That is, the coordinated structure
VP is parsed as: V P 0 → V P 1IP 2. This parse will be penalized by the selection
preference model because the hypothesis that the head word of IP 2 has a sim-
ilar meaning to the head word of V P 1 under the grammatical relation V P 0 is
infrequent.

N�V-ambiguous Tagging Disambiguation: The lack of overt morphological
marking for transforming verbal words to nominal words in Chinese results in
ambiguity between these two categories. L&M argued that the way to resolve
this ambiguity is to look at more external context, like some function words,
e.g. adverbial or prenominal modifiers, co-occurring with N�V-ambiguous words.
However, in some cases, N�V-ambiguous words can be tagged correctly without
external context. Chen et al. (see [16]) studied the pattern of N�V+noun, which
will be analyzed as a predicate-object structure if N�V is a verb and a modifier-
noun structure if N�V is a noun. They found that in most cases, this pattern can
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a. VP
����

VPB

VV

NPB

NN

b. NPB
����

NN NN

Fig. 2. N�V-ambiguity: a. implement plans (incorrect parse) versus b. implementation
plans (corpus)

Table 5. Previous Results on CTB parsing for sentences of length at most 40 words

LP LR F1
Bikel and Chiang 2000 77.2 76.2 76.7
Levy and Manning 2003 78.4 79.2 78.8
Present work 80.1 78.7 79.4
Bikel Thesis 2004 81.2 78.0 79.6
Chiang and Bikel 2002 81.1 78.8 79.9

be parsed correctly without any external context. Furthermore, they argued that
semantic preferences are helpful for the resolution of ambiguity between these
two different structures. In our selection preference model, semantic preferences
interweave with grammatical relations. These semantic dependencies impose con-
straints on the structure of the pattern N�V+noun and therefore on the POS
tag of N�V. Figure 2 shows our new parser can correct N�V mistagging errors
occurring in the pattern of N�V+noun.

Smoothing:Besides the three ambiguity resolution noted above, semantic knowl-
edge indeed helps alleviate the fundamental sparseness of the lexical dependency
information available in the CTB. For many word pairs [mod,head], whose count
information is not available in the training data, the dependency statistics of head
and modifier can still work through the semantic category of mod. During our man-
ual analysis of performance improvement, many other structural ambiguities are
addressed due to the smoothing function of semantic knowledge.

4 Related Work on CTB Parsing

Previous work on CTB parsing and their results are shown in table 5. Bikel and
Chiang (see [14]) used two different models on CTB, one based on the modi-
fied BBN model which is very similar to our baseline model, the other on Tree
Insertion Grammar (TIG). While our baseline model used the same unknown
word threshold with Bikel and Chiang but smaller beam width, our result out-
performs theirs due to other features like distance, basic NP re-annotation used
by our baseline model. Levy and Manning (see [12]) used a factored model with
rich re-annotations guided by error analysis. In the baseline model, we also used
several re-annotations but find most re-annotations they suggested do not fit
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our model. The three parsing error types expounded above are also found by
L&M. However, we used more efficient measures to keep our improved model
from these errors.

The work of Bikel thesis (see [10]) emulated Collins’ model and created a
language package to Chinese parsing. He used subcat frames and an additional
POS tagger for unseen words. Chiang and Bikel (see [17]) used the EM algorithm
on the same TIG-parser to improve the head percolation table for Chinese pars-
ing. Both these two parsers used fine-tuned features recovered from the treebank
that our model does not use. This leads to better results and indicates that there
is still room of improvement for our model.

5 Conclusions

We have shown that how semantic knowledge may be incorporated into a gener-
ative model for full parsing, which reaches 79.4% in CTB. Experimental results
are quite consistent with our intuition. After the manual analysis of performance
improvement, the working mechanism of semantic knowledge in the selection
preference model is quite clear:

1. Using semantic categories extracted from external dictionaries, the class-
based selection preference model first generalizes standard bilexical depen-
dencies, some of which are not available in training data, to word-class de-
pendencies. These dependencies are neither too fine-grained nor too coarse-
grained compared with bilexical and biclass dependencies, and really help to
alleviate fundamental information sparseness in treebank.

2. Based on the generalized word-class pairs, semantic dependencies are cap-
tured and used to address different kinds of ambiguities, like nominal com-
pounds, coordination construction, even N�V-ambiguous words tagging.

Our experiments show that generative models have room for improvement
by employing semantic knowledge. And that may be also true for discrimina-
tive models, since these models can easily incorporate richer features in a well-
founded fashion. This is the subject of our future work.
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