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A B S T R A C T  
The goal of this study is to evaluate the potential for using 
large vocabulary continuous speech recognition as an engine 
for automatically classifying utterances according to the lan- 
guage being spoken. The problem of language identification 
is often thought of as being separate from the problem of 
speech recognition. But in this paper, as in Dragon's earlier 
work on topic and speaker identification, we explore a uni- 
fying approach to all three message classification problems 
based on the underlying stochastic process which gives rise 
to speech. We discuss the theoretical framework upon which 
our message classification systems are built and report on 
a series of experiments in which this theory is tested, using 
large vocabulary continuous speech recognition to distinguish 
English from Spanish. 

1. I N T R O D U C T I O N  

In this paper we describe preliminary work being con- 
ducted at Dragon Systems exploring the use of large vo- 
cabulary continuous speech recognition as an engine for 
automatically classifying spoken utterances by language. 
Several approaches to the problem of language identifi- 
cation have already appeared in the literature, but they 
generally address the problem as quite separate from the 
problem of speech recognition. For example, LIMSI [1] 
has reported results in French-English discrimination via 
phone recognition and a number of sites, such as OGI [2], 
have performed language classification by using broad 
phonetic labels and analyzing sets of phonological "fea- 
tures". 

Our approach to the problem of language identification 
grows naturally out of our model for the underlying 
stochastic process giving rise to speech. In earlier pa- 
pers ([3], [4]) we have described our unified approach to 
the problems of topic and speaker identification via large 
vocabulary continuous speech recognition and demon- 
strated the success of this strategy even in classifying 
speech data in domains where the recognition task is far 
too difficult to obtain accurate transcriptions. We be- 
lieve that the contextual information - both acoustic and 
language model - available in full-scale large vocabulary 
continuous speech recognition is invaluable in extracting 
reliable data from difficult speech channels. We now ex- 

amine how this same framework supports work on the 
problem of language identification. 

In the next section we describe the theoretical founda- 
tions upon which our message classification systems are 
based and discuss some simplifying approximations in- 
troduced in their implementation. We then describe our 
initial testing of English-Spanish discrimination, primar- 
ily work with microphone data using our Wall Street 
Journal speech recognition system, but also work we are 
now beginning in language identification on telephone 
speech. Finally, we discuss some lessons learned from 
these early explorations and suggest plans for future 
work. 

2. T H E O R E T I C A L  F R A M E W O R K  

We briefly review the theoretical background described 
in our earlier papers [3] and [4]. Our approach to the 
message classification problem - for topic, speaker, or 
language identification - is based on modelling speech as 
a stochastic process. We assume that a given stream of 
speech is generated by one of several possible stochastic 
sources, one corresponding to each of the languages (or 
topics or speakers) in question. We are faced with the 
problem of deciding, based on the acoustic data alone, 
which is the true source of the speech. 

Standard statistical theory provides us with the optimal 
solution to such a classification problem. We denote the 
string of acoustic observations by A and introduce the 
random variable T to designate which stochastic model 
has produced the speech, where T may take on the values 
from 1 to n for the n possible speech sources. If we let 
Pi denote the prior probability of stochastic source i and 
assume that all classification errors have the same cost, 
then we should choose the source T = ~ for which 

= argmax Pi P(A ] T = i). 
i 

We assume, for the purposes of this work, that all prior 
probabilities are equal, so that the classification problem 
reduces simply to choosing the source i for which the 
conditional probability of the acoustics given the source 
is maximized. 
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In principle, to compute each of the probabilities 
P(A [ T = i) we would have to sum over all possible 
transcriptions W of the speech: 

P(A[ T = i ) = ~ P ( A , W [  T = i ) .  
w 

In practice, such a collection of computations is unwieldy 
so to limit the computational burden we introduce a sim- 
plifying approximation. Instead of computing the full 
probability P(A [ T = i), we approximate the sum 
by its largest term: the joint probability of A and the 
single most probable word sequence W = W/max. Of 
course, generating such an optimal word sequence is ex- 
actly what speech recognition is designed to do. Thus, 
we could imagine running n different speech recogniz- 
ers, one trained in each of the n languages, and then 
compare the resulting probabilities P(A, W/m~ [ T = i) 
corresponding to each of the n optimal transcriptions 
W/max. The speech would then be assigned to the lan- 
guage whose recognizer produced the best score. 

This approach still requires us to make multiple recog- 
nition passes across the test speech, one pass for each 
stochastic source. In the cases of topic and speaker 
identification studied earlier, we were able to further 
limit the demand on the recognizer by producing a sin- 
gle "best" transcription W = Wm~,, using a speaker- 
independent topic-independent recognizer, to approxi- 
mate the optimal transcriptions produced by each of the 
stochastic sources T = i. The corresponding probabili- 
ties P(A, Wmax [ T = i) were then computed by rescor- 
ing this "best" transcription using either topic-specific 
language models in the case of topic identification, or 
speaker-specific acoustic models for speaker identifica- 
tion. (See the above-cited articles for further details.) 

For the problem of language identification, we do 
not have the option of obtaining a single "language- 
independent" transcription: the transcription depends 
inextricably on the language we are recognizing. Thus 
it would appear that in this case we are forced to run 
several recognition passes on each test utterance, one for 
each language in question, or at the very least perform 
the recognition using a recognizer capable of running sev- 
eral sets of models/languages simultaneously and allow 
the best performing language to threshold hypotheses 
from poorer performing ones. 

We are currently working to develop parallel recogniz- 
ers trained on telephone-quality speech in a number of 
languages which should allow us to perform exactly this 
experiment. This effort is described in more detail be- 
low. While this development effort is under way, we are 
exploring the possibility of performing two-language dis- 
crimination using a single recognizer trained in one of 

the languages. There are several ways of using the the- 
ory above to construct a one-recognizer test. Using two 
recognizers, one trained in each language, we would es- 
timate P(A I T = i) for each of the two languages and 
then, as described above, assign the speech sample to 
the recognizer producing the best score. Alternatively, 
we could look at the log likelihood ratio 

P(A[ T = 1) 
S = l o g p ( A ]  T = 2 ) '  

and make the assignment based on a threshold S = So, 
assigning the sample to language #1 if S > So, and 
to language #2 otherwise. With only one recognizer, 
trained, say, in language #1, we could simply impose a 
threshold on log P(A I T = 1) alone, assigning the speech 
sample to language #1 if the score was good enough and 
to language #2 otherwise. This naive solution suffers 
from a number of problems, most significantly that the 
recognition score depends on many variables unrelated 
to the language - such as speaker, channel, or phonetic 
content - that are not properly controlled for without the 
normalizing effect of the denominator in the likelihood 
ratio. 

In the experiments described below, we have explored 
the possibility of controlling for these confounding fac- 
tors in the acoustics by introducing a normalization 
based on the acoustics of individual speech frames. In 
Dragon's speech recognition system the acoustics for 
each frame are represented in terms of a feature vec- 
tor and the recognizer's acoustic models consist in part 
of probability distributions on the occurrence of these 
feature vectors. We refer to these models, the output 
distributions for nodes of our hidden Markov models, 
as PELs (for "phonetic elements"). In normal speech, 
the PEL sequences we expect to see are constrained by 
the phonemic sequences within the words in the recog- 
nizer's vocabulary, but as a group the PELs should pro- 
vide good coverage of that region of acoustic parameter 
space where speech data lie. To normalize the recog- 
nition scores for the one-recognizer tests we compute a 
second score using, for each speech frame, the probability 
corresponding to whichever PEL model - unconstrained 
by word-level hypotheses - best matches the acoustics in 
that frame. The product of these frame-by-frame prob- 
abilities provides a second score (referred to below as 
the "maximal acoustic score") that can be used as the 
denominator in the log likelihood ratio above. Presum- 
ably, when the speech being recognized is in the language 
of the recognizer, this optimal frame-by-frame PEL se- 
quence should be reasonably close to the true PEL se- 
quence, but when the language is different the maximal 
acoustic score should be far better than the score pro- 
duced by the recognizer. 
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This normalization using best-matching PELs captures 
some sense of how well the acoustic signal fits the recog- 
nizer's models independent of constraints imposed by the 
words in the language we are recognizing. Thus, we ex- 
pect it to help minimize sources of variability unrelated 
to differences between languages. However, it may be 
that different languages cover somewhat different parts 
of acoustic parameter space and, as we shall see below, 
this normalization may also have the undesirable side ef- 
fect of normalizing away this language-rich information 
as well. 

The scores produced by the language identification sys- 
tem are negative log probabilities, normalized by the 
number of frames in the utterance. Thus, in practice, 
the log likelihood ratio translates to a simple difference of 
recognizer (or recognizer and maximal acoustic) scores. 

3. I N I T I A L  E X P E R I M E N T S  

Our approach to language identification depends cru- 
cially on the existence of a large vocabulary continuous 
speech recognition system, so in order to test the feasi- 
bility of our language identification strategy, we turned 
to our primary LVCSR system, the Wall Street Jour- 
nal recognizer developed under the ARPA SLS program. 
This recognition system has been described extensively 
elsewhere (see, for example, [5] and [6]). We review its 
basic properties here. 

The recognizer is a time-synchronous hidden Markov 
model based system. It makes use of a basic set of 32 
signal-processing parameters: 1 overall amplitude term, 
7 spectral parameters, 12 mel-cepstral parameters, and 
12 mel-cepstral differences. Our standard practice is to 
employ an IMELDA transform [7], a transformation con- 
structed via linear discriminant analysis to select direc- 
tions in parameter space that are most useful in distin- 
guishing between designated classes while reducing vari- 
ation within classes. For speaker-independent recogni- 
tion we choose directions which maximize the average 
variation between phonemes while being relatively in- 
sensitive to differences within the phoneme class, such as 
might arise from different speakers, channels, etc. Since 
the IMELDA transform generates a new set of parame- 
ters ordered with respect to their value in discriminating 
classes, directions with little discriminating power be- 
tween phonemes can be dropped. We used only the top 
16 IMELDA parameters for speaker-independent recogni- 
tion, divided into four 4-parameter streams. For speaker- 
independent recognition, we also normalize the average 
speech spectra across utterances via blind deconvolution 
prior to performing the IMELDA transform, in order to 
further reduce channel differences. 

Each word pronunciation is represented as a sequence of 
phoneme models called PICs (phonemes-in-context) de- 
signed to capture coarticulatory effects due to the pre- 
ceding and succeeding phonemes. Because it is imprac- 
.tical to model all the triphones that could in principle 
arise, we model only the most common ones and back 
off to more generic forms when a recognition hypothe- 
sis calls for a PIC which has not been built. The PICs 
themselves are modelled as linear HMMs with one or 
more nodes, each node being specified by an output dis- 
tribution - the PELs referred to above - and a double 
exponential duration distribution. The output distribu- 
tions of the states were modelled as tied mixtures of 
Gaussian distributions. The recognizer used for our lan- 
guage identification work was trained from the standard 
WSJ0 SI-12 training speakers (using 7200 sentences in 
all, totalling about 16 hours of speech data). Because 
Dragon's in-house recordings are made at 12 kHz, rather 
than the WSJ standard of 16 kHz, the training data was 
first down-sampled to 12 kHz before training the mod- 
els. For these experiments, the standard WSJ 20K vo- 
cabulary and digram language model (based on about 
40 million words of newspaper text) were used. 

For the language identification test material, three bilin- 
gual Dragon employees each recorded 20 English sen- 
tences taken from a current issue of the Wall Street 
Journal. For Spanish data, they read 20 Spanish sen- 
tences taken from the financial section of a current issue 
of America Economia, a Spanish language news mag- 
azine. The resulting test corpus thus consisted of 60 
English and 60 Spanish utterances, averaging about 8 
seconds in length and recorded on a Shure SM-10 micro- 
phone at a 12 kHz sample rate. 

Using the simple (unnormalized) one-recognizer strategy 
described above, we obtained an 83% probability of de- 
tection at the equal error point (i.e. the point where 
the probability of detection equals the probability of 
false alarm). After rescoring using the maximal acous- 
tic score normalization, this figure improved to 95%. It 
is also worth noting that using the maximal acoustic 
score alone we obtained a result of 68%. Such a non- 
speech-based strategy is similar in spirit to approaches 
to language identification using suhword acoustic fea- 
tures rather than full speech recognition. The results 
are summarized in the first line of Table 1. 

Inspired by the success of this initial trial on read speech 
data, we next turned to an assessment of performance 
on spontaneous telephone speech, using as test mate- 
rial speech drawn from the OGI corpus [8] of recorded 
telephone messages. This multi-lingual corpus contains 
"evoked monologues" from 90 speakers in each of ten lan- 
guages. For our in-house testing, we selected 10 Spanish 
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no IMELDA 82% 90% 73% 

Table 1: English-Spanish discrimination using the Wall 
Street Journal recognizer. The figures give the probabil- 
ity of detection at the equal error point for the recognizer 
score R, the maximal acoustic score M, and the normal- 
ized recognition score R -  M. 

and 10 English calls from among the designated OGI 
training material. We used the "story-bt" segments of 
these calls, which run up to 50 seconds in length. Prior 
to testing, these were broken at pauses into shorter seg- 
ments using an automatic "acoustic chopper". This re- 
sulted in 102 English segments and 104 Spanish seg- 
ments, each less than about 10 seconds in length. 

For our first foray into language discrimination on tele- 
phone speech, we used the same SWITCHBOARD speech 
recognition system used in our topic and speaker identifi- 
cation work. This recognizer was trained - and for topic 
and speaker identification, tested - on telephone conver- 
sations from the SWITCHBOARD corpus [9], collected by 
TI and now available through the Linguistic Data Con- 
sortium. Details of the recognizer are given in [3] and 
[4]; it is similar in structure to our Wall Street Journal 
recognizer, but was trained on only about 9 hours of 
conversational telephone speech. The recognition per- 
formance even on SWITCHBOARD data is very weak, al- 
though it is still capable of extracting sufficient infor- 
mation to achieve good topic and speaker identification 
performance. When used for language identification on 
OGI utterances the results were disappointing: it was 
unable to perform at anything better than chance levels, 
even aided by the acoustic normalization scoring. 

Dragon Systems is currently engaged in an effort to 
collect telephone data in a number of languages using 
an "evoked monologue" format similar to that used for 
the OGI corpus. Our first collection efforts focussed on 
Spanish data collection and, using about 3 hours of our 
own Spanish data and an additional 15 minutes of OGI 
Spanish training material, we built a rudimentary recog- 
nition system for Spanish telephone speech. It has a 5K 
vocabulary and a digram language model trained from 
30 million words of Spanish newswire data. 

This new Spanish recognizer achieved a 72% probabil- 
ity of detection at the equal error point on the OGI test 
data when using the simple (unnormalized) recognition 
scores. In this case, unlike for the Wall Street Journal 

and SWITCHBOARD experiments, there was no advantage 
to using acoustic normalization techniques. Instead, us- 
ing the maximal acoustic score for normalization actually 
degraded performance: probability of detection dropped 
to only 66% at the equal error point. Interestingly, for 
this system, the maximal acoustic score alone did as well 
as the regular recognition score: 74% probability of de- 
tection at the equal error point. 

We conjectured that this behavior might be due at least 
in part to the fact that the Spanish recognizer, unlike 
the Wall Street Journal and SWITCHBOARD recognizers, 
did not employ our usual speaker-independent IMELDA 
transformation. Recall that this transform is designed 
to emphasize differences between phoneme classes while 
minimizing differences within each class and so may well 
be suppressing language-informative phonetic distinc- 
tions. Acoustic normalization may help to overcome this 
deficiency, but may be unnecessary - or even counterpro- 
ductive - with non-IMELDA models. To test this hypoth- 
esis, we re-ran the WSJ language identification test, but 
this time with models trained without the IMELDA trans- 
form. The results are reported in the second line of Table 
1. Without IMELDA, the recognition itself was some- 
what less accurate, but the language identification per- 
formance using the recognizer scores was essentially un- 
changed. However, as expected, the performance of the 
maximal acoustic score alone improved without IMELDA, 
even though that performance remained well below that 
of the full recognizer, and there was a corresponding drop 
in the normalized score performance. 

4. DISCUSSION A N D  F U T U R E  
WORK 

As the initial Wall Street Journal trials indicate, large 
vocabulary continuous speech recognition is clearly a 
successful strategy for language discrimination on high- 
quality microphone speech. Unlike some other trials of 
language identification on read speech, the WSJ test 
was designed to control for such confounding factors as 
speaker and channel differences. The chief drawbacks of 
the test were its small size and the possible bias intro- 
duced by a recognizer so tuned to the Wall Street Journal 
grammar (despite our best efforts to choose Spanish data 
in a matched domain), but despite these objections the 
evidence for an LVCSR approach to language identifica- 
tion is very strong. 

The performance in the much harder domain of spon- 
taneous telephone speech is more difficult to interpret. 
The preliminary testing described above differed in so 
many respects from the read speech experiments that it 
is hard to tease apart the effects without further exper- 
imentation. We look forward to exploring the roles of 
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several components, for example: 

the use of IMELDA transformations for the speech 
models - -  As suggested by the experiments above, 
the use of a speaker-independent IMELDA transfor- 
mation, while unquestionably improving the recog- 
nition performance, may be removing important 
clues about language differences. To take advan- 
tage of the recognition boost without sacrificing 
language~rich information, the best strategy may be 
to perform an initial recognition pass using IMELDA 
models to generate a transcription, but to score 
the transcript using non-IMELDA models - a two- 
pass strategy similar to that used in our speaker 
identification work. Indeed, we may want to use a 
"language sensitive" IMELDA transformation - i.e. 
one which chooses directions in acoustic parameter 
space most useful in distinguishing languages rather 
than phonemes - for the scoring pass, in much the 
same way that we employed a "speaker sensitive" 
IMELDA in our work on speaker classification. 

• acoustic normalization of recognition scores - -  In 
the case of one-recognizer tests, it seems important 
to have some way of controlling for such sources 
of variation as speaker differences, which should 
play no role in language discrimination. The acous- 
tic normalization described above is a simple at- 
tempt to achieve this. However, like the speaker- 
independent IMELDA, it may also be removing im- 
portant information about which regions of acoustic 
space different languages inhabit. 

• recognition quality - -  It is our experience from our 
topic and speaker work that small improvements in 
recognition performance can yield enormous gains 
in classification tasks. However, in order to take 
advantage of the contextual information available 
in large vocabulary CSR, the recognition must ex- 
ceed a certain minimal level of performance. We be- 
lieve that none of our telephone speech recognition 
systems yet achieve the recognition levels needed 
to demonstrate the advantage of large vocabulary 
CSR as a language classification engine, but that 
this minimal level is well within reach. 

We are now focussing attention on the task of improv- 
ing our telephone speech recognizers. The Spanish rec- 
oguizer was constructed in under a week's time when 
the Spanish telephone data became available and could 
still profit from such simple measures as further train- 
ing iterations. We also hope to introduce into our tele- 
phone recognition systems such improved features as 
phonetically-tied mixture modelling, now used routinely 

in our microphone speech recognizers. The task of recog- 
nizing natural speech appears to be much more difficult 
than recognizing read speech and may require new tech- 
niques to address the problems of speaking rate, word 
contraction or fragmentation, and non-speech events. 

Dragon's telephone data collection effort is also contin- 
uing. We hope to have at least five hours of recorded 
telephone speech in each of seven languages by the end 
of 1994 with further collections scheduled for next year. 
This will allow us to create parallel recognition systems 
in a number of languages and finally run a two- (or n-) 
recognizer test of language identification. In particular, 
we will be collecting English telephone data and look 
forward to building a new English telephone speech rec- 
ognizer more directly analogous to our current Spanish 
system. It should be interesting to see how this new En- 
glish recognizer and the SWITCHBOARD recognizer per- 
form on each other's data. 

We believe that these improvements should allow us to 
achieve the strong language identification performance 
we anticipate, based on our earlier work on topic and 
speaker identification. 
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