
TECHNIQUES TO ACHIEVE AN ACCURATE REAL-TIME LARGE-
VOCABULARY SPEECH RECOGNITION SYSTEM

Hy Murveit, Peter Monaco, Vassilios Digalakis, John Butzberger

SRI International
Speech Technology and Research Laboratory

333 Ravenswood Avenue
Menlo Park, Califoraia 94025-3493

ABSTRACT

In addressing the problem of achieving high-accuracy real-time
speech recognition systems, we focus on recognizing speech from
ARPA's 20,000-word Wall Street Journal (WSJ) task, using
current UNIX workstations. We have found that our standard
approach--using a narrow beam width in a Viterbi search for
simple discrete-density hidden Markov models (HMMs)--works
in real time with only very low accuracy. Our most accurate
algorithms recognize speech many times slower than real time.
Our (yet unattained) goal is to recognize speech in real time at or
near full accuracy.

We describe the speed/accuracy trade-offs associated with several
techniques used in a one-pass speech recognition framework:

• Trade-offs associated with reducing the acoustic modeling
resolution of the HMMs (e.g., output-distribution type,
number of parameters, cross-word modeling)

• Trade-offs associated with using lexicon tree,s, and
techniques for implementing full and partial bigram
grammars with those trees

• Computation of Gaussian probabilities are the most time-
consuming aspect of our highest accuracy system, and
techniques allowing us to reduce the number of Gaussian
probabilities computed with little or no impact on speech
recognition accuracy.

Our results show that tree-based modeling techniques used with
appropriate acoustic modeling approaches achieve real-time
performance on current UNIX workstations at about a 30% error
rate for the WSJ task. The results also show that we can
dramatically reduce the computational complexity of our more
accurate but slower modeling alternatives so that they are near the
speed necessary for real-time performance in a multipass search.
Our near-future goal is to combine these two technologies so that
real-time, high-accuracy large-vocabulary speech recognition can
be achieved.

(WSJ) speech corpus. All of the speed and performance data
given in this paper are results of recognizing 169 sentences from
the four male speakers that comprise ARPA's November 1992
20,000-word vocabulary evaluation set. Our best performance on
these data is 8.9% (10.3% using bigram language models). Our
standard implementation for this system would run approximately
100 times slower than real time. 1 Both these systems use beam-
search techniques for finding the highest-scoring recognition
hypothesis.

Our most accurate systems are those that use HMMs with genonic
mixtures as observation distributions [3]. Genonic mixtures
sample the continuum between fully continuous and fled-mixture
HMMs at an arbitrary point and therefore can achieve an
optimum recognition performance given the available training
data and computational resources. In brief, genonic systems are
similar to fully continuous Gaussian-mixture HMMs, except that
instead of each state having its own set of Gaussian densities,
states are clustered into genones that share these Gaussian
codebooks. Each state, however, can have its own set of mixture
weights used with the Gaussian codebook to form its own unique
observation distribution. All the genonie systems discussed in this
paper use a single 39-dimensional observation composed of the
speech cepstrum and its first and second derivatives, and the
speech energy and its first and second derivatives. All Gaussians
have diagonal covariance matrices.

2. MODELING TRADE-OFFS

The speed/accuracy trade-off of our speech recognition systems
can be adjusted in several ways. The standard approaches are to
adjust the beam width of the Viterbi search and to change the

1. INTRODUCTION

Our techniques for achieving real-time, high-accuracy large-
vocabulary continuous speech recognition systems focus on the
task of recognizing speech from ARPA's Wall Street Journal

i. We define real-time systems as those that process
1 second of speech per second.

393

output-distribution modeling technique. Table 1 shows, for 3. LEXICON TREES

System Type
Cross-Word

Modeling

Word
Error
(%)

Lattice
Search
Speed

Genone yes 11.6 50.4
Genone no 13.4 19.8

PhoneticaUy Tied yes 13.9 43.9
/~Sxtures

PhoneticaUy Tied no 16.6 6.8
Mixtures

VQ no 19.2 ~1

Table 1: Effect of model type on speed and accuracy

instance, that eliminating cross-word modeling can significantly
improve the speed of our recognition systems at about a 20% cost
in word error. In this table, lattice speed refers to recognition
accuracy when decoding from precomputed word lattices [8]. That
is, this is only performing a subset of the search. Actual full
grammar recognition time could be from a factor of 3 to an order
of magnitude higher. However, it is useful to compare relative
lattice decoding speeds from the various techniques.

A technique frequently used at SRI to achieve relatively fast
speech recognition demonstrations is to downgrade our acoustic
modeling by implementing a discrete density (VQ) HMM system
without cross-word acoustic modeling. This system is then
searched using a Viterbi search with a small beam width. Table 2
shows the fuU grammar speed accuracy trade-off when modifying
the beam width if a Silicon Graphics Incorporated 2 (SGI) UNIX
workstation with a 150-MHz MIPS R4400 CPU 3 is used to

Beam
Width

600

700

800

Table 2:

Word
Error
(%)

29.5

21.5

19.2

Hypotheses
per Frame

981

3089

7764

Full
Search
Speed

3.2

8,3

16.0

Speed/accuracy trade-off for a beam search

perform the computation.

We have found that this technique gives an unsatisfactory speed/
accuracy trade-off for this task and we have investigated other
techniques as described below.

2. All product names mentioned in this paper are the
trademark of their respective holders.
a. This workstation scores 85 and 93 for the SPECint92
and SPECfp92 benchmarks. For our tests it is roughly
50% faster than an SGI R4000 Indigo, and 50% faster
than a SPARC 10/51. It should be between 1/2 and 2/3
the speed of an HP735. SGI R4400 systems cost about
$12,000.

We explored the use of lexicon trees as a technique for speeding
up the decoding times for all modeling techniques. Lexicon trees
represent the phonetics of the recognition vocabulary as a tree
instead of as a list of pronunciations (lists of phones). With a tree
representation, words starting with the same phonetic units share
the computation of phonetic models. This technique has been used
by others, including the IBM [10], Phillips [7], and CMU groups,
and it is also currently used at LIMSI. Because of the large amount
of sharing, trees can drastically reduce the amount of computation
required by a speech recognition system. However, lexicon trees
have several possible drawbacks:

• Phonetic trees are not able to use triphone modeling in all
positions since the right phonetic context of a node in a tree
can be ambiguous.

• One cannot implement an admissible Viterbi search for a
single lexicon tree when using a bigram language model,
because the word being decoded (w2 in the bigram
equation P(w2/wl)) may not be known until a leaf in the
tree is reached--long after certain Viterbi decisions are
typically made.

The first concern can be addressed by replicating nodes in the free
to disambiguate triphone contexts. However, even this may not be
necessary because the large majority of right contexts in the tree
are unambiguous (that is, most nodes have only one child). This is
shown in Table 3, where the concentrations of triphone and
biphone models are compared for tree- and linear-lexicon
schemes.

Lexicon Tfiphone Biphone
Models Models

Type (%) (%)

Tree 73 27

Linear 85 15

Table 3: Model allocation for the SRI WSJ system with
and without lexicon trees

The second concern, the ability to model bigram language models
using an admissible search strategy, is a problem. As shown in
Table 4, moving from a bigram to a unigrarn language model more
than doubles our error rate. Ney [7] has proposed a scheme where
lexicon trees are replicated for each bigram context. It is possible
that this scheme would generalize to our application as well. For
the three recognition systems in Table 2, on average 7, 13, and 26
different words end each frame. This is the minimum average
number of copies of the lexicon tree that the system would need to
maintain.

394

We have decided to pursue a different approach, which is shown
in the figure below. We refer to this technique as approximate
bigram trees.

Q
_ w _ t

/ [Transitions [l [
lexicon I ~ / Bigram I @

. . . . i--,v-/Section/.

I

Figure 1: Approximate bigram trees

In an approximate bigram tree, the aim is to model the salient
portion of the backed-off bigrarn language model [11] in use. In an
approximate bigram tree, a standard lexicon tree (incorporating
unigram word probabilities) is combined with a bigram section
that maintains a linear (non-tree) representation of the vocabulary.
Bigram and backoff language model transitions are added to the
leaves of the tree and to the word-final nodes of the bigram
section. 4 When the entire set of bigram is represented, then this
network implements a full backed-off bigram language model
with an efficient tree-based backoff section. In fact, for VQHMM
systems, this scheme halves our typical decoding time for little or
no cost in accuracy. Typically, however, we need further reduction
in the computational requirement. To achieve this we represent
only a subset of the group of bigram transitions (and adjust the
backoff probabilities appropriately). This degrades the accuracy of
our original bigram language model, but reduces its computational
requirements. The choice of which bigrarns to represent is the key
design decision for approximate bigram trees. We have
experimented with four techniques for choosing bigrarn subsets to
see which make the best speed/accuracy trade-offs:
Count x means only use bigrarns where P(wl) * P(w2/wl) > 10 x.
Prob x means only use bigrarns where P(w2/wl) > 10 x.
I m p r o v e X means only use bigrams where P (w 2 / w l) >
Backoff(wl) * P(w2) 110 x.

Top x means only use bigrarns P(w2/wl) where w2 is one of the
most frequent x words.

Table 4 shows speed/accuracy trade-offs for approximate bigrarn

Number of Word Full Search
Tree Type Bigrams Used Error Speed

(thousands) (%) (x RT)

Unigram 0 42.3 0.6
tree

(non-tree) 3500 21.5 8.5
Bigram

count, -6 93 30.4 1.5

count, -5 10 35.8 0.9

count, -4 ,6 39.2 0.7

prob, -3 1250 28.2 0.9

prob, -2.5 671 29.2 0.8

prob, -2 219 31.5 0.7

prob,-1 20 36.6 0 . 7

improve, 2 908 29.7 1.6

improve, 3 191 37.1 0.8

top 10 113 39.5 0.7

top 50 320 36.0 0.7

top 100 35.2 0.7

top 1000 1500 31.4 1.1

top 5000 2624 25.3 1.9

top 20000 3500 2t .0 ~3

Table 4: Performance of "approximate bigram" trees

trees.

The top two lines of the table show that the bigram language
model improves perforrnanee from 42.3% word error to 21.5% as
compared with a unigram language model. The rest of the table
shows how approximate bigram trees can trade off the
performance and speed of the bigram model. For instance, in
several techniques shown--such as prob 2&--that maintain more
than half of the benefit of bigrarns for little computational cost,
CPU usage goes from 0.6 to 0.8, when the error rate goes from
42.3% to 29.2%. The rest of the improvement, reducing the error
rate from 29.2% to 21%, increases the required computation rate
by a factor of four.

Table 4 also shows that the number of bigrams represented does
not predict the computation rate.

4. In the actual implementation, word-final nodes in the
bigrarn section are merged with their counterparts in the
tree so that the bigram transitions need be represented
only once. For simplicity, however, we show the system
with two sets of bigram probabilities.

395

The square root of the perplexity of these language models seems
to predict the recognition performance as shown in Table 5.

Perplexity Word
Fop X Perplexity Square error

Root (%)

0 1248 35.3 42.3

10 954 30.9 39.5

50 727 27.0 36.0

100 631 25.1 35.2

1000 401 20.0 31.4

~0000 237 15.4 21

TaMe 5: G r a m m a r Perplexity for top X trees

4. REDUCING GAUSSIAN
COMPUTATIONS

SRI's most accurate recognition systems, using genonie mixtures,
require the evaluation of very large numbers of Gaussian
distributions, and are therefore very slow to compute. The
baseline system referenced here uses 589 genonic mixtures
(genones), each with 48 Gaussian distributions, for a total of
28,272 39-dimensional Gaussians. On ARPA's November 1992
20,000-word Evaluation Test Set, this noncrossword, bigram
system performs at 13.43% word error. Decoding time from word
lattices is 12.2 times slower than real time on an R4400 processor.
Full grammar decoding time would be much slower. Since the
decoding time of a genonic recognition system such as this one is
dominated by Gaussian evaluation, one major thrust of our effort
to achieve real-time recognition has been to reduce the number of
Gaussians requiring evaluation each frame. We have explored
three methods of reducing Gaussian computation: Gaussian
clustering, Gaussian shortlists, and genonic approximations.

4.1. Gaussian Clustering

The number of Gaussians per genone can be reduced using
clustering. Specifically, we used an agglomerative procedure to
cluster the component densities within each genone. The criteria
that we considered were an entropy-based distance and a
generalized likelihood-based distance [6]. We found that the
entropy-based distance worked better. This criterion is the
continuous-density analog of the weighted-by-counts entropy of
the discrete HMM state distributions, often used for clustering
HMM state distributions [5], [3].

Our experiments showed that the number of Gaussians per genone
can be reduced by a factor of three by first clustering and then
performing one additional iteration of the Baum-Welch algorithm
as shown in Table 6. The table also shows that clustering followed
by additional training iterations gives better accuracy than directly
training a system with a smaller number of Gaussians (Table 6,

Baseline2). This is especially true as the number of Gaussians per
genone decreases.

System
Gaussians

per Genone
Word Erro~

(%)

Baseline1 - - 48 13.43

Baselinel+Clustering 18 14.17

above+Retraining 18 13.64

Baseline2 25 14.35

Table 6: Improved training of systems with fewer
Gaussians by clustering from a larger number of
Gaussians

4.2. Gaussian Shortlists

We have developed a method for eliminating large numbers of
Gaussians before they are computed. Our method is to build a
"Gaussian shorflist" [2], [4], which uses vector quantization to
subdivide the acoustic space into regions, and lists the Gaussians
worth evaluating within each region. Applied to unclustered
genonic recognition systems, this technique has allowed us to
reduce by more than a factor of five the number of Gaussians
considered each frame. Here we apply Gaussian shortlists to the
clustered system described in Section 4.1. Several methods for
generating improved, smaller Gaussian shorflists are discussed and
applied to the same system.

Table 7 shows the word error rates for shortlists generated by a
variety of methods. Through a series of methods, we have reduced
the average number of Gaussian distributions evaluated for each
genone from 18 to 2.48 without compromising accuracy. The
various shortlists tested were generated in the following ways:

• None: No shortlist was used. This is the baseline case from
the clustered system described above. All 18 Gaussians are
evaluated whenever a genone is active.

• 12D-256: Our original shortlist method was used. This
method uses a cepstral vector quantization codebook (12-
dimensions, 256 codewords) to partition the acoustic
space. With unclustered systems, this method generally
achieves a 5:1 reduction in Gaussian computation. In this
clustered system, only a 3:1 reduction was achieved, most
likely because the savings from clustering and Gaussian
shortlists overlap.

• 39D-256: The cepstral codebook that partitions the
acoustic space in the previous method ignores 27 of the 39
feature dimensions. By using a 39-dimensional, 256-
codeword VQ eodebook, we created better-differentiated
acoustic regions, and reduced the average shortlist length
to 4.93.

• 39D-4096: We further decreased the number of Gaussians
per region by shrinking the size of the regions. Here we
used a single-feature VQ codebook with 4096 eodewords.

396

For such a large codebook, vector quantizafion is
accelerated using a binary tree VQ fastmateh.

39D-4096-minl: When generating a Gaussian shortlist,
certain region/genone pairs with low probabilities are
assigned very few or even no Ganssians densities. When
we were using 48 Gaussians/genone, we found it important
to ensure that each list contains a minimum of three
Gaussian densities. With our current clustered systems we
found that we can achieve similar recognition accuracy by
ensuring only one Gaussian per list. As shown in Table 7,
this technique results in lists with an average of 2.48
Gaussians per genone, without hurting accuracy.

Gaussians
Shortlist Word Error

Evaluated (%) Shortlist Length per Frame

none 18 5459 13.64

12D-256 6.08 1964 13.53

39D-256 4.93 1449 13.46

39D-4096 3.68 1088 13.64

39D-4096-minl 2.48 732 13.50

Table 7: W o r d e r ro r ra tes and Gaussians evaluated, for
a var ie ty of Gauss ian shortlists

Thus, with the methods in Sections 4.1 and 4.2, we have used
clustering, retraining, and new Gaussian shortlist techniques to
reduce computation from 48 to an average of 2.48 Gaussians per
genone without affecting accuracy.

4.3. Genonic Approximations

We have successfuUy employed one other method for reducing
Gaussian computation. For certain pairs of genones and acoustic
regions, even the evaluation of one or two Gaussian distributions
may be excessive. These are cases where the output probability is
either very low or very uniform across an acoustic region. Here a
uniform probability across the region (i.e., requiring no Gaussian
evaluations) may be sufficient to model the output probability.

To provide these regional flat probabilities, we implemented a
discrete-density HMM, but one whose output probabilities were a
region-by-region approximation of the probabilities of our
genonic system. Since the two systems' outputs are calibrated, we
can use them interchangeably, using a variety of criteria to decide
which system's output to use for any given frame, state, acoustic
region, or hypothesis. This technique, using variable resolution
output models for HMMs is similar to what has been suggested by
Alleva et al. [1].

We train this genonic approximation by averaging, for each
acoustic region, the output of each genone across a set of
observations. The resulting system can be used either by itself or
in combination with the continuous system from which it was
trained.

Table 8 shows the performance of the discrete approximate genone
systems as a function of the number of regions used.

Genonic
System

Continuous

Number of
Acoustic
Regions

Word Error
(%)

N/A 13.64

Discrete 256 31.72

Discrete 1024 23.62

Discrete 4096 20.32

16384 Discrete 18.40

Table 8: Accuracy of genonic approximation systems

Even with 16384 acoustic regions, the discrete genonic
approximation has an error rate of 18.40%, compared with the
baseline continuous system at 13.64%. However, when these
discrete systems are used selectively in combination with a
continuous genonie system, the results are more encouraging. Our
most successful merger combines the 4096-region discrete
approximation system (20.32% error) with the 39D-4096-minl
genone system from Table 7 (13.50% error). In combining the two,
instead of ensuring that a single Gaussian density was available for
all shortlists, the genonic approximation was used for cases where
no densities existed. In this way, we were able to eliminate another
25% of the Gaussian computations, reducing our lattice-based
computation burden to 564 Gaussians per frame, with a word error
of 13.36%.

In summary, we started with a speech recognition system with
28,272 Gaussian distributions that computed 14,538 Gaussian
distributions per frame and achieved a 13.43% word error rate
running 12.2 times slower than real time on word lattices. Using
the techniques described in Section 4, we have reduced the
system's computational requirements to 564 Gaussians per frame,
resulting in a system with word error of 13.36%, running at 2.0
times real time on our word lattices.

5. M U L T I P A S S A P P R O A C H E S

The techniques for improving the speed of single-pass speech
recognition systems can be combined to achieve other speed/
accuracy trade-offs (e.g., trees using genone systems with reduced
Gaussian computation rates). Furthermore, with multipass
approaches [8,9] many of these techniques can be used
independently as the different passes of the speech recognition
system. For instance, a discrete density tree search may be used in
a lattice building or a forward pass, and a Gaussian system may be
used in the lattice and/or backward passes.

We have performed preliminary evaluations of several of the tree-
based systems presented in Section 3 to evaluate their performance
as forward passes for a forward-backward search [9]. Preliminary
results show that forward tree-based systems with 30% word error
would add at most 3% to the word error rate of a fuU accuracy
backward pass (i.e., at most increase the error rate from

397

approximately 10% to approximately 13%). More detail on this
work wiU be presented at the HLT conference and will be included
in the final version of this paper.

6. C O N C L U S I O N S

Tree-based techniques, combined with appropriate modeling
alternatives, can achieve real-time performance at about 30% error
rate for ARPA's 20,000-word Wall Street Journal task. We have
shown techniques that reduce the computational complexity of
more accurate but slower modeling alternatives so that they are
near the speed necessary for real-time performance in a multipass
search. Our near-future goal is to combine these two technologies
so that real-time, high-accuracy large-vocabulary speech
recognition can be achieved.

A C K N O W L E D G M E N T

We gratefully acknowledge support for this work from ARPA
through Office of Naval Research Contract N00014-92-C-0154.
The Government has certain fights in this material. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the Government funding agencies.

Continuous Speech Recognition," Proc. ICASSP, pp. I-9 - 1-
12, March 1992.

. H. Murveit, J. Butzberger, V. Digalakis and M. Weintraub,

"Large Vocabulary Dictation using SRI's DECIPHER TM

Speech Recognition System: Progressive Search
Techniques," Proc. ICASSP, pp. H-319 - II-322, April 1993.

. L. Nguyen, R. Schwartz, E Kubala and P. Placeway,
"Search Algorithms for Software-Only Real-'I~me
Recognition with Very Large Vocabularies," Proc. ARPA
Human Language Technology Workshop, March 1993.

10. L. Bahl, S. De Gennaro, P. Gopalakrishnan and R. Mercer,
"A Fast Approximate Acoustic Match for Large Vocabulary
Speech Recognition," Proc. Eurospeech 1989.

11. S. Katz, "Estimation of Probabilities from Sparse Data for
the Language Model Component of a Speech Recognizer,"
ASSP-35 pp. 400-401, March 1987.

.

.

4 .

.

.

7.

R E F E R E N C E S

E Alleva, X. D. Huang and M.-Y. Hwang, "An Improved
Search Algorithm Using Incremental Knowledge for
Continuous Speech Recognition," Proc. 1CASSP, pp. II-307
- H-310, April 1993.

E. Bocchieri, "Vector Quantization for the Efficient
Computation of Continuous Density Likelihoods," Proc.
ICASSP, pp. H-692 - H-695, April 1993.

V. Digalakis and H. Murveit, "Genones: Optimizing the
Degree of Tying in a Large Vocabulary HMM-based
Speech Recognizer," to appear in Proc. ICASSP, 1994.

V. Digalakis, E Monaco and H. Murveit, "Acoustic
Calibration and Search in SRI's Large Vocabulary HMM-
based Speech Recognition System," Proc. IEEE ASR
Workshop, Snowbird, Dec. 1993.

M.-Y. Hwang and X. D. Huang, "Subphonefic Modeling
with Markov States - Senone," Proc. ICASSP, pp. 1-33-36,
March 1992.

A. Kannan, M. Ostendorf and J. R. Rohlicek, "Maximum
Likelihood Clustering of Gaussians for Speech
Recognition," in IEEE Transactions Speech and Audio
Processing, to appear July 1994.

H. Ney, R. Haeb-Umbach, B. Tran and M. Oerder,
"Improvements in Beam Search for 10,000-word

398

