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ABSTRACT 

In addressing the problem of achieving high-accuracy real-time 
speech recognition systems, we focus on recognizing speech from 
ARPA's 20,000-word Wall Street Journal (WSJ) task, using 
current UNIX workstations. We have found that our standard 
approach--using a narrow beam width in a Viterbi search for 
simple discrete-density hidden Markov models (HMMs)--works 
in real time with only very low accuracy. Our most accurate 
algorithms recognize speech many times slower than real time. 
Our (yet unattained) goal is to recognize speech in real time at or 
near full accuracy. 

We describe the speed/accuracy trade-offs associated with several 
techniques used in a one-pass speech recognition framework: 

• Trade-offs associated with reducing the acoustic modeling 
resolution of the HMMs (e.g., output-distribution type, 
number of parameters, cross-word modeling) 

• Trade-offs associated with using lexicon tree,s, and 
techniques for implementing full and partial bigram 
grammars with those trees 

• Computation of Gaussian probabilities are the most time- 
consuming aspect of our highest accuracy system, and 
techniques allowing us to reduce the number of Gaussian 
probabilities computed with little or no impact on speech 
recognition accuracy. 

Our results show that tree-based modeling techniques used with 
appropriate acoustic modeling approaches achieve real-time 
performance on current UNIX workstations at about a 30% error 
rate for the WSJ task. The results also show that we can 
dramatically reduce the computational complexity of our more 
accurate but slower modeling alternatives so that they are near the 
speed necessary for real-time performance in a multipass search. 
Our near-future goal is to combine these two technologies so that 
real-time, high-accuracy large-vocabulary speech recognition can 
be achieved. 

(WSJ) speech corpus. All of the speed and performance data 
given in this paper are results of recognizing 169 sentences from 
the four male speakers that comprise ARPA's November 1992 
20,000-word vocabulary evaluation set. Our best performance on 
these data is 8.9% (10.3% using bigram language models). Our 
standard implementation for this system would run approximately 
100 times slower than real time. 1 Both these systems use beam- 
search techniques for finding the highest-scoring recognition 
hypothesis. 

Our most accurate systems are those that use HMMs with genonic 
mixtures as observation distributions [3]. Genonic mixtures 
sample the continuum between fully continuous and fled-mixture 
HMMs at an arbitrary point and therefore can achieve an 
optimum recognition performance given the available training 
data and computational resources. In brief, genonic systems are 
similar to fully continuous Gaussian-mixture HMMs, except that 
instead of each state having its own set of Gaussian densities, 
states are clustered into genones that share these Gaussian 
codebooks. Each state, however, can have its own set of mixture 
weights used with the Gaussian codebook to form its own unique 
observation distribution. All the genonie systems discussed in this 
paper use a single 39-dimensional observation composed of the 
speech cepstrum and its first and second derivatives, and the 
speech energy and its first and second derivatives. All Gaussians 
have diagonal covariance matrices. 

2. MODELING TRADE-OFFS 

The speed/accuracy trade-off of our speech recognition systems 
can be adjusted in several ways. The standard approaches are to 
adjust the beam width of the Viterbi search and to change the 

1. INTRODUCTION 

Our techniques for achieving real-time, high-accuracy large- 
vocabulary continuous speech recognition systems focus on the 
task of recognizing speech from ARPA's Wall Street Journal 

i. We define real-time systems as those that process 
1 second of speech per second. 
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output-distribution modeling technique. Table 1 shows, for 3. LEXICON TREES 

System Type 
Cross-Word 

Modeling 

Word 
Error 
(%) 

Lattice 
Search 
Speed 

Genone yes 11.6 50.4 
Genone no 13.4 19.8 

PhoneticaUy Tied yes 13.9 43.9 
/~Sxtures 

PhoneticaUy Tied no 16.6 6.8 
Mixtures 

VQ no 19.2 ~1 

Table 1: Effect of model type on speed and accuracy 

instance, that eliminating cross-word modeling can significantly 
improve the speed of our recognition systems at about a 20% cost 
in word error. In this table, lattice speed refers to recognition 
accuracy when decoding from precomputed word lattices [8]. That 
is, this is only performing a subset of the search. Actual full 
grammar recognition time could be from a factor of 3 to an order 
of magnitude higher. However, it is useful to compare relative 
lattice decoding speeds from the various techniques. 

A technique frequently used at SRI to achieve relatively fast 
speech recognition demonstrations is to downgrade our acoustic 
modeling by implementing a discrete density (VQ) HMM system 
without cross-word acoustic modeling. This system is then 
searched using a Viterbi search with a small beam width. Table 2 
shows the fuU grammar speed accuracy trade-off when modifying 
the beam width if a Silicon Graphics Incorporated 2 (SGI) UNIX 
workstation with a 150-MHz MIPS R4400 CPU 3 is used to 

Beam 
Width 

600 

700 

800 

Table 2: 

Word 
Error 
(%) 

29.5 

21.5 

19.2 

Hypotheses 
per Frame 

981 

3089 

7764 

Full 
Search 
Speed 

3.2 

8,3 

16.0 

Speed/accuracy trade-off for a beam search 

perform the computation. 

We have found that this technique gives an unsatisfactory speed/ 
accuracy trade-off for this task and we have investigated other 
techniques as described below. 

2. All product names mentioned in this paper are the 
trademark of their respective holders. 
a. This workstation scores 85 and 93 for the SPECint92 
and SPECfp92 benchmarks. For our tests it is roughly 
50% faster than an SGI R4000 Indigo, and 50% faster 
than a SPARC 10/51. It should be between 1/2 and 2/3 
the speed of an HP735. SGI R4400 systems cost about 
$12,000. 

We explored the use of lexicon trees as a technique for speeding 
up the decoding times for all modeling techniques. Lexicon trees 
represent the phonetics of the recognition vocabulary as a tree 
instead of as a list of pronunciations (lists of phones). With a tree 
representation, words starting with the same phonetic units share 
the computation of phonetic models. This technique has been used 
by others, including the IBM [10], Phillips [7], and CMU groups, 
and it is also currently used at LIMSI. Because of the large amount 
of sharing, trees can drastically reduce the amount of computation 
required by a speech recognition system. However, lexicon trees 
have several possible drawbacks: 

• Phonetic trees are not able to use triphone modeling in all 
positions since the right phonetic context of a node in a tree 
can be ambiguous. 

• One cannot implement an admissible Viterbi search for a 
single lexicon tree when using a bigram language model, 
because the word being decoded (w2 in the bigram 
equation P(w2/wl)) may not be known until a leaf in the 
tree is reached--long after certain Viterbi decisions are 
typically made. 

The first concern can be addressed by replicating nodes in the free 
to disambiguate triphone contexts. However, even this may not be 
necessary because the large majority of right contexts in the tree 
are unambiguous (that is, most nodes have only one child). This is 
shown in Table 3, where the concentrations of triphone and 
biphone models are compared for tree- and linear-lexicon 
schemes. 

Lexicon Tfiphone Biphone 
Models Models 

Type (%) (%) 

Tree 73 27 

Linear 85 15 

Table 3: Model allocation for the SRI WSJ system with 
and without lexicon trees 

The second concern, the ability to model bigram language models 
using an admissible search strategy, is a problem. As shown in 
Table 4, moving from a bigram to a unigrarn language model more 
than doubles our error rate. Ney [7] has proposed a scheme where 
lexicon trees are replicated for each bigram context. It is possible 
that this scheme would generalize to our application as well. For 
the three recognition systems in Table 2, on average 7, 13, and 26 
different words end each frame. This is the minimum average 
number of copies of the lexicon tree that the system would need to 
maintain. 
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We have decided to pursue a different approach, which is shown 
in the figure below. We refer to this technique as approximate 
bigram trees. 

Q 
_ w _  t 

/ [ Transitions [ l [ 
lexicon I ~ / Bigram I @  

. . . .  i--,v-/Section/. 

I 

Figure 1: Approximate bigram trees 

In an approximate bigram tree, the aim is to model the salient 
portion of the backed-off bigrarn language model [11] in use. In an 
approximate bigram tree, a standard lexicon tree (incorporating 
unigram word probabilities) is combined with a bigram section 
that maintains a linear (non-tree) representation of the vocabulary. 
Bigram and backoff language model transitions are added to the 
leaves of the tree and to the word-final nodes of the bigram 
section. 4 When the entire set of bigram is represented, then this 
network implements a full backed-off bigram language model 
with an efficient tree-based backoff section. In fact, for VQHMM 
systems, this scheme halves our typical decoding time for little or 
no cost in accuracy. Typically, however, we need further reduction 
in the computational requirement. To achieve this we represent 
only a subset of the group of bigram transitions (and adjust the 
backoff probabilities appropriately). This degrades the accuracy of 
our original bigram language model, but reduces its computational 
requirements. The choice of which bigrarns to represent is the key 
design decision for approximate bigram trees. We have 
experimented with four techniques for choosing bigrarn subsets to 
see which make the best speed/accuracy trade-offs: 
Count x means only use bigrarns where P(wl) * P(w2/wl) > 10 x. 
Prob x means only use bigrarns where P(w2/wl) > 10 x. 
I m p r o v e  X means only use bigrams where P ( w 2 / w l )  > 
Backoff(wl ) * P(w2) 110 x. 

Top x means only use bigrarns P(w2/wl) where w2 is one of the 
most frequent x words. 

Table 4 shows speed/accuracy trade-offs for approximate bigrarn 

Number of Word Full Search 
Tree Type Bigrams Used Error Speed 

(thousands) (%) ( x RT) 

Unigram 0 42.3 0.6 
tree 

(non-tree) 3500 21.5 8.5 
Bigram 

count, -6 93 30.4 1.5 

count, -5 10 35.8 0.9 

count, -4 ,6 39.2 0.7 

prob, -3 1250 28.2 0.9 

prob, -2.5 671 29.2 0.8 

prob, -2 219 31.5 0.7 

prob,-1 20 36.6 0 . 7  

improve, 2 908 29.7 1.6 

improve, 3 191 37.1 0.8 

top 10 113 39.5 0.7 

top 50 320 36.0 0.7 

top 100 35.2 0.7 

top 1000 1500 31.4 1.1 

top 5000 2624 25.3 1.9 

top 20000 3500 2t .0 ~3 

Table 4: Performance of "approximate bigram" trees 

trees. 

The top two lines of the table show that the bigram language 
model improves perforrnanee from 42.3% word error to 21.5% as 
compared with a unigram language model. The rest of the table 
shows how approximate bigram trees can trade off the 
performance and speed of the bigram model. For instance, in 
several techniques shown--such as prob 2&--that maintain more 
than half of the benefit of bigrarns for little computational cost, 
CPU usage goes from 0.6 to 0.8, when the error rate goes from 
42.3% to 29.2%. The rest of the improvement, reducing the error 
rate from 29.2% to 21%, increases the required computation rate 
by a factor of four. 

Table 4 also shows that the number of bigrams represented does 
not predict the computation rate. 

4. In the actual implementation, word-final nodes in the 
bigrarn section are merged with their counterparts in the 
tree so that the bigram transitions need be represented 
only once. For simplicity, however, we show the system 
with two sets of bigram probabilities. 
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The square root of the perplexity of these language models seems 
to predict the recognition performance as shown in Table 5. 

Perplexity Word 
Fop X Perplexity Square error 

Root (%) 

0 1248 35.3 42.3 

10 954 30.9 39.5 

50 727 27.0 36.0 

100 631 25.1 35.2 

1000 401 20.0 31.4 

~0000 237 15.4 21 

TaMe 5: G r a m m a r  Perplexity for top X trees 

4. REDUCING GAUSSIAN 
COMPUTATIONS 

SRI's most accurate recognition systems, using genonie mixtures, 
require the evaluation of very large numbers of Gaussian 
distributions, and are therefore very slow to compute. The 
baseline system referenced here uses 589 genonic mixtures 
(genones), each with 48 Gaussian distributions, for a total of 
28,272 39-dimensional Gaussians. On ARPA's November 1992 
20,000-word Evaluation Test Set, this noncrossword, bigram 
system performs at 13.43% word error. Decoding time from word 
lattices is 12.2 times slower than real time on an R4400 processor. 
Full grammar decoding time would be much slower. Since the 
decoding time of a genonic recognition system such as this one is 
dominated by Gaussian evaluation, one major thrust of our effort 
to achieve real-time recognition has been to reduce the number of 
Gaussians requiring evaluation each frame. We have explored 
three methods of reducing Gaussian computation: Gaussian 
clustering, Gaussian shortlists, and genonic approximations. 

4.1. Gaussian Clustering 

The number of Gaussians per genone can be reduced using 
clustering. Specifically, we used an agglomerative procedure to 
cluster the component densities within each genone. The criteria 
that we considered were an entropy-based distance and a 
generalized likelihood-based distance [6]. We found that the 
entropy-based distance worked better. This criterion is the 
continuous-density analog of the weighted-by-counts entropy of 
the discrete HMM state distributions, often used for clustering 
HMM state distributions [5], [3]. 

Our experiments showed that the number of Gaussians per genone 
can be reduced by a factor of three by first clustering and then 
performing one additional iteration of the Baum-Welch algorithm 
as shown in Table 6. The table also shows that clustering followed 
by additional training iterations gives better accuracy than directly 
training a system with a smaller number of Gaussians (Table 6, 

Baseline2). This is especially true as the number of Gaussians per 
genone decreases. 

System 
Gaussians 

per Genone 
Word Erro~ 

(%) 

Baseline1 - - 48 13.43 

Baselinel+Clustering 18 14.17 

above+Retraining 18 13.64 

Baseline2 25 14.35 

Table 6: Improved training of systems with fewer 
Gaussians by clustering from a larger number of 
Gaussians 

4.2. Gaussian Shortlists 

We have developed a method for eliminating large numbers of 
Gaussians before they are computed. Our method is to build a 
"Gaussian shorflist" [2], [4], which uses vector quantization to 
subdivide the acoustic space into regions, and lists the Gaussians 
worth evaluating within each region. Applied to unclustered 
genonic recognition systems, this technique has allowed us to 
reduce by more than a factor of five the number of Gaussians 
considered each frame. Here we apply Gaussian shortlists to the 
clustered system described in Section 4.1. Several methods for 
generating improved, smaller Gaussian shorflists are discussed and 
applied to the same system. 

Table 7 shows the word error rates for shortlists generated by a 
variety of methods. Through a series of methods, we have reduced 
the average number of Gaussian distributions evaluated for each 
genone from 18 to 2.48 without compromising accuracy. The 
various shortlists tested were generated in the following ways: 

• None: No shortlist was used. This is the baseline case from 
the clustered system described above. All 18 Gaussians are 
evaluated whenever a genone is active. 

• 12D-256: Our original shortlist method was used. This 
method uses a cepstral vector quantization codebook (12- 
dimensions, 256 codewords) to partition the acoustic 
space. With unclustered systems, this method generally 
achieves a 5:1 reduction in Gaussian computation. In this 
clustered system, only a 3:1 reduction was achieved, most 
likely because the savings from clustering and Gaussian 
shortlists overlap. 

• 39D-256: The cepstral codebook that partitions the 
acoustic space in the previous method ignores 27 of the 39 
feature dimensions. By using a 39-dimensional, 256- 
codeword VQ eodebook, we created better-differentiated 
acoustic regions, and reduced the average shortlist length 
to 4.93. 

• 39D-4096: We further decreased the number of Gaussians 
per region by shrinking the size of the regions. Here we 
used a single-feature VQ codebook with 4096 eodewords. 
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For such a large codebook, vector quantizafion is 
accelerated using a binary tree VQ fastmateh. 

39D-4096-minl: When generating a Gaussian shortlist, 
certain region/genone pairs with low probabilities are 
assigned very few or even no Ganssians densities. When 
we were using 48 Gaussians/genone, we found it important 
to ensure that each list contains a minimum of three 
Gaussian densities. With our current clustered systems we 
found that we can achieve similar recognition accuracy by 
ensuring only one Gaussian per list. As shown in Table 7, 
this technique results in lists with an average of 2.48 
Gaussians per genone, without hurting accuracy. 

Gaussians 
Shortlist Word Error 

Evaluated (%) Shortlist Length per Frame 

none 18 5459 13.64 

12D-256 6.08 1964 13.53 

39D-256 4.93 1449 13.46 

39D-4096 3.68 1088 13.64 

39D-4096-minl  2.48 732 13.50 

Table 7: W o r d  e r ro r  ra tes  and  Gaussians  evaluated, for  
a var ie ty  of  Gauss ian  shortlists 

Thus, with the methods in Sections 4.1 and 4.2, we have used 
clustering, retraining, and new Gaussian shortlist techniques to 
reduce computation from 48 to an average of 2.48 Gaussians per 
genone without affecting accuracy. 

4.3. Genonic Approximations 

We have successfuUy employed one other method for reducing 
Gaussian computation. For certain pairs of genones and acoustic 
regions, even the evaluation of one or two Gaussian distributions 
may be excessive. These are cases where the output probability is 
either very low or very uniform across an acoustic region. Here a 
uniform probability across the region (i.e., requiring no Gaussian 
evaluations) may be sufficient to model the output probability. 

To provide these regional flat probabilities, we implemented a 
discrete-density HMM, but one whose output probabilities were a 
region-by-region approximation of the probabilities of  our 
genonic system. Since the two systems' outputs are calibrated, we 
can use them interchangeably, using a variety of criteria to decide 
which system's output to use for any given frame, state, acoustic 
region, or hypothesis. This technique, using variable resolution 
output models for HMMs is similar to what has been suggested by 
Alleva et al. [1]. 

We train this genonic approximation by averaging, for each 
acoustic region, the output of each genone across a set of 
observations. The resulting system can be used either by itself or 
in combination with the continuous system from which it was 
trained. 

Table 8 shows the performance of the discrete approximate genone 
systems as a function of the number of regions used. 

Genonic 
System 

Continuous 

Number of  
Acoustic 
Regions 

Word Error 
(%) 

N/A 13.64 

Discrete 256 31.72 

Discrete 1024 23.62 

Discrete 4096 20.32 

16384 Discrete 18.40 

Table 8: Accuracy of genonic approximation systems 

Even with 16384 acoustic regions,  the discrete genonic  
approximation has an error rate of 18.40%, compared with the 
baseline continuous system at 13.64%. However, when these 
discrete systems are used selectively in combination with a 
continuous genonie system, the results are more encouraging. Our 
most successful merger combines the 4096-region discrete 
approximation system (20.32% error) with the 39D-4096-minl 
genone system from Table 7 (13.50% error). In combining the two, 
instead of ensuring that a single Gaussian density was available for 
all shortlists, the genonic approximation was used for cases where 
no densities existed. In this way, we were able to eliminate another 
25% of the Gaussian computations, reducing our lattice-based 
computation burden to 564 Gaussians per frame, with a word error 
of 13.36%. 

In summary, we started with a speech recognition system with 
28,272 Gaussian distributions that computed 14,538 Gaussian 
distributions per frame and achieved a 13.43% word error rate 
running 12.2 times slower than real time on word lattices. Using 
the techniques described in Section 4, we have reduced the 
system's computational requirements to 564 Gaussians per frame, 
resulting in a system with word error of 13.36%, running at 2.0 
times real time on our word lattices. 

5.  M U L T I P A S S  A P P R O A C H E S  

The techniques for improving the speed of single-pass speech 
recognition systems can be combined to achieve other speed/ 
accuracy trade-offs (e.g., trees using genone systems with reduced 
Gaussian computation rates). Furthermore, with multipass 
approaches [8,9] many of  these techniques can be used 
independently as the different passes of the speech recognition 
system. For instance, a discrete density tree search may be used in 
a lattice building or a forward pass, and a Gaussian system may be 
used in the lattice and/or backward passes. 

We have performed preliminary evaluations of several of the tree- 
based systems presented in Section 3 to evaluate their performance 
as forward passes for a forward-backward search [9]. Preliminary 
results show that forward tree-based systems with 30% word error 
would add at most 3% to the word error rate of a fuU accuracy 
backward pass (i.e., at most increase the error rate from 

397 



approximately 10% to approximately 13%). More detail on this 
work wiU be presented at the HLT conference and will be included 
in the final version of this paper. 

6. C O N C L U S I O N S  

Tree-based techniques, combined with appropriate modeling 
alternatives, can achieve real-time performance at about 30% error 
rate for ARPA's 20,000-word Wall Street Journal task. We have 
shown techniques that reduce the computational complexity of 
more accurate but slower modeling alternatives so that they are 
near the speed necessary for real-time performance in a multipass 
search. Our near-future goal is to combine these two technologies 
so that real-time, high-accuracy large-vocabulary speech 
recognition can be achieved. 
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