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This paper presents the Semantic Linker, the fallbaek component 
used by the the DELPHI natural language component of the BBN 
spoken language system HARC. The Semantic Linker is invoked 
when DELPHI's regular chart-based unification grammar parser is 
unable to parse an input; it attempts to come up with a semantic 
interpretation by combining the fragmentary sub-parses left over in 
the chart using a domain-independent method incorporating general 
search algorithm driven by empirically determined probabilities and 
parameter weights. It was used in the DARPA November 92 ATIS 
evaluation, where it reduced DELPHI's Weighted Error on the NL 
test by 30% (from 32% to 22%). 

1. I N T R O D U C T I O N  

An important problem for natural language interfaces, as 
well as for other NL applications such as message process- 
ing systems, is coping with input which cannot be handled 
by the system's grammar. A system which depends on its 
input being grammatical (or on lying within the coverage of 
its grammar) simply will not be robust and useful. Some sort 
of"fallback" component is therefore necessary as a comple- 
ment to regular parsing. 

This paper presents the Semantic Linker, the fallback com- 
ponent used by the the DELPHI natural language component 
of the BBN spoken language system HARC. The Semantic 
Linker is invoked when DELPHI's regular chart-based unifi- 
cation grammar parser is unable to parse an input; it attempts 
to come up with a semantic interpretation by combining the 
fragmentary sub-parses left over in the chart. It was used 
in the DARPA November 92 ATIS evaluation, where it re- 
duced DELPHI's  Weighted Error on the NL test by 30% 
(from 32% to 22%). 

The Semantic Linker represents an important departure from 
previous proposals, both our own [1] and others [2], in that 
it casts fragment combination as a general search problem, 
rather than as a problem of task model template matching (as 
in [4]) or as an extension to the existing parsing algorithm 
(as in [3]). Rather than reconstruct a parse tree, the goal 
of the search is to combine all the fragments into the most 
minimal and plausible connected graph, in which the links 
are not syntactic descendancy, but logical binary relations 
from the domain, such as "AIRLINE-OF", "ORIG-OF" etc. 

States in the search space are partial connections of the frag- 
ments: in other words, a set of links. There a two types of 
"move" to reach a new state from an existing one. One adds 
a new link between fragments, and the other "hallucinates" 
an object to bridge two fragments that could not otherwise 
be linked (corresponding roughly to a notion of ellipsis). 
A success terminal state is one in which all the fragments 
have been linked. States have features associated with their 
constituent links and a system of weights on the features 
determines a score that is used to guide the search. 

The advantages of  this formulation are its domain- 
independence, flexiblity, extensibility, and ability to make 
use of  statistical data. In particular: 

• No assumption need be made about constraining task 
models 

• The state space can be searched in any order 

• New features are straightforward to add 

• Probabilities of  relations determined from (parseable) 
corpora can be used 

• Weights on features are potentially derivable by auto- 
marie training 

In the next sections we turn to a more detailed description 
of data structures and algorithms. We first give some nece- 
sary background on semantic interpretation in the DELPHI 
system, and on the generation and interpretation of fragmen- 
tary sub-parses in it. Next, we show bow this framework is 
used to generate all possible connections between pairs of 
different fragment objects, and bow probabilities and other 
features are assigned to these connections. We then show 
how we efficiently search the space of combinations of such 
links in order to find the minimal and plausible set of con- 
nections, and bow such link combinations are turned into 
final interpretations. Finally, we give quantitative results, 
and discuss our future plans. 
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2. S E M A N T I C  I N T E R P R E T A T I O N  O F  

F R A G M E N T S  

The cenual notion in DELPHI's syntactic-semantic interface 
is the "grammatical relation". Grammatical relations include 
the familar deep-structure complement relations of subject, 
direct-object etc., as well as other various adjunct relations, 
such as PP-COMP in the rule below: 

(NP etc.) 
-> 

HEAD (NP etc.) 

PP-COMP (PP etc.) 

The special grammatical relation "HEAD" denotes the head 
of the phrase. All other grammatical relations are said to 
"bind" a constituent they label - their "argument" - to this 
head to make a new object of the same category as the head. 
Here, a PP argument is bound to an NP head to make a new 
NP. 

Binding operates on the semantic interpretation and subcat- 
egorization information of the head and on the semantic in- 
terpretation of the argument to produce the semantic inter- 
pretation of the new phrase. In principle, the relationship 
between inputs and output is completely arbitrary. In prac- 
tice, however, it most often consists of an addition of a pair 
(RELATION, ARG-INTERP) to what are termed the "bind- 
ings" of the head input. For example, in the case of "flight 
on Delta" the pair added would be 

(FLIGHT-AIRLINE-OF, DELTA) 

In everything that follows, we will make this simplifying 
assumption. 

We can then speak of a translation R ~ r from a grammatical 
relation to a semantic relation. For the present example, this 
translation would be: 

PP-COMP(ON) -> FLIGHT-AIRLINE-OF 

where the grammatical relation PP-COMP is further sub- 
divided by the preposition "ON" (and the requirements 
on semantic type are implicit from the relation FLIGHT- 
AIRLINE-OF). We will term such a translation a "realization 
rule" because it shows how the semantic relation FLIGHT- 
AIRLINE-OF can be syntactically realized in terms of an 
on-PP. The set of all such realization rules (large in num- 
ber for a non-trivial domain) is stored in a knowledge base 
separate from the parser and interpreter code. 

The interpretation of any parse tree can now be represented 
as an isomorphic semantic tree, in which the nodes are the 

semantic interpretation objects of open-class lexical items 
and the links are the semantic relations between them. Such 
a structure can obviously also be represented as a set of 
n semantic objects and n-1 triples consisting of a semantic 
relation and head and argument semantic objects. For ex- 
ample, "Delta flies a 747 to Denver" would be represented 
in graph form as: 

/ "AIRCRAFT-OF -> 747 

FLY .... AIRLINE-OF -> DELTA 

\ ..... DEST-OF -> DENVER:TO 

where a PP such "to Denver" is represented as its NP object 
tagged by the preposition. 

When a complete parse of an utterance cannot be performed, 
we are left with a set of fragmentary analyses in the chart 
which correspond to constituent analyses of portions of the 
input string. The Fragment Generator (essentially the same 
as was reported on in [1]) extracts the most probable frag- 
ment sub-parses associated with the longest sub-strings of 
the input, using probabilities associated with the producing 
grammar rules (as in [5]. 

The semantic interpretations of the parse-fragments are 
treated in the same way as those of a complete parse: as 
a set of objects and triples. As a simple example, sup- 
pose we have the three fragments "to Boston", "Denver" 
and "Delta flights on Monday". Then the three correspond- 
ing sub-graphs are: 

BOSTON:TO 

DENVER 

FLIGHTSl ...... AIRLINE-OF -> DELTA 
\ DAY-OF-WK -> MONDAY: ON 

The problem of connecting the N fragments is then reduced 
to finding a set of relation-links which will connect a pair 
of objects in N-1 different fragments. 

3. C O M P U T I N G  T H E  L I N K S  A N D  T H E I R  

P R O B A B I L I T I E S  

The Semantic Linker first computes the link database, which 
is the set of all possible links between all pairs of objects in 
all pairs of different fragments. These links are computed 
using the same set of realization rules that drive the parser 
and semantic interpreter, and depend on the semantic types 
of the two objects and on the preposition tag (ff any) of the 
second object. For the set of fragments in our example the 
link database is: 
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la. FLIGHTS1--- DEST-O¥ 

lb. FLIGHTS1--- ORIG-OF 

-> BOSTON:TO 

->BOSTON:TO 

2a. FLIGHTS1--- DEST-O¥ -> DENVER 

2b. FLIGHTS1--- ORIG-OF -> DENVER 

3a. DENVER--- NEARBY-TO -> BOSTON: TO 

where the links are grouped together in a ordered list ac- 
cording to the fragment-pairs they connect. Since there are 
three fragments there are three pairs. 

Links have a set of features which are established when 
they are computed. The most important is the relational 
probability of the link, or: 

P (r, Cl, C2) 

where r is the semantic relation of the link and C1 and C2 
are semantic classes of the two argument positions, where 
C2 may be tagged by a preposition. This is the probability 
that a pair of objects of type C 1 and C2 are linked by by 
the relation r in an interpretation (as opposed to by some 
different relation or by no relation at all). 

A corpus of interpretations generated by hand could be used 
to determine these probabili!Jes, but in our work we have 
chosen to work with a set of sentences that can be correctly 
parsed by the regular DELPHI parser. Since the seman- 
tic interpretations of these parses are just sets of triples the 
probabilities can be determined by counting. Approximately 
3000 interpretations are currently used for our work in ATIS. 

From this corpus, we can determine that the link la has 
a high (.89) probability of connecting a FLIGHT and 
CITY:TO object when these are present, whereas the link 
3a has a near zero probability, since the relation NEARBY- 
CITY-OF occurs very infrequently between two cities. 

We have found it convenient to use the log of these probabil- 
ities, scaled up and rounded to the lowest negative integer, as 
the actual value of the link probability feature. Additionally, 
maximum and minimum values of this number are imposed, 
so that even a highly likely link has a small negative score 
(-1), and a highly unlikely link has a finitely negative one 
(-70). 

Links can have other features depending on assumptions 
made in computing them. For example, a link can be com- 
puted by ignonng the prepositional tag of the second ob- 
ject, in which case the link is given the feature "IGNORES- 
PREP". An example would be lb above, which ignores the 
preposition "to". A link can also be computed by assuming 
a prepositional tag that is not present, giving the link the 

feature "ASSUMES-PREP", as in 3a, where the preposition 
"near" is assumed. As we shall see in the next section, 
these features are also assigned negative integers as penal- 
ties, balancing out any higher relational probability the link 
may have gained from the assumptions made by it.  

4. S E A R C H I N G  T H E  S P A C E  O F  

C O M B I N A T I O N S  

The problem of finding a connection between the N frag- 
ments is simply the problem of picking at most one link 
from each of the link-groups in the link database, subject to 
the constraints that all N fragments must be linked and that 
no links can be redundant. 

We can formalize these consU'aints as follows. Let LINKED 
be defined as holding between two fragments if there is a 
link between them (in either direction), and let TC(LINKED) 
be the I~ausitive closure of this relation. Then the first con- 
straint is equivalent to the requirement that TC(LINKED) 
hold between all different fragments F1 and F2. 

To formalize the non-redundancy conslraint, let LINKED-L 
mean "linked except by link L". Then the non-reduudancy 
constraint holds ff there is no link L such that TC(LINKED) 
is the same as TC(LINKED-L). 

The problem as cast implies a search space in which each 
state is simply the set of links chosen so far, and a transi- 
tion between states is the addition of a new link. We will 
find it convenient, however, to include all of the following 
components in a sta~: 

1. suffix of the link-database list 
2. chosen-links 
3. combinational features 
4. state score 
5. fragments-linked 

The suffix of the link-database list consists of just the link- 
groups still available to be chosen. The combinational fea- 
tures are those arising from the combination of particular 
links, rather than from individual links themselves. The 
state score is the judgement of how plausible the state is, 
based on its features and those of its links. We want to find 
the most plausible success state, where a success state is 
one which satisfies the constraints above, as recorded on the 
fragments-linked slot. 

Pre-success states reside on the state queue. The state queue 
initially consists of just the single state START. START has 
a pointer to the complete link-group list, an empty set of 
combinational features and links chosen and a score of zero. 
Search proceeds by selecting a state from the queue, and 
calling the function EXPAND-STATE on it to produce zero 
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or more new states, adding these to the state queue and re- 
peating until suitable success states are found or the queue 
becomes empty. Although this formulation allows the state 
space to be searched in any order, our implementation nor- 
maUy uses a best-first order choice. This simply means that 
at selecti(m cycle, the best pre-success states are chosen for 
expansion. 

The function EXPAND-STATE works by taking the first 
link-group from the link-group list suffix whose fragments 
are not already indirectly connected by the state and generat- 
ing a new state a new state for every link L in the link-group. 
The links-chosen of these new states are the links-chosen of 
the parent state plus L, and the link-group suffix is the re- 
mainder of the parent's link-group suffix. EXPAND-STATE 
also generates a single new state whose link-group list suf- 
fix is the remainder but whose links-chosen are just those of 
the parent. This state represents the choice not to directly 
connect the two fragments of the link-group, and is given 
the feature "SKIP". 

In our example, the first call to EXPAND-STATE would 
generate three new states from START: state $1 having the 
set {la} as chosen-links, a state $2 having the set {lb} as 
its chosen-links and a state $3 having the empty set {} as 
its chosen-links, and the feature-list {SKIP}. 

The score of a state is determined by summing the weighted 
values of its features and the features, including the log- 
probabilities, of its chosen links. Since the weights and 
log-probabilities are always negative numbers, the score of 
a state always decreases monotonically from the score of its 
parent, even in the case of a SKIP state. 

At this point in our example, the state S1 has the best score, 
since its probability score is good (-2) and it has no "blem- 
ish" features, unlike the state $2, whose link lb has the 
IGNORES-PREP feature. The SKIP state $3 is also not as 
good as S 1, because the weight assigned to SKIP (-7) is se- 
lected so as to only be better than a link whose probability 
is lower than .50. 

Thus, the state S1 is selected for expansion, resulting in the 
states SI-1, S1-2 and S1-3. The feature "CLASH", which 
results when a link with single-valued R (R a b) is combined 
with a link (R a b'), is assigned to S 1-1, because it assigns 
the link 2a on top of la. The state S1-2 assigns the link 
2b, which does not involve a clash. Both SI-1 and S1-2 are 
sucess states, and are therefore not expanded further. 

Search then returns to the SKIP state $3. Its children all 
have lower scores than the success state S 1-2, however, and 
given the guarantee that score decreases monotonically, any 
eventual success states resulting from them can never be as 
good as S 1-2. They are therefore pruned from the search. 

The same happens with the descendants of other expansion 
candidates. The queue then becomes empty, and the best 
success state S 1-2 is chosen as the result of fragment com- 
bination. 

4.1. Hallucination 

Suppose that instead of the example we have an utterance 
that does not include the word "flights": 

Boston to Denver on Monday Delta 

This utterance generates the fragments "Boston", "to Den- 
ver", "on Monday" and "Delta". Clearly, no complete set of 
links can be generated which would fully connect this set, 
without an object of semantic class FLIGHT or FARE to act 
as a "hub" between them. 

To handle these situations, the Semantic Linker has a sec- 
ond type of state transition in which it is able to "hallu- 
cinate" an object of one of a pre-determined set of  clases, 
and add link-groups between that hallucinated object and the 
fragment structures already present. In the ATIS domain, 
only objects of the classes FLIGHT, FARE, and GROUND- 
TRANSPORTATION may be hallucinated. 

The hallucination operation is implemented by the func- 
tion EXTEND-STATE. It is invoked when the function 
EXPAND-STATE returns the empty set (as will happen when 
input state's link-group list is empty) and returns states with 
the new link-groups added on, one for each of the allowed 
hallucination classes. These states are assigned a feature not- 
ing the hallucination, sub-categorized by the semantic class 
of the hallucinated object. Different penalty weights are as- 
sociated with each such sub-categorized feature, based on the 
differences between probability of oecurence of the classes 
in corpora. In ATIS, FLIGHT hallucinations are penal- 
ized least of all, FARE hallucinations more, and GROUND- 
TRANSPORTATION hallucinations most of all. 

A state descended from one extended by hallucination cannot 
be extended again, and if it runs out of link-groups before 
connecting all fragments it is declared "dead" and removed 
from the queue. 

4.2. Handling Corrections and Other Features 

Several other combinational features influence the actions of 
the Semantic Linker with respect to such matters as handling 
speaker corrections and judging appropriate topology for the 
graph being built. 

Speaker corrections are an important type of disfluency: 
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Tell me the flights to Denver uhh to Boston $. A F T E R  C O M B I N A T I O N  

This will produce the fragments "Tell me the flights to Den- 
ver" and "to Boston". Since a flight can have only one 
DEST-OF the fragment "to Boston" can not be connected 
as is. One strategy might be to ignore the "to" preposi- 
tion and attempt to link "Boston" as an ORIG-OF with the 
IGNORE-PREP feature. 

This clearly would not produce the correct interpretation, 
however. The Linker provides an alternative when the clash- 
ing value is to the right of the existing value in the string. 
In this case, the link receives the combinational feature RE- 
PLACEMENT, which is not penalized strongly. If the rela- 
tional probability of the DEST-OF link is good, it will defeat 
its IGNORE-PREP rival, as it should. 

Related to correction is the operation of merging, in which 
two nodes of a common semantic type are merged into one, 
and the appropriate adjustments made in the link-database 
and links-chosen for the state. This is appropriate for certain 
semantic classes where it is unlikely that separate descrip- 
tions (unless they are combined in a conjunction) will appear 
in an interpretation for the utterance: 

Show me flights to Boston flights to Boston at 3 pm 

Another feature influences the topology of the graph the 
Linker constructs. Nothing in the algorithm so far requires 
that graph structure of connections ultimately produced re- 
main a tree, even though the input fragment interpretations 
themselves are trees. It is perfectly possible, in other words, 
for there to be two links (R a b) and (R' a' b) in which the 
same node is shared by two different parents. 

Since we are not trying to produce a syntactic structure, but 
a semantic one in which the direction of relations is often 
irrelevant, we do not forbid this. It is discouraged, however, 
since it sometimes indicates an inapproriate interpretation. 
The combinational feature MULTI-ROLE is assigned to a 
state with such a combination of links, and is penalized. 

Finally, we point out that the log-probability perspective is 
useful for assigning penalties to features. If one has a link L1 
that has a high relational probability but also has a penalty 
feature, and another link L2 with a lower relational proba- 
bility but which does not have the penalty, one can decide 
how far apart in probability they would have to be for the 
two alternatives to balance - that is, to be equally plausible. 
The difference in log-probabilities is the appropriate value 
of the penalty feature. 

After the combination phase is complete, we have zero or 
more success states from which to generate the utterance 
interpretation. If there are zero success states, an interpre- 
tation may still be generated through the mechanisms of 
"scavenging" and "back-off'. 

The Linker will find no success states either because it has 
searched the state-space exhaustively and not found one, or 
because pre-set bounds on the size of the space have been 
exceeded, or because the scores of all extensible frontier 
states have fallen below a pre-established pruning score for 
plausibility. In this case, the state-space which has been 
built up by the previous search is treated as an ordinary 
tree which the Linker scans recursively to find the optimum 
partial connection set, both in terms of fragment-percentage 
covered and in state score. This technique is termed "scav- 
enging". 

In some instances there may not even be partial connection 
states in the space. In this case, the system looks for the 
longest fragment to "back off" to as the interpretation. 

In formal evaluation of the DELPHI system conducted un- 
der DARPA auspices[6], both scavenging and back-off were 
aborted in cases where there were obviously important frag- 
ments that could not be included in interpretation. This was 
done because of the signiligant penalty attached to a wrong 
answer in this evaluation. 

If there is more than one success state, the Linker picks 
the the subset of them with the highest score. If there are 
more than a certain pre-set number of these (currently 2), 
the Linker concludes that it none of them are likely to be 
valid and aborts processing. 

Once a suitable set of objects and triples has been produced, 
whether through combination, scavenging or back-off, the 
Linker must still decide which of the objects are to be dis- 
played - the "topic" of the utterance. The topic-choice mod- 
ule for the Semantic Linker is fairly similar to the topic- 
choice module of the Frame Combiner reported on in [1], 
and so we do not go into much detail on it here. Basically, 
there are a number of heuristics, including whether the de- 
terminer of a nominal object is WH, whether the sort of 
the the nominal is a "priority" domain (in ATIS, GROUND- 
TRANSPORTATION is such a domain), and whether the 
nominal occurs only has the second argument of the triples 
in which it occurs (making it an unconstrained nominal). 
The important new feature of the Semantic Linker's topic 
choice module is its ability to make of use of links between 
a nominal object and a verb like "show" as evidence for 
topic choice. 
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6. RESULTS AND DISCUSSION 
Results from the November 1992 DARPA evaluation[6] 
show that the Semantic Linker reduced DELPHI's Weighted 
Error rate on the NL-only portion of the test by 30% (from 
32% to 22%). This was achieved mostly by dramaticaly 
lowering the No Answer rate (from 21% to 8%). 

It should be noted that these results were achieved with an 
earlier w~rsion of the Semantic Linker than that reported 
here. In particular, this earlier version did not make use of 
empirically determined probabilities, but rather used a more 
ad hoe system of heuristically determined weights and fea- 
tures. Nevertheless, these preliminary results give us some 
confidence in our approach. 

Several areas of future work are seen. One is the use of 
automatic training methods to determine feature weights. A 
corpus pairing sentences and sets of connecting links could 
be used in supervised training to adjust initial values of these 
weights up or down. 

Another area, one in which we are already engaged, is using 
the Semantic Linker in ellipsis processing by treating the 
preceding utterance as a fragment-structure into which to 
link the present, elliptical one. 

A third area of future work is the use of relational probabil- 
ities and search in the generation of fragments themselves. 
Currently, the fragment generator component is entirely sep- 
arate from the rest of the Linker, which makes it diflicdt for 
combination search to recover from fragment generation. In- 
stead of trying to combine fragments, the Linker could seek 
to combine the semantic objects internal to them, in a pro- 
cess where inter-object links found by the fragment generator 
would have a strong but not insurmountable advantages 

A last area of future work is to more fully integrate the 
Semantic Linker into the regular parsing mechanism itself, 
and to investigate ways in which parsing can be viewed as 
similar to the linking process. 
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