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Abstract  

Rela t ing  the intonat ional  characteristics of  an u t ter -  
ance to other  features inferable f rom its text is impor -  
t an t  bo th  for speech recognition and for speech syn- 
thesis. This  work investigates techniques for predic t ing 
the locat ion of  intonat ional  phrase boundaries in na tu ra l  
speech, th rough  analyzing a ut terances from the D A R P A  
Air Travel In format ion  Service database.  For s ta t is t ical  
model ing,  we employ Classification and Regression Tree 
( C A R T )  techniques. We achieve success rates o f  jus t  
over 90%. 

1 Introduction 
Intuitively, intonational phrasing divides an utterance into 
meaningful 'chunks' of information [3]. Variation in phrasing 
can change the meaning hearers assign to tokens of a given 
sentence. For example, 'B i l l  doesn' t  dr ink  because he% un- 
happy '  is likely to be interpreted one way when uttered as 
a single phrase (i.e., Bill drinks, but not because he's un- 
happy) and another when uttered with a boundary between 
dr ink  and because (the cause of Bill's failure to drink is his 
unhappiness). 

While phrase boundaries are perceptual categories, they 
are associated with certain acoustic features. Generally, 
phrases may be identified by one of more of the following 
features: pauses (which may be filled or not), changes in am- 
plitude and in the pitch contour, and lengthening of the final 
syllable in the phrase (sometimes accompanied by glottaliza- 
tion of that syUable and perhaps preceding syllables). Major 
phrase boundaries tend to be associated with longer pauses, 
more pronounced contour excursions, and greater amounts of 
final lengthening than minor boundaries. 

2 Inferring Phrasing from Text  
How the intonational phrasing of an utterance is related to as- 
pects of the text uttered is potentially an important source of 

information for speech recognition, to constrain the set of al- 
lowable hypotheses by identifying boundary locations in both 
the recognized text and the acoustic signal or to moderate 
durational information at likely boundary locations. How- 
ever, to date, syntactically-based prediction of intonational 
boundaries has met with limited success. While considerable 
work has been done on the relationship between some par- 
ticular syntactic configurations and intonational boundaries 
[12, 2, 6, 9], the prediction of boundaries in unrestricted and 
spontaneous speech rarely been attempted [1]. 1 Predicting 
boundaries solely from information available automaticaLly 
from text analysis presents a further challenge, which must 
also be addressed if predictions are to be useful in real spoken 
language systems. 

To address these issues, we experimented with the pre- 
diction of intonational boundaries from text analysis, using 
298 utterances from 26 speakers in the Air Travel Informa- 
tion Service (ATIS) database for training and testing. ~ To 
prepare data for analysis, we labeled the speech prosodically 
by hand, noting location and type of intonational boundaries 
and presence or absence of pitch accents, using both the wave- 
form and pitchtracks of each utterance. Although major and 
minor boundaries were distinguished in the labeling process, 
in the analysis presented below these axe collapsed. Each 
data point in our analysis consists of a potential boundary 
location in an utterance, defined by a pair of adjacent words 
< w i , w  i >. There are 3677 potential boundary locations 
< wi,wj > in the ATIS sample analyzed here. 

For each potential boundary site, we examine the predic- 
tive power of a number of textual features whose values can 
be determined from orthographic transcriptions of the ATIS 
sentences, as well as a number of phonological categories fea- 
tures available from our hand-labeling, to see, first, how well 
boundary locations can be predicted automatically from text, 

l Bachenko and Fitzpatrick classify 83.5-86.2% of boundaries 
correctly for a test set of 35 sentences; Ostendorf et al report 80- 
8.3% correct prediction of boundaries only on a different 35 sentence 
test set. Altenberg models only major boundaries for a portion of 
his training data, 48 minutes of partly-read, partly spontaneous 
speech from a single speaker, 

2These sentences were selected from the 772-odd utterances in 
the original TI collection. 
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and, second, whether prediction using fuller information, cur- 
rently available only via hand-labeling, can improve perfor- 
mance significantly. 

Temporal variables used in the analysis include utterance 
and phrase duration, and distance of the potential bound- 
ary from various strategic points in the utterance. Although 
it is tempting to assume that  phrase boundaries represent a 
purely intonational phenomenon, it is possible that process- 
ing constraints help govern their occurrence. So, for example, 
longer utterances may tend to include more boundaries. Ac- 
cordingly, we measure the length of each utterance both in 
seconds and in words. The distance of the boundary site from 
the beginning and end of the utterance also appears likely to 
be correlated with boundary location. The tendency to end 
a phrase may also be affected by the position of the poten- 
tial boundary site in the utterance. For example, positions 
very close to the beginning or end of an utterance may well 
be unlikely positions for intonational boundaries. We mea- 
sure this variable too, both in seconds and in words. The 
importance of phrase length has also been proposed [6, 2] as 
a factor in boundary location. Simply put, it may be that  
consecutive phrases have roughly equal length. To test this, 
we calculate the elapsed distance from the last boundary to 
the potential boundary site, divided by the length of the last 
phrase encountered, both in time and words. To obtain this 
information from text analysis alone would require us to fac- 
tor prior boundary predictions into subsequent predictions. 
While this would be feasible, it is not straightforward in our 
current analysis strategy. To see whether this information is 
useful, therefore, we currently use observed boundary loca- 
tion. 

Syntactic constituency information is widely considered a 
major factor in phrasing [6, 14, 11, 15]. That  is, some types of 
constituents may be more or less likely to be broken up into 
phrases, and some constituent boundaries may be more or less 
likely to coincide with intonational boundaries. To test the 
former, we examine the class of the lowest node in the parse 
tree to dominate both w i  and wj, as determined by Hindle's 
parser, Fidditch [7]. To test the lat ter  we determine the class 
of the highest node in the parse tree to dominate w i ,  but not 
wj, and similarly for w i but not w i .  Word class is often used 
to predict boundary location, particularly in text-to-speech, 
where simple parsing into function/content word groupings 
generally controls the generation of phrase boundaries. To 
test the importance of word class, we examine part-of-speech 
in a window of four words surrounding each potential phrase 
break, using Church's part-of-speech tagger [5]. 

Informal observation suggests that  phrase boundaries are 
more likely to occur in some PITCH ACCENT contexts than 
in others. For example, phrase boundaries between words 
that  are DEACCENTED seem to occur much less frequently 
than boundaries between two accented words. To test this, 
we look at the pitch accent values of w i  a n d  w i for each 
< wl, wj >,  comparing observed values with predicted pitch 
accent information obtained from [8]. 

Finally, in a multi-speaker database,  an obvious vari- 
able to test is speaker identity. While for applications to 
speaker-independent recognition this variable would be unin- 

stantiable, we nonetheless need to determine how important  
speaker idiosyncracy may be in boundary location. Since we 
have found no significant increase in predictive power when 
this variable is used, results presented below are speaker- 
independent. 

3 Analys i s  and Results  

For statist ical  modeling, we employ Classification and Re- 
gression Tree (CART) analysis [4] to generate decision trees 
from sets of continuous and discrete variables. At  each stage 
in growing the tree, CART determines which factor should 
govern the forking of two paths from that node. Further- 
more, CART must decide which values of the factor to as- 
sociate with each path. Ideally, splitting rules should choose 
the factor and value split which minimizes the prediction er- 
ror rate. The rules in the implementation employed for this 
study [13] approximate optimality by choosing at each node 
the split which minimizes the prediction error rate on the 
training data .  In this implementation, all these decisions are 
binary, based upon consideration of each possible binary par- 
tition of values of categorical variables and consideration of 
different cut-points  for values of continuous variables. 

Stopping rules terminate the splitting process at each in- 
ternal node. To determine the best tree, this implementation 
uses two sets of stopping rules. The first set is extremely 
conservative, resulting in an overly large tree, which usually 
lacks the generality necessary to account for da ta  outside of 
the training set. To compensate, the second rule set forms a 
sequence of subtrees. Each tree is grown on a sizable fraction 
(80%) of the training data  and tested on the remaining por- 
tion. This s tep is repeated until the tree has been grown and 
tested on all of the data. The stopping rules thus have access 
to cross-validated error rates for each subtree. The subtree 
with the lowest rates then defines the stopping points for each 
path in the full tree. Results presented below all represent 
cross-validated data.  

Prediction rules label label the terminal nodes. For contin- 
uous variables, the rules calculate the mean of the da ta  points 
classified together  at that  node. For categorical variables, 
the rules choose the class that occurs most frequently among 
the da ta  points. The success of these rules can be measured 
through est imates of deviation. In this implementation, the 
deviation for continuous variables is the sum of the squared 
error for the observations. The deviation for categorical vari- 
ables is simply the number of misdassified observations. 

In analyzing our data, we employ four different sets of vari- 
ables. The first includes observed phonological information 
about pitch accent and prior boundary location, as well as 
automatically obtainable information. The success rate of 
boundary prediction from this set is quite high, with cor- 
rect cross-validated classification of 3330 out of 3677 poten- 
tial boundary sites - -  an overall success rate of 90% (Fig- 
ure 1). Furthermore,  there are only five decision points in 
the tree. Thus,  the tree represents a dean, simple model of 
phrase boundary prediction, assuming accurate phonological 
information. 

379 



Turning to the tree itself, we that the ratio of current 
phrase length to prior phrase length is very important in 
boundary location. This variable alone (assuming that the 
boundary site occurs before the end of the utterance) permits 
correct classification of 2403 out of 2556 potential bound- 
ary sites. Occurrence of a phrase boundary thus appears ex- 
tremely unlikely in cases where its presence would result in a 
phrase less than half the length of the preceding phrase. The 
first and last decision points in the tree axe the most trivial. 
The first split indicates that utterances virtually always end 
with a boundary - -  rather unsurprising news. The last split 
shows the importance of distance from the beginning of the 
utterance in boundaxy location; boundaries are more likely 
to occur when more than 2 } seconds have elapsed from the 
start of the utterance. 3 The third node in the tree indicates 
that noun phrases form a tightly bound intonational unit. 
The fourth split in 1 shows the role of accent context in de- 
termining phrase boundary location. If wi is not accented, 
then it is unlikdy that a phrase boundary will occur after it. 

The importance of accent information in Figure 1 raises 
the question of whether or not automatically inferred accent 
information (via [8]) can substitute effectively for observed 
data. In fact, when predicted accent information is substi- 
tuted, the success rate of the classification remains approx- 
imately the same, at 90%. However, the number of splits 
in the resultant tree increases - -  and fails to include the ac- 
centing of wi as a factor in the classification! A look at the 
errors in accent prediction in this domain reveals that the ma- 
jority occur when function words preceding a boundary are 
incorrectly predicted to be deaccented. This appears to be 
an idiosyncracy of the corpus; such words generally occurred 
before relatively long pauses. Nevertheless, classification suc- 
ceeds well in the absence of accent information, perhaps re- 
flecting a high correlation between predictors of accent and 
predictors of phrase boundaries. For example, both pitch ac- 
cent and boundary location are sensitive to location of prior 
intonational boundaries and part-of-speech context. 

In a third analysis, we eliminate the dynamic boundary 
percentage measure. The result remains nearly as good as be- 
fore, with a success rate of 89%. This analysis reconfirms the 
usefulness of observed accent status of w i  in boundary pre- 
diction. By itself (again assuming that the potential bound- 
ary site occurs before the end of the utterance), this factor 
accounts for 1590 out of 1638 potential boundary site clas- 
sifications. This analysis also confirms the strength of the 
intonational ties among the components of noun phrases. In 
this tree, 536 out of 606 potential boundary sites receive final 
classification from this feature. 

We conclude our analysis by producing a classification tree 
that uses text-based information alone. For this analysis we 
use predicted accent values and omit information about prior 
boundary location. Figure 2 shows results of this analysis, 
with a successful classification of 90% of the data. In Figure 2, 
more variables are used to obtain a classification percentage 
similar to the previous classifications. Here, accent predic- 
tions are used trivially, to indicate sentence-final boundaries 

3This fact may be idiosyncratic to our data, given the fact that 
we observed a trend towards initial hesitations. 

( ra= 'NA') ,  a function performed in Figure 1 by distance of 
potential boundary site from end of utterance (et). The sec- 
ond split in 2 does rely upon temporal distance - -  this time, 
distance of boundary site from the beginning of the utter- 
ance. Together these measurements correctly predict 38.2eA 
of the data. The classifier next uses a variable which has not 
appeared in earlier cla:.,sifications - -  the part-of-speech of tcj. 
In 2, in the majority of cases (88%) where w i is a function 
word other than ' to, '  "in,' or a conjunction (true for about 
half of potential boundary sites), a boundary does not oc- 
cur. Part-of-speech of u,i and type of constituent dominating 
w i  but not tu~ are further used to classify these items. This 
portion of the classification is reminiscent of the notion of 
'function word group" used commonly in assigning prosody 
in text-to-speech, in which phrases are defined, roughly, from 
one function word to the next. Overall rate of the utter- 
ance and type of utterance appear in the tree, in addition 
to part-of-speech and constituency information, and distance 
of potential boundary site from beginning and end of utter- 
ance. In general, results of this first stage of analysis suggest 
- -  encouragingly - -  that there is considerable redundancy in 
the features predicting boundary location: when some fea- 
tures are unavailable, others can be used with similar rates 
of success. 

4 Discuss ion  

The experiments described above indicate that it is indeed 
possible to relate intonational boundaries to the text of an 
utterance with fair success, 4 using information available auto- 
matically using current NLP technology. This application of 
CART techniques to the problem of predicting phrase bound- 
aries increases our understanding of the importance of several 
among the numerous variables which might plausibly be re- 
lated to boundary location. Future word wiLl extend the set 
of variables for analysis to include distance metrics defined 
in terms of stressed syllables, automatic NP-detection [5], 
M U T U A L  INFORMATION, G E N E R A L I Z E D  M U T U A L  LNFORMATION 

scores can serve as indicators of intonational phrase bound- 
aries [10]. We will alto examine possible interactions among 
the statistically important variables which have emerged from 
our initial study. CART's step-wise treatment of variables, 
optimization heuristics, and dependence on binary splits ob- 
scure the possible relationships that  exist among the various 
factors. Now that we have discovered a set of variables which 
do well at predicting intonational boundary location, we need 
to understand just how these variables interact. 

While we have not yet at tempted the parallel classifica- 
tion of boundary sites from acoustic information for the ATIS 
sample, previous research [12] and our own preliminary anal- 
ysis of a a smaller set of training data collected for the VEST 
(Voice English-Spanish Translation) project, suggest that in- 

4For purposes of comparison with classification efforts that 
measure only success of boundary prediction (not success of non- 
boundary prediction as well), the best cross-validated prediction 
from the analyses done for this study has a 79.5% success rate and 
the best prediction from a full tree classifies 89.7% correctly. 
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tonational boundaries can be identified with some success 
from simple measures of final lengthening (inferred from rel- 
ative word or syllable duration) and of pausal duration. For 
the VEST data, for example, boundary location can be in- 
ferred correctly from such metrics in 92% of cases. In future 
work, these features, as well as amplitude and other potential 
boundary indicators will be examined in the ATIS database. 
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tt  
tw 
st 
et 
SW 

e w  

la 

r a  

p e r  

tper 

utterance length in seconds 
utterance length in words 
seconds from start to w~ 
seconds from wj to end 
words from start to w, 
words from w~ to end 
is w, accented or not/ 
cliticized, deaccented, accented, NA 
is w~ accented or not/ 
cliticized, deaccented, accented, NA 
[# words from last boundary] / 
[ # words in of last phrase] 
[ seconds from last boundary] / 
[seconds from last phrase] 

jl-4 part-of-speech for wi-l,  wi, wj, wj+ , : 
v:verb b:copula m:modifier f:function word 
n:noun p:preposition w:wh-word 

fs,l,r category of: 
s:smallest constituent dominating wi and wj 
l:largest constituent dominating w, not w i 
r:largest constituent dominating wj not tvi 
m:modifier d:determiner v:verb 
p:preposition w:wh-word n:noun s:sentence 
f:function word 

Table 1: Key to Node Labels in Figures 

381 



St:< 

11C 18 

NA 

et:<0.: 151/198 

tr:<l tr.> I.~1265 ~< 

15/15 
nd/wh 

24/35 
3D,VBN,VBZ, NA 

tr:<l 

8/8 

j~727/46 \ 82./120 
18 tr~,1.~718 

11/14 ~ . . _ f l ~ S ~  . ~ . ~  
;D,IN,NA 

Figure 2: Phrase Boundary Predictions from Text Analysis Alone, 90% 
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et:<O.~4954e5~:>( 
I95455 

yes j 
297/298 

tper:<O ;01564 
1564 

[ no I 
2403/2556 

fsn:N, 

no 

P,F 

no 

318/367 
no 

la 

n o  

111/137 
st:<79455st:>2.~455 

nol 
61/81 157/238 

Figure 1: Phrase Boundary Predictions from Text and Observed Accents, 90% 
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