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ABSTRACT 
This paper describes several experiments combining natural 

language and acoustic constraints to improve overall performance 
of the MIT VOYAGER spoken language system. This system cou- 
ples the SUMMIT speech recognition system with the TINA lan- 
guage understanding system to answer spoken queries about nav- 
igational assistance in the Cambridge, MA, area. The overall 
goal of our research is to combine acoustic, syntactic and seman- 
tic knowledge sources. Our first experiment showed improvement 
by combining acoustic score and parse probability normalized for 
number of terminals. Results were further improved by the use 
of an explicit rejection criterion based on normalized parse prob- 
abilities. The use of the combined parse/acoustic score, together 
with the rejection criterion, gave an improvement in overall score 
of more than 33% on both training and test data, where score is 
defined as percent correct minus percent incorrect. Experiments 
on a fully integrated system which uses the parser to predict pos- 
sible next words to the recognizer are now underway. 

BACKGROUND 
The experiments that  we report on in this paper repre- 

sent some initial steps in combining speech knowledge with 
syntactic and semantic knowledge. These experiments have 
been performed using the MIT VOYAGER system [10], which 
provides navigational assistance for finding directions and lo- 
cations of various objects (e.g., hotels, restaurants, banks) 
in a geographic region (Cambridge, MA). VOYAGER, accepts 
spoken queries from untrained users and produces answers 
in the form of a map, written answers, and spoken output.  
The system has a vocabulary of some 320 words and handles 
questions, indirect questions, and various forms of interac- 
tive dialogue, including anaphoric reference and clarification 
dialogue. 

In this research, we have taken an incremental approach 
to combining speech and language. First,  we have explored 
how use of combined knowledge sources can influence the 
shape of the search space, by changing the overall scores as- 

1This research was supported by DARPA under Contract N00014- 
89-J-1332, monitored through the Office of Naval Research. 

sociated with competing hypotheses. In addition, the use of 
combined knowledge sources can change computational effi- 
ciency by applying language constraints to predict possible 
next words, thus achieving significant pruning of the recog- 
nition search space. In this paper, we report  primarily on 
experiments that  change the shape of the search space; this 
work has been done on our loosely-coupled system using the 
N-best  interface [11]. However, we also report briefly on the 
status of our experiments on the tight coupling of speech 
recognition and language understanding. 

LANGUAGE CONSTRAINTS 
DURING RECOGNITION 

In order to obtain adequate recognition results for con- 
tinuous speech recognition, it is imperative to provide some 
sort of language constraints. The usual approach is to adopt 
simple but efficient word-pair or bigram "language models," 
which specify the set of words that  can follow a given word. 
Such models have the advantage of being automatically deriv- 
able from training data  and computationally efficient. How- 
ever, they lose any non-local language constraints and, of 
course, provide no linguistically relevant structural descrip- 
tion. Furthermore, it is difficult, even when steps are taken 
to generalize words to their semantic category (i.e. "Boston" 

all city names), to assure sufficient coverage in an inde- 
pendent test set. Given adequate training data, the simple 
word-pair or bigram language model will overgenerate, since 
it fails to take larger context into account. Thus the system is 
allowed to recognize many sentences that  are ungrammatical 
or incoherent or inappropriate in the overall context. 

The obvious solution is to bring linguistic knowledge to 
bear. One way is to take the best acoustic candidate and 
use a flexible, semantically-based phrase-spotting system to 
assign a meaning to the sequence of words [8]. This provides 
a robust interface which can ignore many recognition errors 
and abandons the notion of a linguistically well-formed over- 
all sentence. It almost always produces some interpretation. 
However, since it adds no real linguistic constraints, it may 
produce many false positives (misinterpretation of the input ) . 
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A second possiblity which has been explored at some sites [1] 
is to have the recognizer produce a word lattice, with (acous- 
tic) transition probabilities between words. The language 
system can then search this lattice for the best candidate. 

Another approach, which is the baseline for these exper- 
iments, uses an N-best  interface between the recognizer and 
the language understanding system. In this interface, the 
recognizer produces sentence hypotheses in decreasing order 
of acoustic score. The role of the language understanding 
system is to filter these hypotheses, choosing the first one 
that  can be fully processed. Finally, the approach that  we 
explore here combines a score provided by the parser (e.g, 
on the basis of a probability assignment), with the acoustic 
score, to provide a "best" answer. We will report here on the 
results of several experiments combining parse probabilities 
and acoustic score. 

S Y S T E M  A R C H I T E C T U R E  
The VOYAGER system consists of the TINA natural lan- 

guage understanding system and the s u M M IT speech recogni- 
tion system. These components will only be described briefly 
here, as they are more fully documented in [7,9,10]. 

TINA combines a general English syntax at the top level 
with a semantic grammar framework at lower levels, to pro- 
vide an interleaved syntax/semantics analysis that  minimizes 
perplexity. As a result, most sentences in TINA have only one 
parse. TINA uses a best-first heuristic search in parsing, stor- 
ing alternate candidate parse paths while it pursues the most 
promising (most probable) path. In addition, the grammar 
is trainable from instances of parse trees, as described in the 
next section. 

The SUMMIT system transforms a speech waveform into 
a segment lattice. Features are extracted for each segment 
and used to determine a set of acoustic scores for phone can- 
didates. A lexicon provides word pronunciations which are 
expanded through phonological rules into a network of al- 
ternate pronunciations for each word. The control strategy 
to align the segmental acoustic-phonetic network with the 
lexical word-pronunciation network uses an N-best  interface 
which produces the top N candidate word sequences in de- 
creasing order of total  path score. It makes use of an A* 
search algorithm [3,4] with an initial Viterbi search serving as 
the mechanism for establishing a tight upper-bound estimate 
of the score for the unseen portion of each active hypothesis. 

Language constraints include both a local word-pair con- 
straint and a more global linguistic constraint based on parsabil- 
ity. The word-pair constraint is precompiled into the word 
network, and limits the set of words that  can follow any given 
word, without regard to sentence context. Allowable word 
pairs were determined automatically by generating a large 
number of random sentences from the grammar [7]. The lin- 
guistic constraints are incorporated either as a filter on full- 
sentence hypotheses as they come off the top of the stack, 

or with a tighter coupling in which active partial  theories 
dynamically prune the set of allowable next-word candidates 
during the search. 

T R A I N I N G  P A R S E  
P R O B A B I L I T I E S  

This section describes our procedure for training the prob- 
abilities in the grammar automatically from a set of parsed 
training sentences. From each training sentence is derived a 
set of context-free rules needed to parse that  sentence. The 
entire pool of rules is used to train the grammar probabilities, 
with each rule occurring one or more times in the training 
data. By training on a set of some 3500 sentences within the 
VOYAGER domain, we were able to reduce the perplexity on 
an independent test set by a factor of three [10]. 

Our approach to training a grammar differs from that  of 
many current schemes, mainly in that  we have intentionally 
tried to set up a framework that  easily produces a probability 
estimate for the next word given the preceding word sequence. 
We feel that  a next-word probability is much more appropri- 
ate than a rule-production probability for incorporating into 
a tightly coupled system, since it leads to a simple definition 
of the total  score for the next word as the weighted sum of 
the language model probability and the acoustic probability. 
While rule-production probabilities can in fact be generated 
from the probabilities we provide, they will not, in general, 
agree with the probabilities as determined by a procedure 
such as the inside/outside algorithm [6,2]. 

In our approach, the grammar is partit ioned into rule 
sets, according to the left-hand side (LHS) category in the 
context free rule set. Within each partit ion, the categories 
that  show up on the right-hand side (RHS) of all the rules 
sharing the unique LHS category for the partit ion are used to 
form a bigram language model for the categories particular 
to that  partition. Thus the language model statistics are en- 
coded as a set of two-dimensional tables of category-category 
transition probabilities, one table for each partition. A di- 
rect consequence of this bigram model within each partit ion 
is that  new sibling "chains" may form, producing, in many 
cases, combinations that  were never explicitly mentioned in 
the original rule set. The parser is driven only by the set 
of local node-node transitions for a given LHS, so that  any 
new chains take on the same status as sibling sets (RHS) 
that  appeared explicitly in the original grammar. While this 
property can at times lead to inadvertent rules that  are in- 
appropriate, it often yiekls productive new rules and allows 
for faster generalization of the grammar. Given a particular 
parse tree, the probability for the next word is the product of 
the node-node transition probabilities linking the next word 
to the previous word. The overall next-word probability for 
a given initial word sequence is then the sum over all parse 
trees spanning the entire word sequence. 

A specific example should help to elucidate the training 
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process. Imagine that a training set provides a set of five 
rules as shown in Table 1. The training algorithm produces 
a transition networks as shown in Figure 1, with probabilities 
established by counting and normalizing pair frequencies, as 
would be done at the word level in a traditional bigram lan- 
guage model. Rule production probabilities can be regener- 
ated from these pair transition probabilities, giving the result 
shown in the column "Derived Probability" in the table, to 
be compared with "Original Probability." 

The derived probabilities are not the same as what one 
would get by simply counting rule frequencies. The prob- 
abilities are correct up to the point of the category NOUN; 
that is, there is a 2/5 probability of getting the rule group 
(1,4) and a 3/5 probability of getting the group (2,3,4). How- 
ever, the transitions out of NOUN are conditional on the rule 
group. That is, rules that start with (ART NOUN) have a 
50/50 chance of being followed by an ADJUNCT, whereas the 
remaining rules have a 1/3 chance. The method of ignor- 
ing everything except the preceding node has the effect of 
smoothing these two groups, giving all of them an equal 
chance (2/5) of finding an ADJUNCT next. This is a form 
of deleted-interpolation [5] and it helps to get around sparse 
data problems, although it is making an independence as- 
sumption: whether or not a noun is followed by an adjunct 
is assumed to be independent of the preceding context of the 
noun. In this example, no new rules were introduced. If 
we had, however, no training for Rule 4, it would still get a 
nonzero probability, because all of its sibling pairs are avail- 
able from other rules. That is to say, not only does this 
method smooth probabilities among rules, but it also creates 
new rules that had not been explicitly seen in the training 
set. 

The grammar itself includes syntactic and semantic con- 
straints that may cause a particular next-sibling to fail. There 
is also a trace mechanism that restores a moved category to 
its deep-structure position. Both of these mechanisms dis- 
rupt the probabilities in ways that are ignored by the train- 
ing method. While it is possible to renormalize on the fly 
by checking all next-siblings against the constraints and ac- 
cumulating the total probability of those that pass, we did 
not in fact do this, in the interest of computation. We do 
plan to incorporate this normalizing step in a future exper- 
iment, to assess whether it offers a significant improvement 
in the probability estimates. We do currently make some 
corrections for the gap mechanism. Rather than using the a 
priori statistics on the likelihood of a node whose child is a 
trace, we simply assume that node occurred with probability 
1.0. While neither of these is absolutely correct, the latter is 
generally much closer to the truth than the former. 

The TINA grammar has been trained on more than 3500 
sentences. The parse score is computed as the sum of the log 
probabilities of the node-node transitions in the parse tree. 
The probability of a given terminal is taken to be 1/K, where 
K is the number of lexical items having the same lexical class. 

TRAINING RULES Original 

Probability 

i: NP = ART NOUN I/5 

2: NP = ART ADJ NOUN 2/5 

2: NP = ART ADJ NOUN (repeat) 

3: NP = ART ADJ NOUN ADJUNCT i/5 

4: NP = ART NOUN ADJUNCT i/5 

Derived 

Probability 

6125 
9/25 

6/25 
4/25 

Table 1: Deriving Probabilities from Training Rules. 

1.0 

<_L) 

Figure 1: Probabilistic Network for NP 

It would not be difficult to incorporate more sophisticated es- 
timates of lexical items, for example, using unigram probabil- 
ities within a given lexical class, but we did not do that here, 
to avoid sparse data problems. The parse scores reported 
in the following section are the log probabilities, .normalized 
for the number of terminals, to compensate for decreasing 
probabilities in longer sentences. 

E X P E R I M E N T A L  R E S U L T S  
We have used the N-best interface with TINA as the filter 

for our baseline in measuring performance improvements de- 
rived from combining parse and acoustic information. To aid 
us in assessing the impact of various changes, we have used 
a composite score for system performance, computed as per- 
cent of correct answers minus the percent of wrong answers 2. 
Here we define "correct answer" very strictly, namely pro- 
ducing tbe call to the VOYAGER back-end that would have 
been produced by a "clean" transcription of the sentence, re- 
moving false starts and filled pauses? The advantage of this 
strict method is that the procedure can be fully automated 
and requires no human judgements. It does allow certain 
"meaning preserving" alterations, e.g, insertion or deletion 

2This is the metric currently in use for overall performance evaluation 
in the DARPA Spoken Language System program. 

3Note that this metric differs from that used to determine correct- 
hess in the results reported in the DARPA June 1990 meeting [10]. For 
those results, correctness was judged in terms of producing the same 
action, as judged by an expert. Under the new, stricter criterion, if the 
transcribed sentence produces no function call (action), the recognized 
sentence cannot possibly be correct - even if it has produced a reason- 
able interpretation of the input. We estimate that approximately 5% 
of the sentences that are incorrect here would have been judged correct 
under the earlier criterion. This accounts for a difference in about 19 
points in score, bringing the two results into approximate agreement. 
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of "the" as in " the Royal East"  vs. "Royal East" .  Such a cri- 
terion seems reasonable, given that  correctness for a spoken 
language system should measure understanding,  rather  than 

word accuracy. 

Th e  N - b e s t  Interface  

In the N-bes t  interface, the grammar  functions only as 
the filter, and N is used as a rejection criterion. As N 
increases, the number  of correct answers increases, but  the 
number of incorrect answers also increases. Overall  system 
performance rises rapidly between N = 1 and N = 6, peaks 
at N = 25 and then drops off gradually, as the system finds 
incorrect answers at a faster rate than correct answers (see 
Figure 2). The  opt imal  N is 25, with a score of 18.3 (36.1% 
correct and 17.8% incorrect). This figure is used as the base- 

line, against which performance improvements are calculated. 
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Figure 2: Performance as a Function of N. Score = Correct - 
Incorrect 

A d d i n g  Parse  Probab i l i t i e s  

If we now combine a parse score with the acoustic score, 
we get much bet ter  results. We can see how this works by 
looking at the example in Table 2. Here we see that  the 
correct answer is eventually found in the N-bes t  ou tput  (the 

eleventh sentence). However, it is preceded by other  sen- 
tences tha t  parse and produce possible (but wrong) func t ion  
calls to V O Y A G E R .  The N-bes t  output  produces its candi- 

dates in order of acoustic score. We see that  the correct 
sentence has a worse acoustic score (-1336 vs. -1521) but  
its parse score is substantially bet ter  (-14.1 vs. -18.0). In 
general, we note that  the normalized parse score is a good 

discriminator of right vs. wrong sentences: the mean for cor- 
rect answers is -2.92 with a s tandard deviation of 0.75, while 
for incorrect answers it is -4.31 with a s tandard deviation of 
1.78. If we compute the most obvious thing, which is a linear 
combination of the normalized parse score and acoustic score, 
it is possible, by proper choice of weight, to get the correct 
answer to have the best combined score. This is i l lustrated 
in Table 3, which shows the relative combined scores at two 

Rank Acoustics Pat'se #Wds Sentence 

1. -1336 X it i get to kendall sq 

2. -1387 -18.0 6 could i get to kendall sq 

3. -1432 -18.0 6 would i get to kendall sq 

4. -1455 X it i'd get to kendall sq 

5. -1460 X it i do the kendall sq 

6. -1472 X at do i get to kendall sq 

7. -1506 X could i'd get to kendall sq 

8. -1509 X i'd i get to kendall sq 

9. -1511 X could i do the kendall sq 

10. -1516 X it i get at kendall sq 

11. -1521 -14.1 7 how do i get to kendall sq 

Table  2: N-best Output With Acoustic and Parse Scores 

2. could i get to kendall sq 
Acoustic Score Parse/#Wds = Norm Parse 

-1387 -18.0/6 -3.0 

Total Score @ W = 100 : -1387 + 100" -3.0 = -1687 

Total Score @ W = 200 : -1387 + 200* -3.0 = -1987 

11. how do i get to kendall sq 
Acoustic Score Parse/#Wds = Norm Parse 

-1521 -14.1/77 = -2.0 

Total Score @ W = 100:-1521 + 100" -2.0 = -1721 

Total Score @ W = 200: -1521 + 200* -2.0 = -1971 

Table  3: Combining the Parse and Acoustic Scores 

different weights; at weight W = 100, the wrong answer still 
has a higher combined score. However, as we increase the 

weight of the parse score (e.g., to W = 200), the correct 
parse receives a higher combined score. We can determine 
an optimal  parse score weight for the training da ta  by look- 
ing at overall score (percent correct minus percent incorrect) 
as a function of parse score weight. The  combination tha t  
produced the opt imal  overall score for the VOYAGER training 
data  was Acoust ics  + 600 * Normal ized-Parse ,  as shown in 
Figure 3. In order to determine the effect of size of N on this 
number,  we also ran experiments varying size of N.  It turns 
out that  al though optimal  N using only the acoustic score 

is N = 25, opt imal  N for the combined parse and acoustic 

score is 35, but  it is fairly stable between N = 25 to N = 100. 
Using the combined acoustic plus weighted parse score, some 
of the original errors are corrected: the percent correct (at N 
= 25) goes up from 36.1% for the N-bes t  case to 38.7% for 
the combined score, while the incorrect percent goes down 
from 17.8% to 15.1%. At N = 25, we get an overall score of 
23.6%, compared to 18.3% for N-bes t  alone (an increase of 

30%). 
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A Reject ion  T h r e s h o l d  

Finally, if we make use of the normalized parse score to 
formulate an explicit rejection criterion, we find that we can 
improve our results still further. Figure 4 shows how per- 
cent correct and percent incorrect vary with the choice of 
threshold. Using an empirically determined threshold o f -  
4.0, the performance at N = 25 shows 37.5% correct (losing 
some correct answers that fall below the threshold), 10.9% 
incorrect (a substantial reduction from 15.1% without the 
use of a rejection threshold), and an overall score of 26.6% 
(up from 23.6% for use of combined parse and acoustic score 
without a rejection criterion). We also experimented with a 
rejection criterion based on acoustic score (e.g., difference be- 
tween best score and current score) but did not find it useful 
in this domain; however this did turn out to be useful in the 
ATIS domain [12]. 

A comparison of the following four different configurations 

A: N = i 

B: N-Best © N = 25 
C: Weighted Parse + Acoustics Q N = 25 
D: Weighted Parse + Acoustics, 

Parse Rejection Threshold = -4.0 @ N = 25 

CORRECT INCORRECT NO ANSWER SCORE 
h 18.0 5.3 76.7 12.3 
B 3 6 . 1  1 7 . 8  4 6 . 1  1 8 . 3  

C 38.7 15.1 46.1 23.6 
D 37.5 10.9 51.6 26.6 

100 

8 0  

6o 

~. 4o 

2 0  

Table 4: Scores for Training Data 

[~ No Answer 

Incorrect 

Correct 

A B C D 

A: N = I  
B: N-Bes t  @ N = 25 
C: Comblned Parse + A c o u s t l c  @ N = 25 
D: Comblned Score,  Thresho ld  = - 4  @ N = 25 

Figure 5: Overall Performance Under Four Conditions 

at N = 25 is shown in Figure 5, with results in Table 4. 

The Test Results  

The overall score was optimized by running on a set of 
568 training sentences (the development test set). Once we 
determined optimum parameters for parse score weight (W 
-- 600), rejection threshold (T = -4), and value of N, we 
then ran the test data (497 sentences) using these parame- 
ters. The resulting increases in score are shown in Figure 
6 for both training and test data. Overall, the test results 
are quite comparable to the training results. The use of a 
combined parse plus acoustic score resulted in an increase 
from 21.5 to 28.0 in overall score (30%). The use of a rejec- 
tion threshold together with the combined score resulted in 
a small additional increase to 28.8, more than 33% over the 
N-best results for N = 25. 

F U T U R E  D I R E C T I O N S  
All of this research has been done as a first step towards 

coupling the recognizer and the language understanding sys- 
tem more closely. Our initial results show more than 33% 
improvement in score by using parse information in addition 
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to acoustic score. Having demonstrated that it is beneficial to 
change the shape of the search space using this knowledge, we 
are now pursuing experiments with a tightly coupled system 
to explore ways of increasing search e~ciency. We currently 
have a tightly coupled version of the system running that 
produces the identical output but uses TINA to predict al- 
lowable next words for the recognizer, given a string of words 
hypothesized by the recognizer. This approach has the po- 
tential to reduce the search space for the recognizer, since 
it will explore only word strings that can be interpreted by 
TINA. This reduction in search space is done, of course, at 
the price of considerable computation (namely parsing the 
current hypotheses). We plan t o  investigate the trade-offs 
involved between the greater pruning provided by tight cou- 
pling vs. the greater computation required. However, our 
initial results are quite promising: the tightly coupled system 
produces its answer in under a minute, running unoptimized 
on a Sun SPARC-2 workstation. The next step in tight cou- 
pling will be to incorporate the parse probabilities into the 
overall A* (or other) search strategy. By tuning the algo- 
rithm and off-loading some of the acoustic search to special 
purpose signal processing boards, we believe that the tightly 
coupled mode will provide improved performance over the 
loosely-coupled N-best interface. 
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D: Combined w. Th resho ld  @ N = 25 ( o p t i m u m )  

Figure 6: Performance Results Incorporating Parse Probabilities 

Our results to date provide strong evidence that we can 
use additional knowledge from syntactic and semantic prob- 
abilities to improve overall system performance. It also indi- 
cates that explicit rejection criteria play an important part 
in improving system performance. In particular, the parse 
score threshold provides a good rejection criterion based on 
syntactic and semantic information. Once we develop reli- 
able rejection criteria, we can begin to experiment with re- 
covery strategies from rejection. For example, given a sen- 
tence that fails the rejection criterion, it might be possible 
to interact with the user, saying e.g., "I thought you said 

'..?; did I understand you correctly?" This would allow the 
user to confirm a correctly understood sentence and to cor- 
rect a misunderstood sentence. This is surely preferable to 
providing misleading information on the basis of an incor- 
rectly understood sentence. The notion of rejection criteria 
should also be helpful in identifying new words and sentences 
which contain these words. We plan to explore how to use 
human-machine interaction and combined syntax, semantic 
and acoustic knowledge to make further improvements in per- 
formance and usability of the spoken language interface. 
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