
FAST TEXT PROCESSING FOR INFORMATION RETRIEVAL

Tomek Strzalkowski and Barbara Vauthey

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street
New York, NY 10012

{tomek, vauthey }@cs.nyu.edu

ABSTRACT
We describe an advanced text processing system for information retrieval
from natural language document collections. We use both syntactic pro-
cessing as well as statistical term clustering to obtain a representation of
documents which would be more accurate than those obtained with more
traditional key-word methods. A reliable top-down parser has been
developed that allows for fast processing of large amounts of text, and for
a precise identification of desired types of phrases for statistical analysis.
Two statistical measures are computed: the measure of informational con-
tribution of words in phrases, and the similarity measure between words.

A P P R O X I M A T E P A R S I N G W I T H T T P

T r p (Tagged Text Parser) is a top down English parser
specifically designed for fast, reliable processing of large amounts
of text. The parser operates on a tagged input, where each word
has been marked with a tag indicating a syntactic category: a part
of speech with selected morphological features such as number,
tense, mode, case end degree) As an example, consider the fol-
lowing sentence from an article appearing in the Communications
of the ACM:

The binary number system often many advantages over a de-
cimal representation for a high-performance, general-purpose
computer.

This sentence is tagged as follows (we show the best-tags option
only; dt - determiner, nn - singular noun, nns - plural noun, in -
preposition, jj - adjective, vbz - verb in present tense third person
singular):

[[the,dt],[binary,jj],[number,nn],[system,rm],[offers,vbz],
[many,jj],[adventages,rms],[over, in], [a,dt],[decimal,jj],
[representafion,nn], [for,in] ,[a, dt], [high_per formence,nn],
[comS,comS],[general purpose,nn],[computer,nn],[perS,perS]]

Tagging of the input text substantially reduces the search space of
a top-down parser since it resolves many lexical ambiguities, such
as singular verb vs. plural noun, past tense vs. past participle, or
preposition vs. wh-determiner. Tagging also helps to reduce the
number of parse structures that can be assigned to a sentence,
decreases the demand for consulting of the dictionary, end
simplifies dealing with unknown words.

t At present we use the 35-tag Penn Treebank Tagset created at the
University of Pennsylvania. Prior to parsing, the text is tagged automati-
cally using a program supplied by Bolt Beranek and Newman. We wish to
thank Ralph Weischedel and Marie Meeter of BBN for providing and as-
sisting in the use of the tagger.

T] 'P is based on the Linguistic String Grammar developed
by Sager [8] and partially incorporated in the Proteus parser [3].
T I P is written in Quintus Prolog, and currently implements more
than 400 grammar productions. The restriction component of the
original LSP Grammar as well as the lamlxta-reduction based
"semantics" of the Proteus implementation have been redesigned
for the unification-hased environment. 2 TI 'P produces a regular-
ized representation of each parsed sentence that reflects the
sentence's logical structure. This representation may differ con-
siderably from a standard parse tree, in that the constituents get
moved around (e.g., de-passivization, de-dativization), and car-
rain noun phrases get transformed into equivalent clauses (de-
non'finalization). The aim is to produce a uniform representation
across different paraphrases; for example, the phrase context-free
language recognition or parsing is represented as shown below:

[[verb,
[or,[recognize,parse]]]

[subject, anyone]
[object,

[np,[n,language],
[edj,[context See]]]]].

The parser is equipped with a time-out mechanism that allows for
fast closing of more difficult sub-constituents after a preset
amount of time has elapsed without producing a parse. When the
time-out option is turned on (which happens automatically during
the parsing), the parser is permitted to skip portions of input to
reach a starter terminal for the next constituent to be parsed, and
closing the currently open one (or ones) with whatever partial
representation has been generated thus far. The result is an
approximate partial parse, which shows the overall structure of
the sentence, from which some of the constituents may be miss-
ing. Since the time-out option can be regulated by setting an
appropriate flag before the parsing starts, the parser may be tuned
to reach an acceptable compromise between its speed and preci-
sion.

The time-out mechanism is implemented using a straight-
forward parameter passing and is at present limited to only a sub-
set of nonterminals used by the grammar. Suppose that X is such
a nonterminal, and that it occurs on the right-hand side of a pro-
duction S - > X Y Z. The set of "starters" is computed for Y,
which consists of the word tags that can occur as the left-most

2 See [10] for details.

346

constituent of Y. This set is passed as a parameter while the
parser attempts to recognize X in the inpuL If X is recognized
successfully within a preset time, then the parser proceeds to
parse a Y, and nothing else happens. On the other hand, if the
parser cannot determine whether there is an X in the input or not,
that is, it neither succeeds nor fails in parsing X before being
timed out, the unfinished X constituent is closed with a partial
parse, and the parser is restarted at the closest element from the
starters set for Y that can be found in the remainder of the input.
If Y rewrites to an empty sizing, the starters for Z to the right of Y
are added to the starters for Y and both sets are passed as a
parameter to X. As an example consider the following clause in
the T r P parser (some arguments are removed for expository rea-
sons):

clause(SR,P) :-
sa([pdt,dt'cd,pp,ppS ,jj,jjr,jjs,nn, nns,np,nps] ,PA I),
subject([vbd,vbz,vbp] ,Tail,P 1),
verbphrase(SR,Tail, PI,PAI,P),
subtail(Tail).

In this production, a (finite) clause rewrites into an (optional) san-
tence adjunct (SA), a subject, a verbphrase and subject's right
adjunct (SUBTAIL, also optional). With the exception of subtail,
each predicate has a parameter that specifies the list of "starter"
tags for restarting the parser, should the evaluation of this predi-
cate exceed the allotted portion of time. Thus, in case sa is
aborted before its evaluation is complete, the parser will jump
over some elements of the unparsed portion of the input looking
for a word that could begin a subject phrase (either a pre-
determiner, a determiner, a count word, a pronoun, an adjective, a
noun, or a proper name). Likewise, when subject is timed out, the
parser will restart with verbphrase at either vbz, vbd or vbp (finite
forms of a verb). Note that if verbphrase is timed out, then subtail
will be ignored, both verbphrase and clause will be closed, and
the parser will restart at an element of set SR passed down from
clause. The examples in Figures 1 to 3 show approximate parse
structures generated by TTP.

The sentence in Figure 1 has been parsed nearly to the end,
but T] 'P has failed to find the main verb and it has thrown out
much of the last phrase such as the LR(k) grammars, partly due to
an improper tokenization of LR(k). In Figure 2, the parser has ini-
tially assumed that the conjunction in the sentence has the narrow
scope, then it realized that something went wrong but, apparently,
there was no time left to back up. Occasionally, however, sen-
tences may come out substantially lruncated, as shown in Figure
3 (where although has been mistagged as a preposition).

There are at least several options to realize the kind of
time-regulated parsing discussed above. One involves allotting a
certain amount of time per sentence and, when this time is up,
entering the time-out mode for the rest of the current sentence
processing. This amounts to a rapid, though controlled, exit from
presently open constituents mostly ignoring the unparsed portion
of the sentence. This option gives each sentence in the input
roughly the same amount of time, and thus allows the parser to
explore more alternatives while processing shorter sentences,
while setting tight limits for the longer ones. In our experiments
with the CACM collection we found that 0.7 sec/parse is accept-
able for an average sentence. One other option is to set up time
limits per nonterminal, and restore normal parsing after each
time-out. The advantage here is that longer sentences receive pro-
portionally more time to process (allowing for some backtracking
to explore alternatives). The disadvantage is that one loses the

SENTENCE:
The problem of determining whether an arbitrary context-free grammar is
a member of some easily parsed subclass of grammars such as the LR(k)
grammars is considered.

APPROXIMATE PARSE
[assert,
[[verb,be],
[subjcct,[np,[n,problem], [t_pos,the],

[of,
[[verb,[determine]],

[subject,anyone],
[object,
[[verb,[be]],
[subject,[np,[n,grammar],[t_.pos,an],

[edj,[arbitrary]] ,[adj,[context free]]]],
[obj ect,[np,[n,member],[t..pos,a],

[of,[np,[n,subelass] ,It pos,some],
[a...pos v,

[[verb,[parse,[adv,easily]]],
[subject,anyone],
[object,pro]l],
[of, lnp,[n,grammar],

[ro wh,
[[verb, be],
[subject,[np,[n,k],[adj,[such]]...]

Figure I. Parsing with TTP.

SENTEN(]X:
The TX-2 computer at MIT Lincoln Laboratory was used for the imple-

• me.ration of such a system and the characteristics of this implementation
are reported.

APPROXIMA'I~ PAR,~B:
[assert,
[[be],
l[verb,luse]],
[subject,anyone],
[object,lnp,[n,computerl ,[t_pos ,the] ,[edj,ltx 2] 11],
[for,[np,[n,implernentation],[t_pos,the],

[of,
[and,

[np,[n,system],[t_pos,[such,a]]],
[np,[n,characteristics],[t_.pos,the]]]]]]],

[at,[np,[n Jaboratory],[adj,[mit]],[n..pos,[np,[n Jlncoln]]]]],
[of,[np,[n,implementation],[t..pos,this],

[m_wh,
[[verb,be],

[subject,[]]]]]]]]

Figure 2. Parsing with TTP.

347

SENTENCE:

In principle, the system can deal with any orthography, although at
present it is limited to 4000 Chinese characters and some mathematical
symbols.

APPROXIMATB PARSE:

[asser t ,
[[can_aux],
[[verb,[deal]l,

[subject,[np,[n,system],[t..pos,the]]],
[object, t]],
[sub_.ord,
[with,

[[verb,[limit]],
[subject,anyone],
[object,[]],
[to,[np,[n,character] ,[connt ,[4000,chinese]l]]]]]],

[in,[np, [n,principle]]]]]

Figure 3, Parsing with TIP.

right control upon the overall speed of the parser; now complex
sentences may take a considerably longer time to finish. Various
mixed options are also possible, for instance one may initially
allot x milliseconds to each sentence, and if necessary, restart it
with a half that time, and so forth.

Another method for containing the time allowed for pars-
ing is to limit the amount of nondeterminism by a stricter control
over the rule selection and by disabling backtracking at certain
points, again at the expense of producing only an approximate
parse. Certain types of structural ambiguity, such as preposirional
phrase attachment which cannot be resolved at the syntax level
anyway, frequently remain unresolved in the parse structure gen-
erated by ' ITP (although, 'I']'P attempts to resolve some struc-
tural ambiguities using preferences whenever possible).

' ITP is also quite robust; it can parse nearly every sentence
or phrase, provided the latter is reasonably correctly tagged. We
parsed the entire CACM-3204 collection and only two sentences
were returned unparsed, because of multiple tagging errors. 3 To
assure a gradual degradation of output rather than an outright
failure, and also to allow for handling of sentence fragments and
isolated phrases such as titles, each sentence/phrase is attempted
to be analyzed in up to four ways: (1) as a sentence, (2) as a noun
phrase or a preposition phrase with a right adjunct(s), (3) as a
gerundive clause, and eventually (4) as a series of simple noun
phrases. Each of these attempts is allotted a new time slice, and
the next analysis is started after the previous one fails hut before
it is timed out. Although parsing of some sentences may now
approach four times the allotted time limit, we noted that the
average parsing time per sentence remains basically unaffected. 4

3 CACM-3204 is a standard collection used in information retrieval
experiments and includes, in addition to the abstracts, a set of 64 queries
and relevance judgements for them. The pure text portion of the collection
contains nearly 10,000 sentences and phrases, or about 235,000 words.

4 The average parsing time per sentence is 0.745 sec.

EXTRACTION OF SYNTACTIC PHRASES
The similarity measure that we use for term classification

is based on quantitative information about word and phrase fre-
quencies and word co-occurrences within the text. We collected
this information for two-word "phrases" extracted from the parsed
docurnents, s The co-occurrence analysis gives the best results
when the words are connected by the same grammatical relation,
for example verb-object, or noun-right adjunct, etc. We noted,
however, that including multiple relations in the analysis is possi-
ble so long as they could be considered to convey similar "seman-
tic" dependencies. In our experiments the following types of
word pairs are extracted: (1) a noun and its left noun adjunct, (2)
a noun and the head of its right adjunct, (3) the main verb of a
clause and the head of its object phrase, and (4) a noun and its
adjective, where the noun is the head of a noun phrase as recog-
nized by the parser.

The pairs are extracted from the regularized parse struc-
tures with a pattern-matching procedure which uses an exclusion
list to disregard some "uninteresting" words (such as be, such,
any). The words with the common stem but different forms are
replaced by a single "normal" form. Working on the parsed text
ensures a high degree of precision in capturing the meaningful
phrases, which is especially evident when compared with the
results usually obtained from a "raw" text (either unprocessed or
only partially processed). ~ On the other hand, since our parser is
allowed to skip some portions of each sentence that cannot be
parsed within a preset time limit, the structures it produces are
occasionally incomplete so that the extraction procedure will gen-
erate orily a subset of all relevant phrases. The precision, how-
ever, remains very high: few undesired phrases are ever turned
out (as far as the four specified types are concerned), which is
particularly important in subsequent statistical processes, since
these tend to be quite sensitive on the amount of noise in the
analyzed material. An example is shown in Figure 4.

STATISTICAL SIMILARITY MEASURE
Classification of words and phrases based on similarities

in their meaning is particularly important in information retrievai
systems. Various word taxonomies derived from machine-
readable dictionaries may be of relevance here [1], but general-
purpose dictionaries, such as Oxford's Advanced Learner's Dic-
tionary (OALD) or Longman's Dictionary of Contemporary
English (LDOCE), both available on-line, are usually quite lim-
ited in their coverage of domain specific vocabulary, including
domain-specific use of common words as well as technical termi-
nology. Statistical methods for word clustering may provide a
partial solution to this problem given a sufficient amount of tex-
tual data that display a certain uniformity of subject matter and
style. These problems have been studied to some extent within
the sublanguage paradigm [4,5], and also using elements of infor-
marion theory [2,6]. One general problem with the latter approach
is that information theory, which deals with code transmission,

5 Lewis and Croft [71 define the syntactic phrase as "any pxir of
non-function words in a sentence that are heads of syntactic structures
connected by a grammatical relation."

6 Partial processing may include tagging and/or a limited parsing,
see, for example [7], and also [9] for a more comprehensive view.

348

SKN'r~Nc~:

The techniques are discussed and related to a general tape manipulation
routine.

PARSE STRUCTURB:

[assert,
[[heI,

[[verb,[and,[disenss],[relate]]],
[subject,anyone],
[object,[np,[n,technique] ,[t pos,the]]],
[to,[np,tn,routinel,[t_pos,al,[adj,Igeneral]],

[n..pos,[np,[n#nanipulation]]],
[n..pos,[np,in,tapellllllll.

EXTRACTI/D PAroS:

[discuss,technique], [relate,technique], [routine,general],
[roufine,manipulationI, [manipulation,tapel

Figure 4. Extraction of syntactic pairs.

may not be straightforwardly applicable to the analysis of text
where the basic tokens are words of natural language. Church and
Hanks [2] used Fano's mutual information to compute word co-
occurrence patterns in a 44 million word corpus of Associated
Press news stories, but they also noted that this measure often
produces counterintuitive results. The reason is that the observed
frequencies of many words remain low even in very large cor-
pora. For very small counts the mutual information becomes
unstable and fails to produce credible results. ~

Ideally, a measure of relation between words should be
stable even at low counts and more sensitive to fluctuations in fre-
quency among different words. We are particularly interested in
the low and medium frequency words became of their high
indexing value. An interesting comparison among different func-
tions used to study word co-occurrences in the Longmen diction-
ary is presented by Wilks et al. [11]. They assumed that the best
function would most closely reflect a correlation between a
chance co-occurrence and a minimum relatedness between words,
on the one hand, and between the maximum observed frequency
of co-occurrence and a maximum relatedness, on the other, s

Another question is whether the relatedness measure
should be symmetric. In other words, for any given pair of words,
can we assume that they contribute equally to their mutual rela-
tionship7 We felt that the words making up a syntactic phrase do
not contribute equally to the informational value of the phrase and
that their contributions depend upon the distribution characteris-
tics of each word within a particular type of text. For example, in
a general computer science text the information attached to the
phrase parallel system is more significantly related to the word

* This may be contrasted with a distribution of symbols from a
small finim alphabet.

s A chance co-occurrence of a pair of words is when the probability
of their occurring together is the product of the probabilities of their being
observed independently. Two words have the largest possible frequency
of co-occunence if they never occur separately. Unfo~onately, a chance
co-occurrence is very difficult to observe.

parallel than to the word system. This relationship can change if
the phrase is found in a different type of text where parallel is
more commonplace than system, for example, in a text from a
parallel computation subdomain.

Based on these considerations, we introduce an asym-
metric measure of informational contribution of words in syntac-
tic phrases. This measure IC (x, [x,y]) is based on (an estimate of)
the conditional probability of seeing a word y to the right of the
word x, 9 modified with a dispersion parameter for x. The disper-
sion parameter, d,, understood as the number of distinct words
with which x is paired, has been defined as follows (f~y is the
observed frequency of the pair [x,y]):

Y

where

iff~y>O

For each word x occurring in any of the selected syntactic
phrases, the informational contribution of this word in a pair of
words Ix, y] is calculated according to the following formula:

lC(x, [x,y])= far
t h + d , - 1

where n z is the number of pairs in which x occurs at the same
position as in Ix, y]. IC(x, Ix, y]) takes values from the <0,1>
interval; it is equal to 0 when x and y never occur together (i.e.,
fay = 0), and it is equal to 1 when x occurs only with y (i.e.,
fay = nx and d~ = 1). Empirical tests with this formula on the
CACM-3204 collection give generally satisfactory results, and a
further improvement may be possible if larger corpora are used
(perhaps 1 million words or more). For each pair of words Ix,y]
two informational contribution values are calculated: IC(x, [x,y])
and IC(y, [x,y]), and they may differ considerably as seen in
Table 1.1° The relative similarity between any two words is meas-
ured in terms of their occurrence in common contexts end is the
sum of the informational contributions of the context weighted
with the informational contribution of the less significant of the
two words. A partial similarity for words xl and x2 in the context
of another word y is therefore given as:

si, n,(xx,xz) = p,(xl ,x2) (IC (y, [xx,y]) + IC (y, [x2,y]))
where

p,(xl,X2) = min (IC (xi,[x x,y]),IC (x2, [x2,y]))

The total similarity between two words xx and x2 is given as a
sum of all partial similarities, normalized with a logarithmic func-
tion.

SIM(x 1,x 2) = log (1000 ~ sirny(x 1,xz))
Y

We calculated the similarity measure for any two words which
occurred in at least two common contexts, that is, those which
have been paired with a common word in at least two distinct
occasions. The results are summarized in Tables 1 to 3. In Table
1 we list the values of IC function for selected pairs. Tables 2

9 The conditional probability formula produced the best results in
the experiments reported in [11].

l0 All tables are placed at the end of the paper.

349

and 3 show the top elements in the similarity classes generated
for words graramar and memory. We noted that the similarity
value of about 2.0 or more usually coincided with a high degree
of correlation in meaning, while the smaller values were generally
less interesting.

This first classification can be further improved by distin-
guishing among word senses. Many words have multiple senses,
and these, rather than the lexical words themselves, should be
used in indexing a text. However, obtaining a right dissociation
between different senses of a word presents a separate research
problem which is beyond the scope of this paper.

CONCLUSIONS
In this paper we described the experiments with an

efficient processing of large collections of natural language docu-
ments that could lead to an effective and reliable method for
automated indexing of text in information retrieval applications.
The documents are initially tagged with a stochastic tagger, and
then parsed with the 'ITP parser that generates approximate regu-
larked "logical" structure for each sentence. These structures are
subsequently analyzed by various statistical processes that collect
data about word frequencies, co-occurrences and similarities. The
results obtained in deriving word pairs show a marked improve-
ment in precision for capturing the "correct" word dependencies
as compared to more traditional methods in information retrieval
that use only very limited parsing [7]. The computed similarity
sets are quite interesting and they produce meaningful
classifications. These results can still be improved if the statistical
data is collected from a larger amount of text. We believe that the
improved precision in text indexing will translate into an
improved precision in document retrieval.

ACKNOWLEDGEMENTS
This paper is based upon work supported by the Defense

Advanced Research Project Agency under Contract N00014-90-
J-1851 from the Office of Naval Research, the National Science
Foundation under Grant IRI-89-02304, and a grant from the
Swiss National Foundation for Scientific Research.

REFERENCES
[1] Chodorow, Martin S., Roy J. Byrd, and George E. Heidom.

1985. "Extracting semantic hierarchies from a large on-line
dictionary." Proc. of the 23rd Meeting of the ACL, pp. 299-
304.

[2] Church, Kenneth Ward and Hanks, Patrick. 1990. "Word
association norms, mutual information, and lexicography."
ComputationalLinguistics, 16(1), M1T Press, pp. 22-29.

[3] Grishrnan" Ralph. 1986. Proteus Parser Reference Manual.
Proteus Project Memorandum #4, Courant Institute of
Mathematical Sciences, New York University.

[4] Grishrnan" Ralph, and Kittredge, Richard (eds). 1986.
Analyzing Language in Restricted Domains: Sublanguage
Description and Processing. Lawrence Erlbaum Assoc.,
Hillsdale, NJ.

[5] Grishrnan, Ralph, Lyrtette Hirschman,and Ngo T. Nhan.
1986. "Discovery procedures for sublanguage selectional
patterns: initial experiments". Computational Linguistics,
12(3), pp. 205-215.

[6] Hindle, Donald. 1990. "Noun classification from predicate-
argument structures." Proc. 28 Meeting of the ACL, Pitts-
burgh, PA, pp. 268-275.

[7] Lewis, David D. and Croft, W, Bruce. 1990. "Term cluster-
ing of syntactic phrases." Proc. 13th ACM-SIGIR Confer-
ence, Brussels, Belgium, pp. 385-404.

[8] Sager, Naomi. 1981. Natural Language Information Pro-
cessing. Addison-Wesley.

[9] Salton, Gerard. 1989. Automatic Text Processing: the
transformation, analysis, and retrieval of information by
computer. Addison-Wesley, Reading, MA.

[10] Strzalkowski, Tomek. 1990. "Reversible logic grammars for
natural language parsing and generation." Computational
Intelligence, 6(3), NRC Canada, pp. 145-171.

[ll]Wilks, Yorick A., Dan Fass, Cheng-ming Guo, James E,
McDonald, Tony Plate, and Brian M. Slator. 1990. "Provid-
ing machine tractable dictionary tools." Machine Transla-
tion, 5, pp. 99-154.

Table 1. Informational Contribution for selected word pairs

Ix, y] ;C(x, Ix, y]) ;C(y, [x,y]) fxa n, d~,

[system,parallel] 2 910 322
[system,computation] 78 910 322

[path,parallel] 1 19 14
[class,grammar] 5 128 86
[define,grammar] 3 131 80
[class,language] 1 128 86
[define,language] 9 131 80

0.0016 57 24
0.0634 740 201
0.0313 57 24
0.0235 47 34
0.0143 47 34
0.0047 295 116
0.0429 295 116

0.025
0.0830
0.0125
0.0625
0.0375
0.0024
0.0220

350

Table 2. Words most similar to grarar~r

word similarity value common context

logic 2.16 analysis, application, equivalent, inference, network

language 1.98 analysis, application, class, code, construct, define, extend, inference, program,
sentence, syntax, term, use

reduction 1.93 class, equivalent

data 1.88 analysis, base, class, code, define, include, modify, network, processor, pro-
gram, use

circuit 1.66 analysis, equivalent, use

match 1.64 equivalent, use

computation 1.56 analysis, application, class, code, construct, detect, extend, network, produc-
tion, program, use

technique 1.54 analysis, application, base, class, code, extend, include, modify, program,
show, Use

area 1.53 class, cover, extend, include, use I

algofithra 1.43 analysis, application, base, class, code, construct, extend, include, modify, pro- l
gram, restrict, show, use I

Table 3. Words most similar to memory

word similarity value common context

storage 3.41 access, allocate, amount, block, capacity, contain, effect, hierarchy, number,
operate, organization, partition, reference, request, size, space, structure, sys-
tern, time, unit, use, word

space 2.79 allocate, amount, concept, limit, model, multics, page, partition, request

resource 2.68 allocate, to the amount, compute, management, request, share, time, use

computation 2.56 allocate, character, compose, concept, configuration, effect, environment, func-
tion, management, model, number, operate, page, program, protection, request,
resource, share, simulate, storage, system, technology, time, use, word

block 2.38 access, allocate, buffer, concept, locate, occupy, size, storage, structure, use

file 2.25 allocate, character, concept, contain, locate, number, organization, size, storage,
structure, system, use

system 2.23 block, character, compute, concept, configuration, contain, core, effect, func-
tion, limit.., model, number, operate, organization, part, program, protection, re-
quest, resource, section, share, simulate, storage, structure, technology, unit,
use, view

buffer 2.16 allocate, block, request, size, storage, use

core 2.05 allocate, resident, storage, unit, use

process 1.96 allocate, amount, character, concept, configuration, effect, end, environment,
function, hierarchy, number, object, operate, organization, program, request,
share, size, system, time, unit, use, view

351

