
A Template Matcher for Robust NL
Interpretat ion

Eric Jackson, Douglas Appelt , John Bear,
Robert Moore, and Ann Podlozny

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Abstract
In this paper, we describe the Template Matcher, a sys-
tem built at SRI to provide robust natural-language
interpretation in the Air Travel Information System
(ATIS) domain. The system appears to be robust to
both speech recognition errors and unanticipated or dif-
ficult locutions used by speakers. We explain the mo-
tivation for the Template Matcher, describe in general
terms how it works in comparison with similar systems,
and examine its performance. We discuss some limita-
tions of this approach, and sketch a plan for integrating
the Template Matcher with an analytic parser, which we
believe will combine the advantages of both.

Introduction
One of the conclusions SRI has drawn from working with
the ATIS common task data is that , even with a very
constrained user task, there will always be unanticipated
expressions and difficult constructions in the spoken lan-
guage elicted by the task that will cause problems for
a conventional, analytical approach to natural-language
processing. However, it also seems that requests for only
a few types of information account for a very large pro-
portion of the utterances produced by users performing
a task like air travel planning. This point is illustrated
by some of the more difficult queries in the June 1990
test set:

discontinuity. The third example would be straightfor-
ward, except for the fact that the verb "servicing" has
been substituted for the more conventional "serving."
Despite the difficult linguistic problems posed by these
queries, the information they request is very simple---
just fares, flights, and airlines for travel between a pair
of specified cities.

Consideration of examples such as these has led us to
modify our approach to natural-language processing in
spoken language systems. The key modification to our
system is the addition of a Template Matcher to pro-
vide robust interpretation for the most common types
of requests in the task domain. The Template Matcher
achieves robustness in two ways: (1) it provides an inter-
pretation when not all the words or constructions in an
utterance have been accounted for, and (2) it provides
a mechanism for trading-off the risk of wrong answers
with the degree of coverage. These properties arise from
a mechanism that assigns scores to interpretations, pe-
nalizing interpretations that do not account for words
in the utterance. The bulk of this paper is devoted to
describing the Template Matcher and discussing its per-
formance as a stand-alone system for interpretation of
naturM-language queries for the ATIS task. Later in the
paper we consider how such a module might best fit into
a complete system for spoken-language understanding.

Give me a list of all airfares for round-trip tick-
ets from Dallas to Boston flying on American
Airlines.

Show me all the flights and their fares from San
Francisco to Boston on June second.

I need information on airlines servicing Boston
flying from Dallas.

In the first example the phrase "flying on American
Airlines" apparently modifies "tickets," with the flights
that the tickets are for apparently being the implied sub-
ject of "flying." The second example seems to contain
a discontinuous constituent, "flights .. from San Fran-
cisco to Boston on June second," which is the antecedent
of the pronoun "their" that occurs in the middle of the

Description of the System
The Template Matcher operates by trying to build "tem-
plates" from information it finds in the sentence. Based
on an analysis of the types of sentences observed in the
ATIS corpus, we devised four templates that account
for most of the data: flight, fare, ground transportation,
and meanings of codes and headings. We have recently
added several new templates, including aircraft, city, air-
line, and airport. Templates consist of slots which the
Template Matcher fills with information contained in the
user input. Slots are filled by looking through the sen-
tence for particular kinds of short phrases. For example,
"from" followed by an airport or city name will cause
the "origin" slot to be filled with the appropriate name.
The sentence

190

Show me all the United flights Boston to Dallas
nonstop on the third of November leaving after
four in the afternoon.

would generate the following flight template:

If i ight, [stops ,nonstop],
[airline ,UA],
[origin, BOSTON],
[destination,DALLAS],
[departing_after, [16001],
[date, [november, 3, current_year]]]

The template score is basically the percentage of words
in the sentence that contribute in some way to the build-
ing of that template. Given an input sentence, the Tem-
plate Matcher constructs one template of each sort, and
the one with the best score is used to construct the
database query, provided its score is greater than a cer-
tain "cut-off" parameter. The cut-off parameter is what
permits the risk trade-off mentioned above: the higher
the cut-off, the more conservative the system is in at-
tempting to produce a response. Words can contribute
to a score in different ways: words that fill a slot (e.g.,
"Boston") add to the score, words that help get a slot
filled (e.g. "from") also add to the score. Some words
may not contribute to the interpretation, but nonethe-
less confirm the choice of a particular template (e.g.,
"downtown" for the ground transportat ion template),
and hence are added to the score for that template.
Other words are ignored for the purposes of scoring (e.g.,
"and, please, ok," and "show"), since they do not
tend to confirm particular templates.

In certain cases the Template Matcher may modify the
basic score of a template. Each template has a set of key
words (or key phrases). The presence of these words or
phrases in a sentence is a strong indication that the asso-
ciated template is the appropriate one for that sentence.
For the flight template, the keywords include words like
"flight," "fly," and "go"; for the fare template, words
and phrases such as "how much," "fare," and "price"
are examples; for the meaning template, examples in-
clude "what is," "explain," and "define." If none of a
template 's key words are present in a sentence then that
template 's score is docked by a certain keyword punish-
ment factor, which varies from template to template. In
most cases the lack of a keyword will prevent the asso-
ciated template from scoring above the cut-off.

There are two situations in which the Template
Matcher will "abort" a given template, that is, give it
a score of zero and cease processing it. First, if the sys-
tem tries to fill a slot in a certain template with two
different values, that template is aborted. Since we have
no better than a fifty-fifty chance of guessing which is the
correct filler, we are better off not at tempting any an-
swer. Second, if a template has no slots filled, it will re-
ceive a score of zero. This restriction is relaxed when the
Template Matcher is operating in "context-dependent"
mode, where follow-up questions are expected. A query
like "show me the fares," which would not fill any slots,

would be much more likely as a follow-up question than
as a context-independent query.

Comparison with Other Systems
Systems using the basic idea behind the Template
Matcher go back as least as far as the SAM system at
Yale [2], and include the Phoenix system at CMU [3, 4]
and the SCISOR system at General Electric [5] as re-
cent examples. There is also a degree of similarity to
"case-frame"-based parsing methods [6, 7]. The main
distinction is that the slots in our templates are domain-
specific concepts rather than general linguistic or con-
ceptual cases.

Of these precursors, the Phoenix system seems most
similar to the Template Matcher. Like the Template
Matcher, the Phoenix system has templates (which they
call "frames") with slots that get filled with information
from the sentence. The scoring mechanisms of the two
systems are similar, but not identical. For both, the
basic score of an interpretation is the number of words
in the sentence that the interpretation accounts for. In
the Phoenix system, for a word in a sentence to count
for an interpretation's score, it must help fill some slot in
that interpretation's frame. For the Template Matcher,
the word will also count if it is an "ignore" or "confirm"
word as discussed above.

There are several other differences between the scoring
mechanisms of the two systems: The Template Matcher
punishes templates that do not have a keyword present
in the sentence, and the Template Matcher requires that
at least one slot in a template be filled. Also, the two
systems behave differently when an a t tempt is made to
fill a single slot with two different fillers. The Template
Matcher will abort a template if this happens, while
the Phoenix system will fill the slot with the second of
the two possible fillers. The latter approach will handle
certain types of false starts, but might be expected to
yield more incorrect answers in other situations. Finally,
CMU is not currently using a cutoff to weed out bad in-
terpretations, although given the existence of a scoring
mechanism in their system, this is something they clearly
could do.

Results
After two weeks of development this system was tested
on the June 1990 ATIS test set. This was a fair test to
the extent that the implementor of the matching rou-
tines and the templates themselves (Jackson) had not
examined the data from this test set prior to the eval-
uation. (Moore had noted, however, that the test set
queries seemed amenable to a template-matching ap-
proach). For various values of the cut-off parameter we
obtained the results shown in the following table.

191

Cut-off Right Wrong No Answer
0 .000 55 13 22
0.833 42 4 44
1.000 37 2 51

(These results were determined by visual inspection of
the templates; the database retrieval code was not imple-
mented at this point.) The conclusion we drew from this
test is that a template-matching approach could quickly
yield results that were competitive with the some of the
better results reported in the original June 1990 ATIS
test.

After completing the implementation of the system
and extensive development using the ATIS training data,
we used the Template Matcher for the February 1991
ATIS class A evaluation, in both the NL and SLS tests.
The results as measured by NIST are shown below.

Test Right Wrong No Answer
NL only 109 9 27
SLS 96 11 38

We used a cut-off of 0.8 for this evaluation, as we had
previously determined from training data that this value
should come close to optimizing the number of right an-
swers minus the number of wrong answers.

The system for the SLS tests was a serial connection
of the version of SRI's DECIPHER system used in the
ATIS SPREC evaluation and the Template Matcher de-
scribed above. The answers reported in the SPREC eval-
uation were edited to be in lexical SNOR format and
run through the Template Matcher exactly as in the
NL tests. It is interesting to note the relatively small
degradation from the NL to the SLS results, despite a
18.0 percent word error rate in the speech recognition;
this seems to indicate the robustness of the Template
Matcher to recognition errors.

We had not planned to participate in the D1 evalua-
tion, but at the request of NIST, we did those tests as
well, taking context into account by using the answer to
the first query in the D1 pair to restrict the database
search in answering the second query, the same tech-
nique used in our ATIS demo system. In addition, the
Template Matcher was run in context-dependent mode
for the second query of each D1 pair. The results on
the second queries of the pairs as measured by NIST are
shown in the table below.

Test Right Wrong No Answer
NL only 22 3 13
SLS 15 11 12

We have not yet analyzed why there was a greater degra-
dation in going from the NL to the SLS results in the
D1 tests.

Limi ta t ions
In this section, we discuss some sentences that cause
problems for the Template Matcher that are not easily
resolvable.

Show me flights returning from Dallas into San
Francisco by ten P M.

This sentence is a good example of the need for syn-
tactic information. The problem is that the Template
Matcher cannot tell that the phrase "by ten P M" mod-
ifies "returning," and thus constrains the arrival time.
By default, it treats the "by" phrase as restricting the
departure time, and thus misinterprets the query.

What is an A fare?

The problem here is that "A" is ambiguous; it may
be either the indefinite article or a fare class code. We
have been forced to leave the fare class code "A" out of
the Template Matcher lexicon. Adding it would do more
harm than good, for we would then misinterpret every
occurence of the phrase "a fare" (with the indefinite ar-
ticle), as in "Give me a fare from Boston to Dallas."
Syntactic information could help resolve this ambiguity,
as could speech information, since the determiner "a"
and the letter "A" have different acoustic properties.

List the fares for Delta flight eight oh seven
and Delta flight six twenty one from Dallas to
Denver.

Conjunctions of complex noun phrases are beyond the
scope of the Template Matcher as it currently stands.
The system could be modified to handle such phenom-
ena, but an analytical grammar might be the more nat-
ural tool for the job.

Do you have to take a Y N flight only at night?

This is an example of a sentence where all the words
contribute to a certain template (the flight template, in
this case) and yet that template is not the correct one.

A N e w A r c h i t e c t u r e
As the examples in the previous section suggest, the
Template Matcher by itself is probably not the ulti-
mate solution to the problem of robust interpretation of
natural-language queries. We believe that the template-
matching approach and an analytical parser-based ap-
proach have complementary strengths and that an ap-
proach that combines both of them is likely to be ulti-
mately superior than either one alone. We have therefore
begun developing a new architecture for language pro-
cessing in spoken language systems that combines the
two approaches. Our basic strategy will be to use the
analysis produced by the parser whenever we can, but
to fall back on the Template Matcher when the parser-
based system fails to produce a complete analysis. It is
our conjecture, supported at least in part by the best
results reported in the June 1990 ATIS evaluation, that
an analytical, parser-based approach can be designed so
that when it succeeds in providing a complete analysis
of the input, that analysis has a very high probability

192

of being correct. With the Template Matcher it seems
that there will inevitably be a larger possibility for error,
because it uses strictly less of the information available
in the utterance than a parser. In particular, our Tem-
plate Matcher can ignore words; it ignores order; and it
has almost no notion of structure. By using the Tem-
plate Marcher as a backup to the parser-based system,
we eliminate the possibility of the Template Matcher get-
ting a wrong interpretation of something that could be
successfully analyzed by the parser.

A second reason for running the Template Matcher
after the parser is to enable the Template Matcher to
use partial results of parsing in its operation. Our cur-
rent Template Matcher uses only single words and fixed
phrases as key words or slot fillers. We are in the pro-
cess of extending the Template Matcher so that it uses
whole phrases that have been identified by the parser
in at tempting to analyze the entire utterance. For ex-
ample, we saw that the Template Matcher is unable to
analyze a phrase as complex as "returning from Dallas
into San Francisco by ten P M." Generalized to work
from parsed phrases, the Template Matcher might be
able to successfully interpret a complex utterance con-
taining this phrase even if the entire utterance could not
be parsed. Additionally, running the Template Matcher
on parsed phrases should cut down on the sheer number
of particular word patterns that have to be included in
the template specifications.

The use of robust interpretation methods changes the
way in which the constraints embodied in a grammar
are viewed. They must be treated as soft, rather than
hard, constraints. This has significant implications for
the rest of a spoken language system. If we want the
parser to find grammatical fragments of the input that
may be of use to the Template Matcher, then the parsing
algorithm we previously used, which imposed strong left-
context constraints, is no longer appropriate. We want
something closer to pure bot tom-up parsing to find all
the phrases that the Template Matcher might use. We
have developed such a parser, whose details are outlined
in another paper for this workshop [1].

Perhaps the most significant consequence of using ro-
bust interpretation methods in a spoken language sys-
tem, however, is that the failure to find a complete parse
can no longer be used as a hard constraint to reduce per-
plexity for the speech recognizer. An analytical grammar
still contains valuable information that should be used by
the recognizer, however. We feel that one promising ap-
proach to making use of this information is to extend the
idea of a word-based statistical language model, such as
a bi-gram model, to a phrase-based statistical language
model, e.g., a "bi-phrase" model. The idea is simply
to estimate the probability of occurrence of a particular
type of phrase conditioned on the type of phrase that
precedes it. In making this work effectively, however, it
is important to include some lexical information in the
categorization of phrases, usually information about the
lexical head of the phrase.

The ability of such a framework to capture long dis-

tance constraints not captured by N-gram models is il-
lustrated by an utterance such as "What airlines that
serve Boston fly 747s?" If we want to predict the like-
lihood of "fly" occuring in this context, the preceding
word "Boston" gives us essentially no information. If,
however, we have identified "What airlines that serve
Boston" as a noun phrase whose lexical head is "air-
lines" then the likelihood of a verb whose lexical head is
"fly" should be relatively high.

The incorporation of a probabilistic element into the
system raises a number of other interesting possibilities,
including incorporation of probabilistic scoring based on
observations of likelihoods of particular templates for
sentences in the corpus, of particular slots for each tem-
plate, and of particular words for each slot; and the pos-
sibility of using the Template Matcher itself as the basis
of a statistical language model to guide recognition.

S u m m a r y
In sum, the Template Matcher represents a complemen-
tary approach to traditional natural-language process-
ing. It has the virtues of robustness and broad coverage
of many linguistic variants for requests for specific types
of information. Although we have not discussed the issue
of computational efficiency in this paper, the Template
Matcher is noticably faster than a typical parser. The
approach also has the advantage of rapid development
time which should enhance portability to new domains.

A c k n o w l e d g m e n t s
This research was supported by the Defense Advanced
Research Projects Agency under Contract N00014-90-C-
0085 with the Office of Naval Research.

R e f e r e n c e s
[1] Moore, R.C., and Dowding, J., Efficient Bottom- Up

Parsing, Proceedings, Fourth DARPA Workshop on
Speech and Natural Language, February 1991.

[2] Schank, R.C. and Yale A.I. Project, SAM--A Story
Understander, Research Report 43, Department of
Computer Science, Yale University, 1975.

[3] Ward, W., Understanding Spontaneous Speech, Pro-
ceedings, DARPA Speech and Natural Language
Workshop, February 1989.

[4] Ward, W., The CMU Air Travel Information Ser-
vice: Understanding Spontaneous Speech, Proceed-
ings, DARPA Speech and Natural Language Work-
shop, June 1990.

[5] Rau, L.F., and Jacobs, P.S., Integrating Top-Down
and Bottom-Up Strategies in a Text Processing Sys-
tem, Proceedings, Second Conference on Applied
Natural Language Processing, Austin, Texas, 1988.

193

[6] Riesbeck, C., and Schank, R.C., Comprehension
by Computer: Expectation-Based Analysis of Sen-
tences in Context, Research Report 78, Department
of Computer Science, Yale University, 1976.

[7] Carbonell, J.G. and Hayes, P.J., Recovery Strategies
for Parsing Extragrammatical Language, Technical
Report CMU-CS-84-107, Carnegie-Mellon Univer-
sity Computer Science Technical Report, 1984.

194

