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Abstract 
This paper reports recent efforts to further improve the perfor- 
mance of the Sphinx system for speaker-independent contin- 
uous speech recognition. The recognition error rate is signifi- 
cantly reduced with incorporation of additional dynamic fea- 
tures, semi-continuous hidden Markov models, and speaker 
clustering. For the June 1990 (RM2) evaluation test set, the 
error rates of our current system are 4.3% and 19.9% for 
word-pair grammar and no grammar respectively. 

Introduction 
This paper reports our recent effort to further improve the 
accuracy of the Sphinx System [10]. We choose here to 
adhere to the basic architecture of the Sphinx System, and 
to use the standard Resource Management task and training 
corpus. Possible improvements could be resulted from the 
following categories: 

• Incorporate additional dynamic features. 

• Improve HMM probabilistic representation. 

• Cluster training speakers to provide multiple models. 

• Introduce discfiminant transformations to improve dis- 
crimination. 

• Extend corrective training for semi-continuous models. 

• Improve allophonetic models of coarticulation. 

This paper will report advances on the first five categories. 
Improved allophonic modeling has been reported in [13]. 

Our first improvement involves the incorporation of dy- 
namic features computed from the LPC cepstrum. Previous 
versions of the Sphinx system have used first order differ- 
enced cepstrum and power. Here, we experimented with 
second and third order differenced cepstrum and power. We 
also experimented with incorporation of both 40 msec and 80 
msec differenced cepstrum, as well as the difference derived 
from compressed speech [3]. These additional feature sets 
are incorporated in the multi-codebook framework. The best 
combination reduced errors by 17% over the baseline results. 

Our second technique employs the semi-continuous hid- 
den Markov model (HMM) [8]. Multiple-codebook semi- 
continuous models are extended to our current Sphinx ver- 
sion. Both diagonal and full covariance Gaussian models are 

investigated. We found that the best variants of both models 
reduced error rate of discrete HMMs by 10-20%. 

Due to smoothing abilities of the semi-continuous model, 
we were able to train multiple sets of models for different 
speakers. We investigated automatic speaker clustering and 
explicit male/female clustered models. In both cases, models 
of all the speaker clusters are simultaneously active, with 
the restriction that no between-cluster transitions are allowed. 
Thus, the system retains speaker-independent characteristics. 
By using multiple model sets with the semi-continuous HMM, 
the error rate is further reduced by 10-15%. 

We experimented with two variants of linear discriminant 
transformations. The first attempted to use a single transfor- 
marion to separate all triphone states. The second attempted 
to shift the mean vectors of the semi-continuous mixtures, so 
as to separate confusable words. However, neither method 
produced any improvement. 

Finally, we investigated corrective training for semi- 
continuous models. At the time of this writing, we have 
only applied our discrete corrective training algorithm [15] to 
semi-continuous models. We found that this method is effec- 
tive if top- 1 (or discrete HMM) decoding is used. However, if 
the recognition algorithm considers top N codewords, while 
the corrective training uses only the top 1 codeword, the re- 
suits degrade considerably. Thus, corrective training is not 
used in this evaluation. 

In the next five sections, we describe these techniques. 
We will measure improvements based on our baseline system 
as reported in [11], and evaluated on the 600 sentences that 
comprise the February and October 1989 test sets. Next, a 
summary of all the improvements will be provided for the 
tuning (February and October 1989) sets, as well as the new 
RM2 test set (480 sentences from 4 speakers). The last section 
contains our conclusion and outlines our future work. 

Dynamic Features 
Temporal changes in the spectra are believed to play an im- 
portant role in human perception. One way to capture this 
information is to use delta coefficients or differenced coeffi- 
cients [4, 14] that measure the change of coefficients over time. 
Temporal information is particularly suitable for HMMs, since 
HMMs assume each frame is independent of the past, and 
these dynamic features broaden the scope of a frame. 
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In the past, the Sphinx system has utilized three codebooks 
containing: 

• 12 LPC cepstrum coefficients. 

• 12 differenced LPC cepstrum coefficients (40 msec. dif- 
ference) 

• Power and differenced power (40 msec.). 

We experimented with a number of new measures of spec- 
tral dynamics, including: 

• Second order differencing (cepstrum and power). 

• Third order differencing (cepstrum and power). 

• Multiple window differencing (40 msec. and 80 msec). 

• Differencing from temporally compressed speech. 

The first set of coefficients is incorporated in a new code- 
book, whose parameters are second order differences of the 
cepstrum coefficient. The second order difference for frame 
n is the difference between n+l and n-1 first order differen- 
tial coefficients. We incorporated this as a fourth codebook, 
and evaluated the new system using the word pair grammar 
(perplexity 60) on the February and October 1989 test sets 
(600 sentences). We found that second order differencing re- 
duced errors from 6.9% to 6.2%. Second order differencing 
of power (used as another parameter in the power codebook) 
further reduced errors to 6.0%. 

We attempted to extend this idea to third-order differenc- 
ing, taking the difference of adjacent second-order differen- 
tial coefficients. But we found that performance deteriorated 
slightly. We conclude that there is little information beyond 
second-order differences. 

Next, we incorporated both 40 msec. and 80 msec. dif- 
ferences, which represent short-term and long-term spectral 
dynamics, respectively. We hoped that these two sources of 
information are more complementary than redundant. We first 
incorporated the two as separate codebooks (making a total 
of five codebooks), which reduced errors from 6.0% to 5.9%. 
We then incorporated the two into one codebook, weighted 
by their variances. This further reduced errors to 5.7%. We 
believe the latter approach gave better performance because 
the correlation between the 40 msec. and 80 msec. differ- 
ences violated the codebook independence assumption of the 
multi-codebook approach. 

Finally, we tried to incorporate a variable measure of spec- 
tral dynamics. Instead of taking static differences, we take 
differences that depend on "acoustic segments." We defined 
acoustic segments by using the variable frame rate method 
[16]. Speech is segmented according to theEuclidean distance 
of the cepstral coefficients. A segment boundary is placed be- 
tween frames whose distance exceeds a pre-set threshold. The 
threshold is chosen so that the ratio of frames to segments is 
about 2.5 to 1. Each segment is then averaged into a single 
cepstral (and power) vector. The differential measure for seg- 
ment n is computed by subtracting the averaged cepstrum of 
segment n- 1 from that of n+l. Then, the compressed cepstrum 
is expanded back to its original frame length, by duplicating 

the compressed frames, so that its length matches that of the 
other code sequences. This provides more acoustic context for 
frames that are in stationary regions. We used this codebook 
instead of the second order differences, and found that errors 
increased to over 7%. One explanation for this phenomenon 
is that this type of compression-expansion increased frame- 
to-frame correlation, which makes HMMs less appropriate 
models. 

Thus, the final configuration involves four codebooks, each 
with 256 entries, that use: 

• 12 LPC cepstrum coefficients. 

• 12 40-msec differenced LPC cepstrum coefficients and 
12 80-msec differenced LPC cepstrum coefficients. 

• 12 second-order differenced power. 

• Power, 40-msec differenced power, second-order differ- 
enced power. 

This configuration reduced an original error rate of 6.9% to 
5.7%, a 17% error rate reduction. A summary of dynamic 
feature results is give in Table 1. 

Systems [ Error Rate 

Baseline I 6.9% 
Additional dynamic features 5.7% 

Table 1: Improvements using additional dynamic features. 

Semi-Continuous HMMs 
Semi-continuous hidden Markov models mutually optimize 
the VQ codebook and HMM parameters under a unified 
probabilistic framework [7, 8, 6]. Here, each VQ code- 
word is regarded as a continuous probability density func- 
tion. Intuitively, from the discrete HMM point of view, semi- 
continuous HMMs integrate quantization accuracy into the 
HMM, and robustly estimate the discrete output probabilities 
by considering multiple codeword candidates in VQ proce- 
dure. From the continuous mixture HMM point of view, 
semi-continuous HMMs employ a shared mixture of contin- 
uous output probability densities for each individual HMM. 
Shared mixtures substantially reduce the number of free pa- 
rameters and computational complexity in comparison with 
the continuous mixture HMM, while maintaining reasonably 
its modeling power. For the semi-continuous model, appropri- 
ate acoustic representation and probability density functions 
is crucial to the recognition accuracy. With appropriately cho- 
sen acoustic parameters and probability density functions, the 
semi-continuous HMM can greatly enhance the robustness in 
comparison with the discrete HMM [8]. 

We first performed exploratory semi-continuous experi- 
ments on our three-codebook system. The semi-continuous 
HMM was extended to accommodate multiple feature front- 
end [8, 6]. All codebook means and covariance matrices are 
reestimated together with the HMM parameters except the 
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power covariance matrices, which are fixed. In an early ex- 
periment on the June 88 test set, we found that full covariance 
HMMs outperformed diagonal covariance semi-continuous 
HMMs (with an error reduction of 10% in comparison with 
the diagonal semi-continuous models, and 20% error reduc- 
tion in comparison with the discrete HMM). However, on 
the present tuning set, the full covariance semi-continuous 
HMMs did not give us any improvement. This is probably 
because the correlation among our acoustic parameters is not 
very strong, so that the diagonal covariance assumption is 
relatively valid. When three codebooks are used, the diago- 
nal semi-continuous model reduced error rate of the discrete 
HMM by 13%. Results using three codebooks are shown in 
Table 2. 

[ Models I Error Rate [ 
I DiscreteHMM [ 6.9% 

Semi-continuous HMM 6.0% 

Table 2: Discrete and semi-continuous results for three code- 
book systems. 

Another advantage to use the semi-continuous HMM is that 
it requires less training data in comparison with the discrete 
HMM. Therefore, given current training data set, more de- 
tailed models can be employed to improve the recognition 
accuracy. One way to increase the number of parameters is 
to use speaker-clustered models as shown in the following 
section. 

Speaker Clustering 
In the past, we have experimented with speaker clustering as 
a means of shaker  adaptation [12]; however, we found that 
clustering fragmented the training data, and actually degraded 
performance. In that experiment, no smoothing across clus- 
ter was performed. We now rectify this problem with two 
different approaches. 

The first approach uses discrete models, and smoothes them 
using deleted interpolation between correct cluster and other 
clusters. We clustered the speakers based on similarity of 
their allophonic HMMs [5]. To perform recognition, one 
recognition network is generated for each speaker cluster. All 
networks are run in parallel, and the best overall scoring path is 
chosen as the recognized sentence. Note that this is a speaker- 
independent approach, as no a priori cluster selection takes 
place. With two and three clusters, this approach reduced 
errors by about 6%. 

The second approach smoothes the resulting models by 
semi-continuous HMMs. Because multi-codewords are used 
in Forward-Backward training for semi-continuous models, 
more models can be trained robustly. Thus, smoothing takes 
place only within-cluster, and not between-cluster. For this 
study, we simply used male and female as the two clusters. 
No interpolation between clustered models is used. The best 
overall scoring path with clustered models is chosen as the 
recognized sentence. For three-codebook systems, the error 

reduction of clustered semi-continuous HMMs is over 10% in 
comparison with the semi-continuous HMM, and over 20% 
in comparison with the clustered discrete HMM. 

Finally, we combined the four-codebook front-end with the 
speaker-clustered semi-continuous HMMs. The results are 
shown in Table 3. The combined error reduction here is 17% 
in comparison with the discrete HMM. 

I Systems I Error Rate [ 

I DiscreteHMM I 5-7% ] 
Semi-continuous HMM 4.7% 

Table 3: Four codebook results: discrete HMMs vs. speaker- 
clustered, semi-continuous HMMs. 

Discriminant Transformations 
Two variants of linear discriminant transformation were ex- 
perimented. First, the classes to be discriminated are defined 
as triphone states. The Viterbi segmented data are used to 
compute within- and between-class means and covariance 
matrices. Here, 7 continuous frames are treated as one vec- 
tor for discriminate transformation. The transformed vector 
corresponding to top three-frame eigenvalues are divided into 
three vectors for three-codebook generation. Several vari- 
ations of the approach were experimented. However, the 
average recognition accuracy is not improved. 

Next, we experimented with a unified linear discrimi- 
nant transformation to find appropriate features for semi- 
continuous hidden Markov modeling. We used word level 
supervision to estimate the confusion covariance matrices. 
This extends the technique suggested by [9, 2] to the semi- 
continuous HMM. Both within- and confusion-covariance 
matrices for each VQ codeword are weighted with the semi- 
continuous HMM posterior probabilities. We investigated 
both codeword-dependent and codeword-independent dis- 
criminant transformations with different parameters. Unfor- 
tunately, the final word accuracy is still about the same as our 
best semi-continuous HMM. 

Results of the unified discriminat transformation were 
promising. We think more experiments are needed to fully 
understand the problem. 

Corrective Training 
Previously, we have applied the IBM corrective training algo- 
rithm [1] to continuous speech training [15]. This approach 
basically involved generation of misrecognitions and near- 
misses for each training sentence, and then modifying the 
HMM parameters to discriminate the correct sentence from 
the misrecognitions and near-misses. 

For discrete models, this method rewards codewords that 
contribute to the correct alignment, and punishes those that 
contributeto misrecognitions and near-misses. However, with 
a semi-continuous system, several codewords are accountable 
for each frame alignment. At the time of this writing, we have 
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only used a simple extension of our algorithm: for the purpose 
of corrective training, only the top semi-continuous candidate 
(rather than top 4 or 6) was used. 

This technique essentially uses top-1 correction and top-4 
decoding. We found that this technique increased errors sub- 
stantially, presumably due to the mismatch between the cor- 
rective and decoding stages. In a second experiment, both top- 
1 correction and decoding were applied (although hypotheses 
were generated with a top-4 system), significant improve- 
ments were observed (an error reduction of 10-15%). How- 
ever, the improvement was less than that of the 4-codebook 
semi-continuous HMM. Thus, for evaluation purposes, we 
opted to bypass the corrective training stage. 

In order to reap maximum benefit from corrective training, 
we will need to implement a consistent algorithm for semi- 
continuous corrective training. We also believe that an N- 
best algorithm [17] for hypothesizing near-misses will help 
significantly. 

The results on these speakers are better than the tuning set. 
The error reduction of our current system is about 40% in 
comparison with the baseline system. We believe this can be 
partially be attributed to the better modeling of female speech. 
Previously, speaker-independent models were trained with 1/3 
female speech. With separated male/female models, female 
results improved substantially. 

Speaker Word-Pair Grammar No Grammar 
Error Rate Error Rate 

BJW 3.1% 18.6% 
JLS 4.8% 21.3% 
JRM 5.8% 24.0% 
LPN 3.6% 15.7% 

Average 4.3% 19.9% 

Table 6: Results with RM2 test set. 

Summary of Results 
Without corrective training, our previous best results was 
6.9% error rate on the 600 sentence tuning set (with cor- 
rective training, this was reduced to 5.7%). We will refer to 
the 6.9% error rate system as the "baseline" system. Table 4 
shows our progress with the techniques described in this pa- 
per. This represented a 32% error rate reduction from the 
baseline system. We believe with proper implementation of 
corrective training, another 10% or more reduction will be 
possible. 

Systems Error Rate 

Baseline 6.9% 
+2nd order diff. cepstrum 6.2% 

+2nd order diff. power 6.0% 
+80ms 1st diff. order cepstrum 5.7% 

+Semi-continuous clustered model 4.7% 

Table 4: Improvements of various techniques using the word- 
pair grammar. 

Since our intermediate results were only evaluated on the 
word-pair system, we do not have detailed results for the no- 
grammar system. The baseline and final system results are 
shown in Table 5. The improvements introduced here led to 
a 28% error reduction. 

Finally, we evaluated the above system on the June 90 
(RM2) test set, which consists of 480 sentences spoken by 
four speakers. The evaluation results are shown in Table 6. 

Systems Error Rate 

Baseline 27.1% 
Final system 19.5% 

Table 5: Improvements using no grammar. 

Conclusions 
In this paper, we have presented several techniques that sub- 
stantially reduced Sphinx's error rate. These techniques 
include: dynamic features, semi-continuous HMMs, and 
speaker clustering. We have also found that discriminant 
transformations and dynamic features based on variable frame 
analysis did not improve recognition. We also obtained dis- 
appointing results using a compromised corrective training 
algorithm. 

In the future, we expect to further extend some of these 
areas. We will investigate other methods for automatical pa- 
rameter selection. We will extend speaker clustering to a 
much larger number of clusters (on a larger database). Cor- 
rective training could be improved by using N-Best sentence 
hypotheses, as well as by using a consistent algorithm for 
semi-continuous learning. Finally, we hope to further investi- 
gate discriminant methods, and learn whether they are limited 
to small vocabularies, or discover new variations that improve 
our large-vocabulary system. 

We believe the improvement of basic speech research is 
essential for further progress of the spoken language systems. 
We hope extensions of the above areas of research will further 
narrow the gap of man-machine communication. 
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