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The problem of parsing Natural Language

Parsing sentences of a Natural Language(NL) is an essential requirement for a variety of NL ap-
plications, and has been extensively studied. In particular, the sort of tasks which it would be de-
sirable to do, include the ability to tag each word with its part-of-speech; to delineate with brackets,
and label with a category name, each syntactic phrase; and to be able to adapt to different types
of source material. Despite some 30 years of active research performing these tasks with a high
degree of accuracy on unrestricted text is still an unsolved problem.

The conventional approach is a grammar, usually created manually by the encoding of some lin-
guistic intuitions in some notation. Many grammars have a substantial context-free
grammar(CFG) component, or are equivalent in computational power to CIFG’s. A standard
parsing algorithm can then be used to obtain analyses of any given sentence. A discussion of the
relevant concepts of parsing CFG'S is given in ITopcroft and Ullman, 1979, where the CKY algo-
rithm, the first of the chart parsing techniques, is described. A recent example of a grammar, of
CFG power, is the Generalised Phrase Structure Grammar (GPSG) given by Gazdar, Klein,
Pullum and Sag, 1985. Simple context-free grammars, and systems derived from them, have the
consequence that practical grammars of full Natural Languages tend to be very large; algorithms for
parsing grammars are computationally expensive; and hand-writtcn grammars are often incomplcte,
and are usually highly ambiguous. Consequently this method alone is unlikely to solve the problem
of parsing NL'’s.

An extension to context-free grammars which considers cach rule to be associated with a probability
is called a probabilistic context-free grammar, or P-CI'G (sce Wetherill, 1980 for a full discussion).
Conceptually, the probability of a rule for a given non-terminal symbol is the likelihood with which
the rule is applied, as opposed to other rules for rewriting the same non-tcrminal label. With the
addition of this extra picce of information it is possible to choose the parse which is the most likely
from among all the ambiguous parses. The “most likcly” parse is considered to correspond to the
“cotrect” parse. A method exists for training such grammars with respect to some corpus, the
I[nside-Outside Algorithm (Baker, 1979). It is described in Jelinck, 1985(b), and has been used by,
for example, Fujisaki 1987. Adapting a model with reference to a training corpus should enable the
model to be used with greater success on an unscen test corpus. ‘The problems of large grammars,
expensive algorithms, incomplete and ambiguous grammars, arc esscntially the same as for simple
context-free grammars. Additionally, estimates must be made of the probabilitics of the rules in the
grammar. Since the true values for a natural langnage, such as F'nglish, arc not known, the quality
of the estimates made is rather important. Any arbitrary initial guess may be a long way from the
true value, and will need a great deal of training to achicve a good cstimate. If the process of
training is slow, then it may not be possible to do cnough training to significantly improve the es-
timates. If the grammar being trained is not a good grammar, then it may not be possible to get a
good solution to the parsing problem despite a very great dcal of training.

It is assumed here that no restriction on vocabulary or scntence construction can be made. There
are a number of significant applications, such as speech recognition and speech synthesis, for which
this is the only reasonable assumption (see Jelinek, 1985(a)). The scarch for a method to perform
fast, accurate parsing of unrestricted natural language sentcnces may require other models. One
way forward is to attempt to use a formulation of grammatical knowledge which uses information
in a more compact way. A popuiar method is the use of so-called unification grammars (derived
in tum from GPSG). One attempt to design a computable form for such a grammar is described
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by Sharman, 1989. An alternative step is to attempt to consider a development of the ID/LP no-
tation introduced in GPSG.

Probabilistic ID/LP grammars

The idea of separating simple context-free rules into two, orthogonal rule sets, immediate
dominance(ID) rules, and linear precedence(LP) rules, gives a notation for writing grammars called
ID/LP. This technique is used in GPSG with a number of other techniques to represent linguistic
facts in a compact and perspicuous formalism. Some of the other aspects of GPSG, such as the
use of features to represent information in non-terminal categorics, the use of feature co-occurrence
restrictions, the use of feature specification defaults, and the definition of feature passing con-
ventions, are not considcred here.

1t is assumed in GPSG that dominance and precedence relations are independent. The independ-
ence of separate dominance rules does not seem problematical, but whether or not precedence rules
are uniform across all phrase types does seem more contentious. As a resuit, ID/LP grammars tend
to have a rather rich collection of ID rules, and a rather small collection of LP rules. This raises
the interesting question of the possibility that IID and LP rules arc not independent, but this pos-
sibility is not pursued here.

The notion of a grammatical rclation, such as precedence or dominance, can be generalised to mean
the propensity of a symbol to relate to another symbol. For example, a noun phrase has a pro-
pensity to contain a noun. Since it is clear that at lcast some noun-phrases do not contain nouns,
this propensity will not be a certainty. However, the propensity of noun phrases to contain a noun
will, presumably, be rather greater than, for example, the propensity of noun-phrases to (directly)
contain a verb, or of other phrases to contain a noun. In other words, for any given phrase there
is a probability distribution over the objects which can be its immediate constituents, which we can
call the dominance probability. By a similar argument, therc is also a probability distribution over
the ordering of items in a phrasc which we can call the precedence probability. Thus an ID/LP
grammar which uses probabilitics is a probabilistic ID/L.P grammar, or P-1D/LP.

Computing the prdbability of a sentence

In order to use a P-ID/LP grammar analogously to a P-CI'G we nced to establish a way of com-
puting the probability of a sentence, given the probability of 11D and L.P rules. The likelihood of
the derivation of a sentence, W, from the topmost distinguished symbol, S, for an ID/LP grammar,
can be determined from the independent likelihoods of each step in the derivation. Each step is the
result of replacing some non-terminal symbol by some other terminal and non-terminal symbols,
(the dominance relation), and the result of rcarranging those derived symbols in the desired order
(the precedence relation).

Thus, in the derivation of the sentence S= ¥ therc is a scquence of individual steps, which may
result in a derivation such as

S= .. .>xAyoxBCy=.. W)Wy .w, = W

The immediate dominance rule 4 — B, C has becn used to generate xBCy from xA4y at the inter-
mediate step indicated. That is, the 4 was replaced by a B and a C without reference to their order.
This rule is considered to have the conditional probability P,(B, ClA) , or the dominance proba-
bility of B and C given 4. Since this would have allowed both the rewriting B C, and C B, the
precedence rule B<C must also have been used. This rule is considered to have the probability
P{B<C) , or the precedence probability of B before C. If the probability of the string xAy is
P(xAy), then the probability of the string xBCy can be considered to be
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P(xBCy) = P(xAy)+ Pp(B, Cl A) « P(B=<C)

Thus, the derivation is treated as a stochastic process involving independent probability distrib-
utions governing the symbois which are produced in each step, and the order of the symbols. The
result is the simple stochastic process conventionally modelled as production rule probabilities.
The probability of a single derivation of W from S is denoted by P(W|S, d), where d, represents
the i-th derivation. It is calculated from the product of all the individual steps in the derivation,
and is clearly independent of the order of application of the individual steps in the derivation. The
total probability of the word string W, or P(W|S), is the sum of all the separate derivations from
Sto W, or ZP(WI S,d). The more useful quantity in parsing is the derivation for which the
probability is‘the greatest, or the max P(W1S,d) . This derivation is the most likely derivation,
and thus defines the parse tree to be ‘selected for the given sentence.

The general idea can be extended, in a straightforward way, not described here, for the case of un-
restricted rules, where there are an unlimited number of symbols on the right hand side of a
context-free rule. In this case the longer rules are modelled as successive applications of shorter
rules. The advantage of this decomposition is that the size of the rule sets are to some extent
governed by the size of the symbol set chosen, and do not involve the huge tail of low frequency
rules typical of P-CFG grammars. For example, if there are n non-terminal symbols in the gram-
mar, there can only be 7 precedence relations between them, and an estimate of all of them can
be made, avoiding the problem of unknown rules. Similarly the number of dominance rules is also
restricted over the equivalent number of conventional phrasc structure rules.

Determining P-ID/LP grammatical relations

The values of the probability of each dominance and precedence rule must be known so that
parsing can take place according to the scheme described above. These values can be determined
cither by observation, or by training.

In order to determine the values by observation, a large corpus of pre-analysed sentences can be
inspected, and the dominance and precedence frequencies can be determined by counting. From
these frequencies it is simple to compute the dominance and precedence probabilities.

Alternatively, values of the dominance and precedence probabilitics can be determined by assuming
some arbitrary initial estimate, and training on a corpus, in a way similar to that used in the
Inside-Outside algorithm. This involves computing the likclihood of the topmost label, S produc-
ing each observed sentence, W, and collecting counts of obscrved dominance and precedence re-
lations, which are then used to re-estimate the probabilitics of dominance and precedence. This
re-estimation can be done many times, until satisfactory cstimates of the true probabilities are ob-
tained.

Since a suitable corpus of pre-parsed sentences was available the first method was used for sim-
plicity. This is called adapting the grammar to the corpus, to distinguish it from training which is
the technical term used for estimates derived from iterative re-cstimation algorithms.

Creating a P-ID/LP parser

The probability of a sentence can be calculated in an entirely analogous way to that done for
P-CFG’s, by using a modificd form of the CKY algorithm. The CKY table holds a place for the
probability of every possible substring which the grammar produces for a given sentence. This is
calculated from the bottom up, re-using already completed calculations where necessary. The
computational complexity of this task is known to be related to the cube of the sentence length (see
Hopcrad, 1979), which is at least a polynomial calculation, rather than an exponential one.

269



Techniques for threshoiding the computation can be used to speed up the parser. Because there
can be fewer relations to compute than there might be rules in a P-CFG the parser may be faster.

Using a P-ID/LP grammar to parse English

This section describes an expenment to determine if P-ID/LP parsing, in the manner described
above, is a useful technique. The necessary grammatical relations were obtained from a collection
of unrestricted sentences of English taken from the Associated Press (AP) newswire material, con-
sisting of about one million words of text, with a vocabulary of about 50,000 words, The sentences
were available in a pre-parsed form, called a treebank, with about 45,000 different phrase types
marked by the manual parsers. A simple CFG could require as many rules as phrase types to rep-
resent the complexity shown in this data. The treebank was used to determine the values of
dominance and precedence probabilities, and to test the output of the parser. For these purposes
the original treebank was divided into two equal parts, so that a grammar derived from one part
could be tested on the other. A modified CKY parser was used to parse the sentences with the
P-ID/LP grammar, and to select the most likely parses. The resulting system has the cdpability to
parse any sentence of English, aithough it is adapted specifically to the AP corpus.

The following steps were taken:

1. A restricted set of 16 non-terminal symbols were derived from the 64 actually used in the
treebank.

2. A restricted set of 100 terminal symbols were derived from the 264 actually used in the

treebank.

The treebank was divided into two parts, one for adapting the grammar, and one for testing.

4. The word list of the adapting data was extracted, with the unigram frequency of each word,
and the tag attached to the word. This word list is uscd to create:

a. A lexicon of word-to-tag correspondences, with the unigram probability of each cntry.
This is used to generate the probability of tag assignments to words when those words are
found in a sentence to be parsed.

b. A probability distribution over tcrminal tags. This is used to predict the tag of a word in
a sentence, when that word does not appear in the lexicon.

S. Initial estimates of the dominance relations for non-tcrminal symbols were derived from the
treebank.

6. Initial estimates of the precedence relations for non-tcrminal and terminal symbols were de-
rived from the treebank.

w

A variant of the CKY parser for unrestricted rules was used to compute the probability of each
sentence. The completed parse includes the most likely tag assigned to each word, and the most
likely constituents hypothesised over the substrings of the sentcnce. The best parse can be displayed
as a conventional parse tree.

The results

A test set of 42 sentences was chosen at random, subject only to the restriction that the sentence
length was less than 30 words. The average sentence length was 20 (as opposed to 23 for the AP
as a whole). These sentences were parsed, and the results compared with manual analyses of the
same sentences. For the purposes of comparison, parses were divided into the following classes to
show the accuracy of the parse, relative to the manual parse: cxact match; close approximation;
incorrect parse; failed parsc. Some examples of these categories are given in the Appendix, to show
the type of assessment which has been made.
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The sentences were parsed in four ways: using a grammar which was unadapted(Gl) or
adapted(G2), and using a lexicon which was unadapted(L1) or adapted(L2), the adaptation being
to the sample from which the test sentences were drawn. It would be expected that the system
should do well on data which it was adapted to, and less well on data it was no adapted to. The
resulting parses were manually inspected for errors.

The results for tagging are as follows:

$escccmcccccccaccananan 4ececcaas $ocmeass bocacana 4occaaaa +
| TAGGING | 61,L1 | G1,L2 | G2,L1 | G2,L2 |
e $omcmacas fooemnn- $omeene- $occcceae +
jcorrect tags ] 660 | 789 | 658 | 779 |
|avg. correct tags/sent] 15.7] 18.8] 15.6| 18.5]
|% tags correct | 80 | 96 | 80 | 95 |
4occacccccscacaccncana~ TSR N N demoacan +
The results for parsing are as foilows:
$ecccaumcccccacaccanaan T WP F R Foemeea Fommaan +
| PARSING | G61,L1 | G1,L2 | G2,L1 | G2,L2 |
4ecmeccccncccccccccaaaaa R P T teenena- tevemna- $oemanan +
|correct parses | 8 | 10 | 12 | 18 |
|similar parses | 17 | 22 | 20 | 19 |
|wrong parses | 13 | 10 | 6 | S |
|failed parses | 4 | o | 4 | 0 |
S R deacacan- W $acamnan +

The worst performance is the unadapted grammar and lexicon, and the best performance is the
adapted grammar and lexicon. The adapted grammar with an unadapted lcxicon, and the una-
dapted grammar with an adapted lexicon, are in between, and about as good as each other. On the
basis of this data there is no reason to distinguish between these latter two cases.

Conclusions

Initial results indicate that tagging accuracy is quite good, but that parsing accuracy is less good.
This should of course be compared to the performance of other parsers and grammars on material
of sirnilar complexity.

The performance of this system as a tagging tool is similar to a word tagging system using a 1lidden
Markov Model. Such a system would expect an error rate of no more than 5%, and perhaps as low
as one or two percent. An exact comparison would have to take into account a consideration of
the actual tags applied, the type of text used.

The performance of the system in parsing is not quite as successful as one would like, but there is
some satisfaction to be obtained from the fact that correct, or nearly correct, parses account for
60% of the total even for the unadapted grammar, rising to 76% for the intermediate cases, and
88% for the fully adapted system. A large number of the causcs of error can be seen to be related
to semantic and pragmatic issues which the model docs not, by definition, address. This holds out
hope that the method may be capable of improvement by refining the precision of the relations
modelled.

Some specific causes of imperfect parses were due to the choice of non-terminal symbols. The
trecbank symbols, while being perfectly adequate for manual parsing, are insufficiently precise for

271



an automatic system to distinguish between different categories of phrase. Either a better set of
non-terminal symbols should be used, or features should be used to make existing categories ca-
pable of carrying finer distinctions.

Also, the precedence and dominance relations chosen are insufficiently precise to give good results.
For example, the precedence relation is determined over all non-terminal symbols. It is possible
that the order of symbols in some group of phrases is different than the order in another group, and
that different precedence relations could express this.

It is planned to relax these restrictions in future work.
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Appendix - Examples of parse classification

The original sentence is shown (indicated by the prefix S:), with the manual parse(indicated by the
prefix M:), and the automatic parse (indicated by the prefix A:). Part of speech tags have been re-
moved for clarity. Each phrase is marked by a bracket pair which is labelled according to the type
of phrase delimited. The labeiling on the brackets should be self-explanatory, with N referring to
a noun-phrase, V a verb-phrase, P a prepositional-phrase, and so on.

Exact match

The parse produced is an exact match of the hand parsed sentence, except for certain totally pre-
dictable typographical conventions.

S: But casino profits plummeted .
M: But [N casino profits N] [V plummeted V] ._
A: [S But [N casino profits N] (V plummeted V] ._. §]

Equivalent parse

The parse produced is a reasonable parse of the sentence, and could have equally well been
produced by the manual analysis.

S: The city has about 900 firefighters .
H: [N The city N] [V has [N about 900 firefighters N} V] ._.
: [S [N The city N] [V has [P about {N 900 firefighters N] P] V] .

Prepositional phrase attachment problem

The parse is essentially correct, but a prepositional phrase has been attached in the wrong place,
or has the wrong scope.

S: The pancreas , in addition to making digestive enzymes , is
the body organ that produces insulin , a hormone that
controls the level of sugar in the blood .

M: [N The pancreas N] , [P in [N addition [P to [Tg making [N
digestive enzymes N] Tg] P] N] P] , [V is [N the body
organ [Fr that [V produces [N insulin , [N a hormone [Fr
that (V controls [N the level [P of [N sugar N] P] [P in [N
the blood N] P] N] V] Fr] NJ N] V] Fr] N} V] .

A: [S [N The pancreas N] , [P in [N addition [P to [V making
[N digestive enzymes N] V] P} N] P} , [V is [N the body
organ [Fr that [V produces [N insulin N] V] Fr] N] V] , [N a

hormone [Fr that [V controls [N the level [P of [N sugar [P
in [N the blood N] P} N] P] N] V] Fr] N} . 8]

Coordination problems

The parse is essentially correct, but a coordinated phrase has coordinated item of the wrong scope.
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S: The bacteria can be transmitted in water and from bodies of
dead birds .

M: [N The bacteria N] [V can be transmitted [P [P& in [N water
N] P&] and [P+ from [N bodies [P of [N dead birds N] P] Nj
P+] P} V] .

A: [S [N The bacteria N] [V can be transmitted (P in [N water
[ and [P from [N bodies [P of [N dead birds N} P] N] P] ]
N} P} V] . §]

Problems with commas

The parse is essentially correct, but a wrong decision has been made over the interpretation of one
or more commas.

S: At Karen 's Collectables , owner Karer Walker had a present

for Kennedy , a sterling silver tie-tack in the image of
John Kennedy .

M: [P At [N [G Karen 's G] Collectables N] P] , [N owner [N
Karen Walker N] N] [V had [N a present [P for {N Kennedy N]
P] , [N a sterling silver tie-tack [P in [N the image [P of
[N John Kennedy N} P] N] P] N] N} V]

A: [S [P At [N [G Karen 's G] Collectables N] P] , [N owner
Karen Walker [ had [N a present [P for [N Kennedy N} P] N]
] N] ,_, [N a sterling silver tie-tack [P in [N the image
[P of [N John Kennedy N} P] N} P] N] . §]

Wrong Parses
The best parse found is not the right parse. The manual parsc is considered to be the right parse.

S: Oil-state senators are trying to block an amendment to the "
windfall-profits " tax that would cost the oil industry
$22.5 billion over the next decade .

M: [N Oil-state senators N] [V are trying [Ti to block [N an
amendment [P to [N the " windfall-profits " tax [Fr that [V
would cost [N the oil industry N] [N $22.5 billion [P over
[N the next decade N] P] N] V] Fr] N] P} N] Ti] V] .

A: (S [N Oil-state senators N] [V are trying [Ti to block [N an
amendment N] to [N the N] Ti] V] " [Si windfall-profits " [N
tax [Fr that [V would [ cost [N the oil industry [P §$22.5
[N billion [P over [N the next decade N] P] N] P] N] ] V]
Fr] N] Si] . S]

It is worth noting that even in the case of the so-called wrong parse there is much to commend the

attempt. However, it is the judgement here that the parse is not sufficiently accurate to place further
judgements on, and so it has been classificd as wrong.

Failed Parses

No parse is found. This usually occurs because the thresholding technique used to speed up the
calculation by eliminating low probability parses has eliminated all remaining parses. It is often a
result of incomplete lexical and grammatical knowledge.
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