
The design of a spoken language interface

Jean-Michel Lunati Alexander I. Rudnicky

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Fast and accurate speech recognition systems systems bring with
them the possibility of designing effective voice driven applica-
tions. Efforts to this date have involved the construction of
monolithic systems, necessitating repetition of effort as each new
system is implemented. In this paper, we describe an initial
implementation of a general spoken language interface, the
Carnegie Mellon Spoken Language Shell (CM-SLS) which
provides voice interface services to a variable number of applica-
tions running on the same computer. We also present a system
built using CM-SLS, the Office Manager, which provides the user
with voice access to facilities such as an appointment calendar, a
personal database, and voice mail.

Speech interfaces need to provide services that are par-
ticular to speech, either due to the intrinsic properties of
speech or due to the characteristics of cur~nt recognition
technology. We are interested in identifying these services
and in understanding how they should be integrated into
the computer interface. Ultimately, our goal is to under-
stand how to make speech be a conventional form of input
to a computer, well integrated into a multimodal interface.

A well-designed speech interface must respect four fun-
damental rules of computer-human interface design:

1. Coherence across applications. Different applica-
tions must react similarly to requests that are similar
in content and to always react to certain standard in-
puts (such as requests for help). Doing so allows the
user to maintain as much as possible a single style of
(spoken) interaction.

2. Conciseness inside an application. An application
should allow users to express requests in simple
economical forms. Providing natural language
processing capabilities is one aspect of this. Another
aspect is allowing the user to use a variety of expres-
sions, including minimal telegraphic forms.

3. A meaningful and appropriate system of feedback.
The user must be able to easily maintain an accurate
model of system state. An explicit indication that the
recognizer is available is an example, as is providing a
read-out of the recognition result. The ability to
respond in real-time underlies the effectiveness of
feedback.

4. A natural structuring of activities. The system should
be able to guide the user into acceptable modes of
interaction or to otherwise anticipate how the user will
approach it. Developing a language that is suited to
the task is one aspect, while incorporating clarifica-
tion dialogues is another.

To facilitate the exploration of these and other issues, we

have developed a system that provides a core of spoken
language interface services. In this paper, we describe the
design of this system and provide motivation for the
various design choices that it incorporates.

Interface components
A good interface design embodies a clear functional
decomposition which in turn simplifies system implemen-
tation and allows for independent development of different
components. The particular design we have arrived at has
so far proven to be quite useful, in that we have been able
to implement straightforwardly a number of different
recognition systems with it, while maintaining its
modularity.

The design presented here decomposes a recognition sys-
tem into what we believe are functionally independent
units, each corresponding to a necessary function in the
speech interface. It should be noted that we have not
created novel elements. Each of these functions are im-
plicit in all existing recognition systems but typically have
not been explicitly identified or recognized as separable
components of the interface. The present decomposition
provides an explicit identification of these functions,
thereby simplifying the exploration of issues that cor-
respond to each component.

Figure 1 shows the functional components of the spoken
language interface: the Attention Manager, the
Recognition Engine, the Confirmation Manager and the
Task Manager. The following sections provide more
detailed descriptions of each component.

The Attent ion Manager (AM)
Humans are remazkably adept at attending to speech in
their environment. Computer systems are remarkable in
the degree to which they lack this ability. Spoken language
systems need to approximate this ability in order to relieve
users of the burden of monitoring system input on their
own. The current system isolates this function as a
separate module and permits its independent development.

The signal processing component of the spoken language
system produces a constant stream of coded speech (in the
form of vector codebook values). The Attention Manager
segments utterance-sized units from this stream and routes
these utterances to the recognizer. The implementation of
the Attention Manager can span a range of complexity. At

225

Attention
Manager

Recognition
Engine

Confirmation

ManIger I

~ t MTaan~kg e r [~

r

Figure 1: The Spoken language interface

one extreme, the user explicitly controls the signal acquisi-
tion process, by indicating to the system the start and the
end of an utterance. At a more complex level of function,
the system determines these points on its own (through
automatic end-point detection). Ideally, the Attention
Manager should be capable of determining whether the
user is addressing the computer (as opposed to another
agent in the environment) using suitable cues in the speech
stream or from the environment.

The current version of the AM implements a selection of
attention modes, allowing individual users to select the one
they prefer or the one best suited to a particular activity.
Visually, the AM offers the user a state indicator, in the
form of a clickable button, and a sound level indicator, in
the form of a VU meter. The following modes are sup-
ported:

* Push to Talk. The user clicks the talk icon before
speaking and clicks again when done speaking. This
mode gives the user complete control over the inter-
action and over delimiting an utterance. The dis-
advantages include the need to perform two separate
acts for each utterance and the use of the mouse, in-
creasing the user's cognitive load with actions that are
not application-related (the user may forget to chck at
the end, or even at the beginning).

* Push to Start. The user clicks the talk icon when
ready to speak, and the system decides when the ut-
terance has ended, by performing endpoint detection.
Only one act needs to be performed, but the user can-
not include extended pauses into an utterance. The
user must also coordinate the click and the beginning
of the utterance.

• Continuous Listening. The system uses endpoint
detection to delimit each utterance. The advantage is
hands-free operation; the disadvantage is lack of con-
trol of the extent of an utterance and over the inclu-
sion of extraneous speech.

Recognition Engine (RE)
The Recognition Engine transforms the coded utterance
stream into an ASCII string corresponding to the decoding
of the input. In our present implementation, the RE func-
tions as a dedicated server and allows multiple clients to
share the same recognition facilities. Recognition imposes
a high computational load and it is often impractical to
have this process reside on a computer on which several
applicatious (themselves potentially requiring substantial
resources) are active. Ideally, the recognition engine would
be implemented as a specialized co-processor within the
computer.

In its current implementation, the RE maintains separate
knowledge bases for each speech application. Control sig-
nals communicated by the Attention Manager (which ob-
rains this information from the Task Manager) allows the
Recognition Engine to select the correct knowledge base
for each utterance. The RE does not maintain any context
information of its own, treating each utterance as a separate
event. This does not preclude, of course, the use of contex-
tual constraint provided by a particular application, based
on its individual history. In the current design, the intent is
to communicate such information on an utterance by ut-
terance basis.

A critical attribute of a recognition engine is its ability to
decode speech in real-time. Real-time response (or rather
response that is within a 200-300 msec delay of the end of
an utterance) is necessary to maintain the rhythm of inter-
action. Slower response times force users into devoting
resources to monitoring system availability instead of con-
centrating on the task at hand [4]. We believe that "t imes
real l ime" is no longer an appropriate metric for charac-
terizing system performance. Figure 2 displays a his-
togram of "times real t ime" performance for a four-
processor parallel implementation of the svmNx algorithm,
calculated over a standard set of 150 Resource Manage-
ment utterances, using a perplexity 20 grammar [3]. Only
the search time component is shown. Using the conven-
tional method (calculating a mean), we might characterize
system response as better than "real t ime", since the mean
search time is 0.68 times real time. However, this would
be misleading, as the system actually responds slower than
real time -15% of the time. From the user's point of view,
the recognizer introduces a delay at least fifteen percent of
the time (in addition to other delays, due to signal acquisi-
tion and processing). Since delays have a clear impact on
what users do[1 ,5 ,6] , we beheve that a "percent
real-time" measure is more relevant in characterizing
spoken language system performance than a simple mean
response time. Our current recognizer is 85 percent real-
time for the Resource Management task.

226

m 32"

E 24"

z 22"

20=

18=

16=

14-

12"

10"

8"

6"

4"

2"

0 I i l
O.O 0[2 01.,4 0'.6 0'.8 '1.0 1.2 11.4 11.6 1.8

Times real "lime

jib
For 4 p r o c e s s o r s

Figure 2: Histogram of system response time for
a four-processor recognition system.

C o n f w m a t i o n M a n a g e r (C M)
The errorful nature of speech recognition compels the in-
troduction of an additional component not typically found
in other interface technologies, the Confirmation Manager
(CM). This component allows the user to intercept or edit
a recognition before it is acted upon by the application. In
terms of human communication, the CM performs the error
repair necessitated by breakdowns in the communication
cbannel (such as might be caused by a noisy telephone line
or a loud interruption). It does not concern itself with the
consequences of errors due to some misunderstanding on
the part of the user (although it does offer an opportunity
for the immediate undoing of a just-spoken utterance).

Minimally, the system can pass all utterances through with-
out intervention, though at a cost in throughput [2]. The
system can also require the user to provide some ack-
nowledgment (vocal or manual) of the correctness of an
input, though again at a cost. In more complex implemen-
tations, the system can allow for editing (either by voice or
by keyboard) the input and for the generation of "undo"
signals for the benefit of the application. The latter
facilities are available in our current interface.

A more sophisticated system would be able to, by model-
ing the interaction and by integrating application-state in-
formation, detect utterances that might be, with high prob-
ability, incorrectly recognized and on that basis engage the
user in a clarification dialog. Currently, we include a
clarification dialog component as part of the Mapper within
a particular application. In the latter case, the dialog is
triggered by inconsistencies in the results of (say) database
queries and represents a different class of resolution. On
the other hand, if a system is capable of providing high
recognition accuracy, can respond rapidly (i.e., in real-
time), and is essentially stateless, then simple repetition
until correct input is achieved can be a reasonable alter-
native (see [2]).

T a s k M a n a g e r (T M)
In our previous experience, speech recognition systems
have been built as monolithic processes. While this ap-
proach is adequate for a computer that runs one or at most a
few speech applications it is inefficient on a computer that
is meant to support a variety of speech-enabled applica-
tions. In this case it becomes more efficient to centralize
speech resources (all the more if they are not preemptable
once assigned to an application) and to allocate them to
individual applications. The purpose of the Task Manager
is to supervise, in the context of multiple voice-addressable
applications, the assignment of the speech channel to the
proper application. In our implementation, the actual ser-
vices performed by the Task Manager also include the
maintenance of context information and its communication
to the recognition engine.

The Task Manager performs a control function comparable
to that of the window manager in a window-oriented sys-
tem. In our design, the voice-capable computer system
actually has the possibility of two parallel input cbannels,
vocal and manual. Ideally, a single Manager would per-
form this function, though in our current implementation,
these are handled separately, theoretically allowing for
parallel input to the computer, allowing the use to talk to
one application while typing to another one.

Applications
Our goal in providing an interface to individual applica-
tions was to minimize the changes that need to be made in
order to incorporate speech into an application, while en-
forcing a common approach to our system and accordingly
a coherence between applications. The diagram in Figure 3
shows the components of a voice-enabled application.

Each application incorporates a frame-based parser,
described elsewhere [7]. The frames produced by the par-
ser are passed to a Mapper which translates each command
to the application into suitable method invocations (see
next section). Two styles of interface are possible for ex-
isting applications, either the Mapper can emulate an exist-
ing interface, generating a stream of keyboard and mouse
events for each utterance that correspond to the equivalent
input for those modalities or it can access functions within
the application directly. A previous system [5] was im-
plemented using the former strategy. In the present case,
we chose to have the Mapper access application
functionality directly. The availability of spoken language
disposes the user to express requests in terms of goals and
other abstractions, essentially what the advantage of an SL
interface should be: freeing the user from the need to ex-
plicitly specify command sequences for the application and
hiding this specification process within the natural lan-
guage component of the system. As a result the implemen-
tation of an interface between speech and application at this
more abstract level can be done quite efficiently.

In some cases, the Mapper encounters situations where a
user request is either underspecified or contains am-

227

From Task Manager

Application

Voice

Interface

Communication

Parser

Mapper

Figure 3: Components of the application inter-
face. The double flamed boxes are black boxes for
the programmer.

biguifies. Some of these situations can be dealt with
through the invocation of mechanisms for, e.g., anaphora
resolution. Others require the user to further specify their
intention. To handle such cases, applications that need this
facility can engage the user in a clarification dialog. Cur-
rently, the clarification procedure handles cases of am-
biguity by informing the user of the situation then a~king
them to interactively resolve the ambiguity (by choosing
one of several alternatives). More complex interactions are
possible within this framework, though we have not as yet
had the need to consider them. We anticipate the pos-
sibility that clarification may need to be provided as an
independent service and not embedded in each individual
application.

Some implementation notes
The Carnegie Mellon Spoken Language Shell (CM-SLS)
was intentionally designed to have easily modifiable com-
ponents and to allow the incorporation of different applica-
tions with minimum difficulty. Some of the features in our
implementation that make this possible include the follow-
ing:

• The CM-SLS is implemented within an object-
oriented paradigm that encourages modularity as well
as code reusability, thus making it easy to add new
voice driven applications into the system.

• The CM-SLS incorporates a fast speaker-independent
continuous-speech multiple knowledge-base recog-
nition system. General English models are used to
speed up task development, avoiding task-dependent
training.

perplexity
application vocabulary (estimated)

OM

Calendar

PID

Voice Mail

Calculator

total

36

157

367 (111+43)

246 (111+43)

58

864

15

54

58

44

54

Table 1: OM task chaxacteristics as of June 1990,
PID and Voice Mail have 111 names and 43 nick-
names in their vocabulary.

• The CM-SLS offers a high level user interface on a
NeXT Machine for efficient end-user access to the
applications. We provide an application fi'amework
that provides coherence across applications, allows
conciseness inside an application, offers an ap-
propriate feedback, and presents a natural structuring
of activities allowing a fast and effective access to
applications for both casual and expert users.

• The CM-SLS uses external tools to quickly build new
applications. Tools include a case frame grammar
compiler, a case flame grammar parser, and a semi-
automatic speech knowledge base (used by the RE)
generator.

The Office Manager (OM)
To demonstrate our approach to speech interface design,
we have implemented the Office Manager system, a system
which is meant to provide the user with voice access to a
number of common computer-based office applications.
The Office Management domain has several interesting
properties that make it an ideal instrument for exploring
issues in spoken language system design. The critical at-
tributes of this task domain are the following:

• It provides a range of interaction requirements, from
tight-loop (e.g., calculation) to open-ended (e.g.,
database retrieval).

• It focuses on a realistic ta.~k domain that supports
meaningful problem-solving activity (e.g., scheduling,
information search).

• It's a domain in which it would be reasonable to ex-
pect daily interaction through spoken language. Since
the tasks it encompasses are performed regularly, it
creates the opportunity to study spoken language in-
teraction on an ongoing basis, under natural con-
ditions.

The Office Manager at present includes the applications
listed in Table 1. In addition to the applications them-
selves, the OM understands a 36 word vocabulary, which is
used to execute a variety of control functions, such as
creating tasks, switching between them, invoking help, etc.
The current (June 1990) implementation of the system in-

228

eludes a database of addresses for the 111 official par-
ticipants in the October 1989 Darpa Speech and Natural
Language Woxkshop. This database is used by the Voice
Mail and PID (Personal Information Directory) com-
ponents of OM. Our plan is to make available additional
databases to users in our environment (for example, a list
of department members) and to pursue the development of
tools for user-customizable databases. Customization is of
two types: the addition or modification of entries in exist-
ing databases, and the creation of new, arbitrary databases
by the user. Both forms of customization introduce inter-
esting problems for spoken-language systems: the
modification of existing recognition knowledge bases (as
might be occasioned by the introduction of a new person
name), and the creation (by a presumably naive user) of an
access language for a new database.

Conclusion
This paper has described a number of innovations in the
design of spoken language interfaces. We have advanced a
particnlar functional decomposition for the interface and
have argued that it identifies key areas in which advances
are needed. We have proposed what we believe to be a
meaningful metric for system response characteristics. We
have also briefly described the Office Management task,
which we believe to be particularly suited for the study of
spoken language interface issues.

Our future work includes the development of techniques
for structuring recognition and parsing knowledge bases
along "object" lines to permit individual applications to
inherit language characteristics from theft environment (the
OM) and to encourage the modularization and reusability
of language components. The goal is to simplify the
process of creating languages for particular applications by
providing the developer not only with standard interface
components but also with standard language components.

Meaningful study of spoken language interaction requires
the use of a system that will be used on a daily basis and
whose utility will persist past the initial stages of play and
exploration. We believe that the Office Manager is such a
system. Systems that do not have this persistence of utility

will ultimately have little to tell us about spoken com-
munication with computers.

Acknowledgments
We would like thank a number of people who have con-
tributed to the work described in this paper, including
Kathryn Baker, Eric Thayer, Bob Weide, Paul Arceneaux,
and Alex Flranz.

The research described in this paper was sponsored by the
Defense Advanced Research Projects Agency (DOD), Arpa
Order No. 5167, monitored by SPAWAR under contract
N00039-85-C-0163. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency or the US Goverament.

References
1. Grossberg, M. and Wiesen, R.A. and Yntema, D.B.
"An experiment on problem solving with delayed computer
responses.". IEEE Transactions on Systems, Man and
Cybernetics SMC-6, 3 (March 1976), 219-222.

2. Hauptmann, A.H. and Rudnicky, A.I. A comparison of
speech and typed input. In Proceedings of the June 1990
Darpa Workshop on Speech and Natural Language, Mor-
gan Kaufu~ann~ San Mateo, 1990.

3. Lunati, J.-M. A parallel implementation of FBS,
Results and Comments (September 1989).

4. A.I. Rudnicky and J. L. Quirin. Subjective reaction to
system response delay: A pilot study (January 1990).

5. Rudnicky, A., Sakamoto M. A. and Polifroni, J.
Evaluation of spoken language interaction. In Proceedings
of the October Darpa Speech and Natural Language
Workshop, Morgan Kanfmann~ San Mateo, 1989, pp.
150-159.

6. Rudnicky, A. System response delay and user strategy
selection in a spreadsheet task. CHI'90 invited poster,
April, 1990.

7. Ward, W. The CMU Air Travel Information Service:
Understanding spontaneous speech. In Proceedings of the
June 1990 Darpa Workshop on Speech and Natural
Language, Morgan Kauffmann, San Mateo, 1990.

229

