
The Dragon Continuous Speech Recognition System:
A Real-Time Implementation

Paul Bamberg, Yen-lu Chow, Laurence Gillick, Robert Roth and Dean Sturtevant
Dragon Systems, Inc.

90 Bridge Street
Newton, MA 02158

Abstract
We present a 1000-word continuous speech recognition

(CSR) system that operates in real time on a personal
computer (PC). The system, designed for large vocabulary
natural language tasks, makes use of phonetic Hidden
Markov models (HMM) and incorporates acoustic, phonetic,
and linguistic sources of knowledge to achieve high
recognition performance. We describe the various
components of this system. We also present our strategy
for achieving real time recognition on the PC. Using a 486-
based PC with a 29K-based add-on board, the recognizer has
been timed at 1.1 times real time.

1. Introduction
This paper describes the Dragon continuous speech

recognition system that runs in real time on the PC with a
1000-word vocabulary. To achieve the goal of real-time

recognition on a personal computer is a process that requires
analysis of the computational requirements of the
recognition algorithm along several dimensions, and the
improving the recognizer's performance along those
dimensions.

We first present an overview of the Dragon CSR system
architecture, and describe its various components, including
signal processing, recognition, rapid match, phonetic
modeling, and the application task. We discuss our strategy
for achieving real-time continuous speech recognition, and
demonstrate how it is actually achieved by developing
multiple solutions and applying them in combination.

2. System Description
The architecture of the continuous speech recognition

system is shown in Figure 1. The various components of
this system are described below.

SYSTEM ARCHITECTURE

Speech

L
I s,g.,/

MatDchPer tcaWn;:~atee[MRa~Pclhder

Recognized Sentence

Figure 1: Speech recognition system architecture

2.1 Signal Processing
An TMS32010-based board that plugs into a slot on the

AT-bus performs analog-to-digital conversion and digital
signal processing of the input speech waveform, and extracts
spectral features used in recognition. Input speech is

sampled at 12 KHz and lowpass filtered at 6 KHz. Eight
spectral parameters are computed every 20 milliseconds, and
are used as input to the HMM-based recognizer.

78

2.2 Recognit ion
The recognition search to find the most likely sentence

hypothesis is based on the time-synchronous decoding
algorithm that is used in almost all current CSR systems for
this vocabulary size. In this algorithm, partial paths
(representing incomplete sentential hypotheses) are extended
synchronously using dynamic programming (DP), and all
span the same length of the input signal, so that their path
cost functions are directly comparable. To reduce recognition
search, a beam pruning technique is applied to eliminate all
paths that score poorly relative to the best path, and
therefore would have very low probability of being the
global best hypotheses that spans the entire utterance. We
also explored another family of speech decoding algorithms,
the stack decoder[l], in our recognizer. It is our conclusion
at this time that at least for a task of this complexity, time-
synchronous algorithms are considerably more efficient for
finding a single most likely answer.

2.3 R a p i d M a t c h e r
An important component of the recognition search is the

Rapid Matcher. In the time-synchronous decoding scheme,
the Rapid Matcher helps reduce the search space dramatically
by proposing to the HMM DP matcher at any given frame
only a relative small number of word candidates that are
likely to start at that frame. Only the words on this rapid
match list (rather than the entire vocabulary) are considered
for seeding a word for DP match. Since the Rapid Matcher
is designed to take up considerably less computation than
the DP Matcher, the combined rapid match/DP match
recognition architecture results in an order of magnitude of
savings in computation, with minimal loss in recognition
accuracy. The rapid match algorithm is described in detail in
[2].

2.4 Training o f Acoustic Models
The research goal at Dragon is to build CSR systems for

large vocabulary natural language tasks. As such, it is
deemed impractical to use whole-word models to model the
words in the vocabulary for recognition since in such a
system, one must have training tokens (in different acoustic
contexts) for every word in the vocabulary. Our solution
then is to make extensive use of phonetic modeling for
recognition.

In general, the goal of acoustic modeling is to assure
that when a string of the acoustic units, whatever they may
be, are strung together according to the transcription of an
utterance to generate a sequence of spectra, it would fairly
accurately represent the actual sequence of speech spectra for
that utterance. Towards this goal, we have chosen as the
fundamental unit to be trained the "phoneme-in-context"
(PIC), proposed in [3]. In the present implementation, a
PIC is taken as completely specified by a phoneme
accompanied by a preceding phoneme (or silence), a
succeeding phoneme (or silence), stress level, and a duration
code that indicates the degree of prepausal lengthening. To
restrict the proliferation of PICs, syllable boundaries, even
word boundaries, are currently ignored.

During training, tokens are phonemically labeled by a
semi-automatic procedure using hidden Markov models in
which each phoneme is modeled as a sequence of one to six
states. A model for a phoneme in a specific context is
constructed by interpolating models involving the desired
context and acoustically similar contexts.

As each word in the vocabulary is spelled in terms of PICs,
each PIC in turn is spelled in terms of allophonic acoustic
segments, or clusters. An acoustic cluster consists of a mean
vector and a variance vector. The construction of these
clusters is done in a semi-supervised manner. Currently, the
total number of acoustic clusters required to construct all
PICs is only slightly more than 2000. As a result, the entire
set of PICs can be adapted to a new user on the basis of a
couple of thousand words of speech data.

With this approach to acoustic modeling, we are able to
model words reasonably well acoustically while maintaining
to a large extent the desirable property of task-independence.
By using different phonetic dictionaries (that make up words
for each task), we have constructed models for a 30,000-word
isolated word recognizer as well as for four different
continuous speech tasks. Details of Dragon's acoustic
modeling process can be found in [4].

2.5 Task Description
The Dragon application task consists of recognizing

mammography reports. All the training and test material for
this task have been extracted from a database of 1.3 million
words of mammography text. This text corpus forms part
of a 38.2 million word database of radiology text. Much of
this text represents actual transcriptions of spoken reports.

All of the test material described here is performed with
an 842-word subvocabulary. Punctuation marks, digits, and
letters of the alphabet were explicitly excluded. This
vocabulary covers about 75% of the full mammography
database, and 92% of the database without the excluded
words. 6000 sentences (or sentence fragments) containing
only these vocabulary words were extracted from the
marnmography database. Half of these sentences was used
for training, and the other half was set aside as test.

2.6 Recognition Performance
Using the system described above, we have obtained

preliminary continuous speech recognition results for a 842-
word mammography report task, a subset of a full radiology
report task. A partial bigram language model was
constructed from 40M words of radiology reports, 1M of
which was specific to mammography. The bigram language
model consisted of unigrams together with common bigrams
and uncommon bigrams of common words. The perplexity
of this task as measured on a set of 3000 sentences is 66.
The result was measured on a single speaker, using 1000
test utterances totaling 8571 words. The total number of
word errors was 293 (3.4% word error rate), with 205
substitutions, 62 insertions, and 26 deletions. The sentence
error rate was 19.5%. The average number of words returned
from the Rapid Marcher (per frame) was 48.

A sample of the test sentences and associated
recognition errors made are shown below.

1. These too have increased very slightly
= >

These to have increased very slightly

2o

_-->

There are no masses demonstrated on today's
examination

There are no mass is demonstrated on today's
examination

79

,

= .

The patient returns for additional views for
further evaluation

The patient returns for additional view is for
further evaluation

We will be evaluating the system on several speakers.
In addition, we are working on improving recognition
performance, and we have very specific ideas about how that
can be done.

3. Real-time Implementation
Our strategy in developing a prototype real-time

continuous speech recognition system on the PC is to use a
multitude of approaches to solve the computational
problem. Since one of our primary concerns is software
portability, extensive rewrites in assembly code is kept at a
minimum. Instead, we kept almost all of the system written
in C, and rely mostly on both algorithm and hardware
improvements to achieve real time performance. Software
optimizations include the use of a rapid match algorithm to
reduce recognition search space, C code optimization, and
writing assembly code for a few compute-intensive routines.
With hardware, we are relying on the use of both faster
machines (e.g., 486-based PC) and more hardware (off-the-
shelf boards) serving as compute engines to the PC.

3.1 A l g o r i t h m s / S o f t w a r e I m p l e m e n t a t i o n s
Rapid match

The single most important factor in achieving a real
time implementation is the use of rapid match to reduce
computation during recognition. As described earlier, rapid
match is used to compute a relatively short list of likely
word candidates that are likely to start at a given frame in the
speech input. Thus instead of seeding the entire vocabulary
(or close to it), only those words that are returned by the
Rapid Matcher are seeded.

Profile and optimize in C
Alternatively, we also invested in profiling the

recognition program and getting a report of the amount of
time spent in each routine, sorted in decreasing order, so that
the first routine on this profiling report is the most time
consuming one. Then, if possible, a rewrite of this routine
or parts of it with efficiency as the objective is performed.
This is done for the top few routines on the list (which
usually account for a significant percentage of the total
computation). The entire procedure is then repeated.

Assembly language code
Once in a while, as deemed necessary and appropriate, an

entire C routine is rewritten in assembly code. Currently,

only a few routines have been rewritten this way, which are
all routines of the Rapid Marcher.

3.2 H a r d w a r e I m p l e m e n t a t i o n s
A second part of our strategy is to let advances in the

technology of manufacturing PCs help in solving the
computation problem in continuous speech recognition.
Already, we have witnessed an order of magnitude increase in
the computation power of a personal computer within the
last decade (from AT running at 8 Mhz clock rate to 386 at
33 Mhz). Starting off this decade, the Intel 486-based
family of PC's that have just been introduced are a factor 2
faster that its immediate predecessor (the 386-based)
machines, given a fixed clock speed of 33 Mhz (see Table
1). This trend will be certain to continue, at least for the
f o i b l e future. Our recognizer sped up by almost a factor
of two just by going from a 386/33 to a 486/33, without
any modification to the code (see Table 2). In fact, since the
486 instruction set is downward compatible, the exact same
executable code that ran on the 386 also ran on the 486. At
this rate, real-time very large vocabulary (> 10,000 words)
continuous speech recognition on the PC is within reach not
too far in the future.

3.3 Para l l e l A r c h i t e c t u r e
We also explored the use of a single (but expandable to

multiple) off-the-shelf board (29K-based coprocessor board)
serving as compute engine to the PC, and performing the
computation in parallel (a coarse grain 2-way parallelism).
The board of our choice was an AMD 29000-based board
(called the AT-Super made by YARC) that plugs directly
onto the AT-bus on the backplane of the PC. The board is
quoted at 17 MIPs, although our benchmark in running the
recognizer on the board revealed a somewhat lower MIP
number (see Table 1). The board also came with some
software for development of programs to perform parallel
computation.

In analyzing the computation requirements of the
various components of our algorithm, it was immediately
apparent that a natural way to divide up the algorithm is to
have the DP Matcher and the Rapid Matcher run on separate
processors, for the following reasons. First, the two
components are functionally and logically separable, making
parallelization fairly straightforward. Second, it makes sense
from the point of the view of the the hardware benchmarks
(the two processors give equivalent number of MIPs) as the
two recognition components take up within a factor of two
relative to the other the number of CPU cycles. Lastly, the
communication bandwidth is low (on the order of 5k
bytes/sec), so that little overhead is incurred. In the next
section, we present results using two alternate ways of
mapping the component algorithms to the two processors.

H a r d w a r e B e n c h m a r k
386/33 PC 8 MIPs
486/33 PC 15 MIPs
29K Board 12 MIPs

Table 1. Hardware benchmark measured in MIPs.

80

3.4 R e c o g n i t i o n B e n c h m a r k s
Table 2 shows the recognition benchmarks (measured in

number of times real time) using the various hardware
platforms. As can be seen, using a baseline 386 PC, we are
at 2.8 X real time. Using a combined 386+29K architecture,
and putting the Rapid Matcher on the host and DP Matcher
on the 29K (RM/DM) gave us more than a factor of two
improvement (to 1.3 X).

Alternatively, going to a faster machine (486-based PC)
immediately gave us almost a factor of two relative to
running on the 386. However, using the combined 486+29K

architecture, though putting us very close to real time (1.1
X), did not provide a significant gain over the 386+29K
platform. This is due to the fact that the 29K board, in
performing DP match, has become the computational
bottleneck. Also, going to the alternative software
architecture of performing DP match on the host and rapid
match on 29K board (DM/RM) resulted in worse
computational performance. This is largely explained by the
fact that by performing the rapid match on the 29K, the
computational gain that resulted from assembly coding (done
for the 386) of some rapid match routines was now lost.

Hardware Arch.
386 /33
486 /33

386+29K
486+29K

times real time
2.8
1.5

RM/DM DM/RM
1.3 1.8

i

1.1 1.5

Table 2: Recognition benchmarks with various platforms (# times real time).

3 .5 D i s c u s s i o n
Table 3 demonstrates how real-time recognition on the

PC was achieved. As noted previously, the use of rapid
match to reduce recognition search was the single most
important factor in achieving real time. An order of
magnitude reduction in computation was realized using this
algorithm. Rewriting of C code with runtime efficiency in
mind and assembly language coding of some time-critical
rapid match routines resulted in factors of 2 and 1.5
speedups, respectively. Finally, making use of more MIPs

(either with a 486-based PC or use of a single coprocessor
board) gave an additional factor of two to three, depending on
the exact hardware platform used. In short, by combining
algorithm improvements, software optimizations, and
enhanced hardware capabilities, a 3-second long utterance
that initially required nearly three minutes to decode (60X
real time) now can be decoded in real time.

Method
Rapid match
Ol~timize C code
Assembly
Hardware

Speedup
10.0 X
2.0 X
1.5 X

2.0 - 3.0 X

Table 3. How real-time recognition was achieved.

4. Conclusion
In summary, we have presented a system for performing

1000-word continuous speech recognition in real time on the
personal computer. The system, designed for large
vocabulary natural language tasks, is also largely task-
independent in that given a new text corpus (used for
language modeling) for a new task, we are able to perform
recognition on that task within a matter of days.

We also presented our strategies for real-time
implementation. Use of advanced algorithms in combination
with clever software optimizations, we have reduced
computation requirements by a factor of 30, with minimal
sacrifice in performance. Using a 386-based PC, the
recognizer has been clocked at 2.8 times real time; with a
486-based PC, 1.5 times; and using a 29K-based add-on
board, at 1.1 times real time.

REFERENCES
[1] F. Jelinek, "A Fast Sequential Decoding Algorithm
Using A Stack", IBM Journal of Research and Development,
Vol. 13, pp. 675-685, November 1969.
[2] L. Gillick and R. Roth, "A Rapid Match Algorithm for
Continuous Speech Recognition", Proceedings of DARPA
Speech and Natural Language Workshop, June 1990 Hidden
Valley, Pennsylvania.
[3] R.M. Schwartz, et al, "Context-Dependent Modeling for
Acoustic-Phonetic Recognition of Continuous Speech",
IEEE Int. Conf. Acoust., Speech., Signal Processing,
Tampa, FL, March 1985, pp.1205-1208, Paper 31.3
[4] P. Bamberg and L. Gillick, "Phoneme-in-Context
Modeling for Dragon's Continuous Speech Recognizer",
Proceedings of DARPA Speech and Natural Language
Workshop, June 1990 Hidden Valley, Pennsylvania.

83_

