
The Dragon Continuous Speech Recognition System: 
A Real-Time Implementation 

Paul Bamberg, Yen-lu Chow, Laurence Gillick, Robert Roth and Dean Sturtevant 
Dragon Systems, Inc. 

90 Bridge Street 
Newton, MA 02158 

Abstract 
We present a 1000-word continuous speech recognition 

(CSR) system that operates in real time on a personal 
computer (PC). The system, designed for large vocabulary 
natural language tasks, makes use of phonetic Hidden 
Markov models (HMM) and incorporates acoustic, phonetic, 
and linguistic sources of knowledge to achieve high 
recognition performance. We describe the various 
components of this system. We also present our strategy 
for achieving real time recognition on the PC. Using a 486- 
based PC with a 29K-based add-on board, the recognizer has 
been timed at 1.1 times real time. 

1. Introduction 
This paper describes the Dragon continuous speech 

recognition system that runs in real time on the PC with a 
1000-word vocabulary. To achieve the goal of real-time 

recognition on a personal computer is a process that requires 
analysis of the computational requirements of the 
recognition algorithm along several dimensions, and the 
improving the recognizer's performance along those 
dimensions. 

We first present an overview of the Dragon CSR system 
architecture, and describe its various components, including 
signal processing, recognition, rapid match, phonetic 
modeling, and the application task. We discuss our strategy 
for achieving real-time continuous speech recognition, and 
demonstrate how it is actually achieved by developing 
multiple solutions and applying them in combination. 

2. System Description 
The architecture of the continuous speech recognition 

system is shown in Figure 1. The various components of 
this system are described below. 
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Figure 1: Speech recognition system architecture 

2.1 Signal Processing 
An TMS32010-based board that plugs into a slot on the 

AT-bus performs analog-to-digital conversion and digital 
signal processing of the input speech waveform, and extracts 
spectral features used in recognition. Input speech is 

sampled at 12 KHz and lowpass filtered at 6 KHz. Eight 
spectral parameters are computed every 20 milliseconds, and 
are used as input to the HMM-based recognizer. 
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2.2 Recognit ion 
The recognition search to find the most likely sentence 

hypothesis is based on the time-synchronous decoding 
algorithm that is used in almost all current CSR systems for 
this vocabulary size. In this algorithm, partial paths 
(representing incomplete sentential hypotheses) are extended 
synchronously using dynamic programming (DP), and all 
span the same length of the input signal, so that their path 
cost functions are directly comparable. To reduce recognition 
search, a beam pruning technique is applied to eliminate all 
paths that score poorly relative to the best path, and 
therefore would have very low probability of being the 
global best hypotheses that spans the entire utterance. We 
also explored another family of speech decoding algorithms, 
the stack decoder[l], in our recognizer. It is our conclusion 
at this time that at least for a task of this complexity, time- 
synchronous algorithms are considerably more efficient for 
finding a single most likely answer. 

2.3 R a p i d  M a t c h e r  
An important component of the recognition search is the 

Rapid Matcher. In the time-synchronous decoding scheme, 
the Rapid Matcher helps reduce the search space dramatically 
by proposing to the HMM DP matcher at any given frame 
only a relative small number of word candidates that are 
likely to start at that frame. Only the words on this rapid 
match list (rather than the entire vocabulary) are considered 
for seeding a word for DP match. Since the Rapid Matcher 
is designed to take up considerably less computation than 
the DP Matcher, the combined rapid match/DP match 
recognition architecture results in an order of magnitude of 
savings in computation, with minimal loss in recognition 
accuracy. The rapid match algorithm is described in detail in 
[2]. 

2.4 Training o f  Acoustic Models 
The research goal at Dragon is to build CSR systems for 

large vocabulary natural language tasks. As such, it is 
deemed impractical to use whole-word models to model the 
words in the vocabulary for recognition since in such a 
system, one must have training tokens (in different acoustic 
contexts) for every word in the vocabulary. Our solution 
then is to make extensive use of phonetic modeling for 
recognition. 

In general, the goal of acoustic modeling is to assure 
that when a string of the acoustic units, whatever they may 
be, are strung together according to the transcription of an 
utterance to generate a sequence of spectra, it would fairly 
accurately represent the actual sequence of speech spectra for 
that utterance. Towards this goal, we have chosen as the 
fundamental unit to be trained the "phoneme-in-context" 
(PIC), proposed in [3]. In the present implementation, a 
PIC is taken as completely specified by a phoneme 
accompanied by a preceding phoneme (or silence), a 
succeeding phoneme (or silence), stress level, and a duration 
code that indicates the degree of prepausal lengthening. To 
restrict the proliferation of PICs, syllable boundaries, even 
word boundaries, are currently ignored. 

During training, tokens are phonemically labeled by a 
semi-automatic procedure using hidden Markov models in 
which each phoneme is modeled as a sequence of one to six 
states. A model for a phoneme in a specific context is 
constructed by interpolating models involving the desired 
context and acoustically similar contexts. 

As each word in the vocabulary is spelled in terms of PICs, 
each PIC in turn is spelled in terms of allophonic acoustic 
segments, or clusters. An acoustic cluster consists of a mean 
vector and a variance vector. The construction of these 
clusters is done in a semi-supervised manner. Currently, the 
total number of acoustic clusters required to construct all 
PICs is only slightly more than 2000. As a result, the entire 
set of PICs can be adapted to a new user on the basis of a 
couple of thousand words of speech data. 

With this approach to acoustic modeling, we are able to 
model words reasonably well acoustically while maintaining 
to a large extent the desirable property of task-independence. 
By using different phonetic dictionaries (that make up words 
for each task), we have constructed models for a 30,000-word 
isolated word recognizer as well as for four different 
continuous speech tasks. Details of Dragon's acoustic 
modeling process can be found in [4]. 

2.5 Task Description 
The Dragon application task consists of recognizing 

mammography reports. All the training and test material for 
this task have been extracted from a database of 1.3 million 
words of mammography text. This text corpus forms part 
of a 38.2 million word database of radiology text. Much of 
this text represents actual transcriptions of spoken reports. 

All of the test material described here is performed with 
an 842-word subvocabulary. Punctuation marks, digits, and 
letters of the alphabet were explicitly excluded. This 
vocabulary covers about 75% of the full mammography 
database, and 92% of the database without the excluded 
words. 6000 sentences (or sentence fragments) containing 
only these vocabulary words were extracted from the 
marnmography database. Half of these sentences was used 
for training, and the other half was set aside as test. 

2.6 Recognition Performance 
Using the system described above, we have obtained 

preliminary continuous speech recognition results for a 842- 
word mammography report task, a subset of a full radiology 
report task. A partial bigram language model was 
constructed from 40M words of radiology reports, 1M of 
which was specific to mammography. The bigram language 
model consisted of unigrams together with common bigrams 
and uncommon bigrams of common words. The perplexity 
of this task as measured on a set of 3000 sentences is 66. 
The result was measured on a single speaker, using 1000 
test utterances totaling 8571 words. The total number of 
word errors was 293 (3.4% word error rate), with 205 
substitutions, 62 insertions, and 26 deletions. The sentence 
error rate was 19.5%. The average number of words returned 
from the Rapid Marcher (per frame) was 48. 

A sample of the test sentences and associated 
recognition errors made are shown below. 

1. These too have increased very slightly 
= >  

These to have increased very slightly 

2o 

_--> 

There are no masses demonstrated on today's 
examination 

There are no mass is demonstrated on today's 
examination 
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The patient returns for additional views for 
further evaluation 

The patient returns for additional view is for 
further evaluation 

We will be evaluating the system on several speakers. 
In addition, we are working on improving recognition 
performance, and we have very specific ideas about how that 
can be done. 

3. Real-time Implementation 
Our strategy in developing a prototype real-time 

continuous speech recognition system on the PC is to use a 
multitude of approaches to solve the computational 
problem. Since one of our primary concerns is software 
portability, extensive rewrites in assembly code is kept at a 
minimum. Instead, we kept almost all of the system written 
in C, and rely mostly on both algorithm and hardware 
improvements to achieve real time performance. Software 
optimizations include the use of a rapid match algorithm to 
reduce recognition search space, C code optimization, and 
writing assembly code for a few compute-intensive routines. 
With hardware, we are relying on the use of both faster 
machines (e.g., 486-based PC) and more hardware (off-the- 
shelf boards) serving as compute engines to the PC. 

3.1 A l g o r i t h m s / S o f t w a r e  I m p l e m e n t a t i o n s  
Rapid match 

The single most important factor in achieving a real 
time implementation is the use of rapid match to reduce 
computation during recognition. As described earlier, rapid 
match is used to compute a relatively short list of likely 
word candidates that are likely to start at a given frame in the 
speech input. Thus instead of seeding the entire vocabulary 
(or close to it), only those words that are returned by the 
Rapid Matcher are seeded. 

Profile and optimize in C 
Alternatively, we also invested in profiling the 

recognition program and getting a report of the amount of 
time spent in each routine, sorted in decreasing order, so that 
the first routine on this profiling report is the most time 
consuming one. Then, if possible, a rewrite of this routine 
or parts of it with efficiency as the objective is performed. 
This is done for the top few routines on the list (which 
usually account for a significant percentage of the total 
computation). The entire procedure is then repeated. 

Assembly language code 
Once in a while, as deemed necessary and appropriate, an 

entire C routine is rewritten in assembly code. Currently, 

only a few routines have been rewritten this way, which are 
all routines of the Rapid Marcher. 

3.2 H a r d w a r e  I m p l e m e n t a t i o n s  
A second part of our strategy is to let advances in the 

technology of manufacturing PCs help in solving the 
computation problem in continuous speech recognition. 
Already, we have witnessed an order of magnitude increase in 
the computation power of a personal computer within the 
last decade (from AT running at 8 Mhz clock rate to 386 at 
33 Mhz). Starting off this decade, the Intel 486-based 
family of PC's that have just been introduced are a factor 2 
faster that its immediate predecessor (the 386-based) 
machines, given a fixed clock speed of 33 Mhz (see Table 
1). This trend will be certain to continue, at least for the 
f o i b l e  future. Our recognizer sped up by almost a factor 
of two just by going from a 386/33 to a 486/33, without 
any modification to the code (see Table 2). In fact, since the 
486 instruction set is downward compatible, the exact same 
executable code that ran on the 386 also ran on the 486. At 
this rate, real-time very large vocabulary (> 10,000 words) 
continuous speech recognition on the PC is within reach not 
too far in the future. 

3.3 Para l l e l  A r c h i t e c t u r e  
We also explored the use of a single (but expandable to 

multiple) off-the-shelf board (29K-based coprocessor board) 
serving as compute engine to the PC, and performing the 
computation in parallel (a coarse grain 2-way parallelism). 
The board of our choice was an AMD 29000-based board 
(called the AT-Super made by YARC) that plugs directly 
onto the AT-bus on the backplane of the PC. The board is 
quoted at 17 MIPs, although our benchmark in running the 
recognizer on the board revealed a somewhat lower MIP 
number (see Table 1). The board also came with some 
software for development of programs to perform parallel 
computation. 

In analyzing the computation requirements of the 
various components of our algorithm, it was immediately 
apparent that a natural way to divide up the algorithm is to 
have the DP Matcher and the Rapid Matcher run on separate 
processors, for the following reasons. First, the two 
components are functionally and logically separable, making 
parallelization fairly straightforward. Second, it makes sense 
from the point of the view of the the hardware benchmarks 
(the two processors give equivalent number of MIPs) as the 
two recognition components take up within a factor of two 
relative to the other the number of CPU cycles. Lastly, the 
communication bandwidth is low (on the order of 5k 
bytes/sec), so that little overhead is incurred. In the next 
section, we present results using two alternate ways of 
mapping the component algorithms to the two processors. 

H a r d w a r e  B e n c h m a r k  
386/33 PC 8 MIPs 
486/33 PC 15 MIPs 
29K Board 12 MIPs 

Table 1. Hardware benchmark measured in MIPs. 
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3.4  R e c o g n i t i o n  B e n c h m a r k s  
Table 2 shows the recognition benchmarks (measured in 

number of times real time) using the various hardware 
platforms. As can be seen, using a baseline 386 PC, we are 
at 2.8 X real time. Using a combined 386+29K architecture, 
and putting the Rapid Matcher on the host and DP Matcher 
on the 29K (RM/DM) gave us more than a factor of two 
improvement (to 1.3 X). 

Alternatively, going to a faster machine (486-based PC) 
immediately gave us almost a factor of two relative to 
running on the 386. However, using the combined 486+29K 

architecture, though putting us very close to real time (1.1 
X), did not provide a significant gain over the 386+29K 
platform. This is due to the fact that the 29K board, in 
performing DP match, has become the computational 
bottleneck. Also, going to the alternative software 
architecture of performing DP match on the host and rapid 
match on 29K board (DM/RM) resulted in worse 
computational performance. This is largely explained by the 
fact that by performing the rapid match on the 29K, the 
computational gain that resulted from assembly coding (done 
for the 386) of some rapid match routines was now lost. 

Hardware Arch. 
386 /33  
486 /33  

386+29K 
486+29K 

# times real time 
2.8  
1.5 

RM/DM DM/RM 
1.3 1.8 

i 

1.1 1.5 

Table 2: Recognition benchmarks with various platforms (# times real time). 

3 .5  D i s c u s s i o n  
Table 3 demonstrates how real-time recognition on the 

PC was achieved. As noted previously, the use of rapid 
match to reduce recognition search was the single most 
important factor in achieving real time. An order of 
magnitude reduction in computation was realized using this 
algorithm. Rewriting of C code with runtime efficiency in 
mind and assembly language coding of some time-critical 
rapid match routines resulted in factors of 2 and 1.5 
speedups, respectively. Finally, making use of more MIPs 

(either with a 486-based PC or use of a single coprocessor 
board) gave an additional factor of two to three, depending on 
the exact hardware platform used. In short, by combining 
algorithm improvements, software optimizations, and 
enhanced hardware capabilities, a 3-second long utterance 
that initially required nearly three minutes to decode (60X 
real time) now can be decoded in real time. 

Method 
Rapid match 
Ol~timize C code 
Assembly  
Hardware 

Speedup 
10.0 X 
2.0 X 
1.5 X 

2.0 - 3.0 X 

Table 3. How real-time recognition was achieved. 

4. Conclusion 
In summary, we have presented a system for performing 

1000-word continuous speech recognition in real time on the 
personal computer. The system, designed for large 
vocabulary natural language tasks, is also largely task- 
independent in that given a new text corpus (used for 
language modeling) for a new task, we are able to perform 
recognition on that task within a matter of days. 

We also presented our strategies for real-time 
implementation. Use of advanced algorithms in combination 
with clever software optimizations, we have reduced 
computation requirements by a factor of 30, with minimal 
sacrifice in performance. Using a 386-based PC, the 
recognizer has been clocked at 2.8 times real time; with a 
486-based PC, 1.5 times; and using a 29K-based add-on 
board, at 1.1 times real time. 
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