
A Tree.Trellis Based Fast Search for Finding the N Best Sentence 
Hypotheses in Continuous Speech Recognition 

Frank K. Soong 
Eng-Fong Huang* 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

In this paper a new, tree-trellis based fast search for 
finding the N best sentence hypotheses in continuous 
speech recognition is proposed. The search consists of 
two parts: a forward, time-synchronous, trellis search and 
a backward, time asynchronous, tree search. In the first 
module the well known Viterbi algorithm is used for 
finding the best hypothesis and for preparing a map of all 
partial paths scores time synchronously. In the second 
module a tree search is used to grow partial paths 
backward and time asynchronously. Each partial path in 
the backward tree search is rank ordered in a stack by the 
corresponding full path score, which is computed by 
adding the partial path score with the best possible score 
of the remaining path obtained from the trellis path map. 
In each path growing cycle, the current best partial path, 
which is at the top of the stack, is extended by one arc 
(word). The new tree-trellis search is different from the 
traditional time synchronous Viterbi search in its ability 
for finding not just the best but the N-best paths of 
different word content. The new search is also different 
from the A* algorithm, or the stack algorithm, in its 
capability for providing an exact, full path score estimate 
of any given partial (i.e., incomplete) path before its 
completion. When compared with the best candidate 
Viterbi search, the search complexities for finding the N- 
best strings are rather low, i.e., only a fraction more 
computation is needed. 

I. Introduction 

In a spoken language understanding (recognition) system, 
the search space of possible sentence hypotheses are 
determined by many factors such as the size of 
recognition vocabulary, the rigidity of grammar, the 
system dependency on specific speakers, etc. When these 
constraining factors are relaxed, the space can be very 
large and the effort for finding a global optimal 
hypothesis may become expensive or even prohibitive. 
Sometimes, even for a smaller scale problem, certain 
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language constraints can not be easily incorporated into a 
low level, acoustic search. For example, a check-sum 
grammar used for detecting error in a digit string, due to 
its nonlinear and modulo arithmetic nature, can not be 
built into a continuous digit recognizer except for some 
trivial cases. 

To reduce the search effort, a spoken language system is 
in general divided into two stages: a continuous speech 
recognition system followed by higher level language 
processing modules. First, the frame level acoustic 
information is processed by a continuous speech 
recognizer. The output of a continuous speech recognizer, 
sn'ings of symbols or words, are then fed into higher level 
language modules such as a sentence parser, semantic 
analysis modules, etc. for further processing. 
Unforttmately, such a division was usually done at a price 
of sacrificing the optimality of solutions and the final 
output, in most cases, is only suboptimal or not optimal at 
all. This compromise is not really necessary and global 
optimality can be obtained if the following two conditions 
are satisfied: first, the reduction of the search space in the 
first stage should not too greedy to cause any hard errors 
so that the optimal solution are dropped from being 
considered for further processing in the first stage; and 
second, the output of all processing modules should be 
rank ordered according to some universal optimality 
criteria like the likelihood scores. 

To fulffill the above two conditions, it is important to to 
devise an efficient search for the N-best sentence 
hypotheses in the first stage where N should be adaptively 
adjustable. By doing so, we can preserve the optimality 
of final results while reducing the search space to a 
manageable size, i.e., an N element subset of all possible 
hypotheses. Existing efforts for finding N-best sentence 
hypotheses were devised in the level building algorithm 
by Meyer and Rabiner [1], a frame synchronous network 
search by Lee and Rabiner [2] and recently a sentence 
hypothesis search by Steinbiss [3]. The resultant N-best 
hypotheses, however, are only optimal under constrained 
conditions: lower ranked sentence candidates are derived 
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from the sentence segmentation of higher ranked 
candidates. Due to the constraints, the top-N candidates 
thus derived are not exact. 

Recently an exact, top-N candidate search was proposed 
by Chow and Schwartz [4]. The top-N string hypotheses 
are obtained in a Viterbi-like, breadth-first search set-up in 
the first stage and they are then processed by knowledge 
sources in the second stage. Another approach, proposed 
by Paul [5], is to use stack-based decoding 
algorithms [6,7,8] as common tools for a continuous 
speech recognizer and natural language processing 
modules. Likelihood scores are used as a common metric 
shared by both lhe recognizer and language modules. In 
the same paper, a natural interface was proposed to link a 
continuous speech recognizer and higher level language 
modules. 

In this paper, we present a newly proposed, fast tree-trellis 
based N-best search [9] for finding the top-N sentence 
hypotheses in a continuous speech recognizer. The search 

A ° uses an algorithm for finding the top, N sentence 
hypotheses. However, different from other A or the stack 
algorithm where heuristic ways are used to evaluate path 
scores before completion and optimalities of the solutions 
are compromised, the new algorithm is an exact N-best 
search and only exact, not heuristic, path scores are used. 
The new algorithm generates the N-best hypotheses 
sequentially. Furthermore, the number of hypotheses need 
not to be preset and the algorithm can terminate at any 
time whenever a string hypothesis is accepted as a valid 
sentence. The search is also computationally efficient due 
to its tree-trellis search nature. The new algorithm only 
needs a fraction more computation than a normal Viterbi 
search for finding the top N sentence hypotheses. 

The rest of the paper is organized as follows. In the next 
section, we present the fast tree-trellis algorithm. In 
Section HI we discuss the optimality of the algorithm. In 
Section IV we presem results obtained from testing the 
algorithms on two different applications: connected digit 
recognition using check-sum rules and the DARPA 
Resource Management task using the word-pair grzmmar 
and the original finite state automata of DARPA 
sentences. In Section V we confirm the efficiency of the 
tree-trellis search by presenting a CPU time breakdown of 
differem computation modules. 

If. The Tree-Trellis N-Best Search 

The proposed algorithm, as its name indicates, is a fast 
search by combining a tree search based A* [I0] (or 
"stack") algorithm [6,7,8] with a trellis search based 
modified Viterbi algorithm. A block diagram of the 
algorithm is shown in Fig. I. 

ACOUSTIC OBSERVA'I'IONS 

1 
, TRELUS 

SEARCH(FORWARD) 1" 

I IPA'r. I ST 
,~ [STRING 

FRAME-ASYNCHRONOUS [ 
TREE j= 

SEARCH (BACKWARD) I 
N-BEST STRINGS 

HIGHER LEVEL 
LANGUAGE 
PROCESSING 

UKELJHOOD '1 

RECOGNIZED STRING 
(UNDERSTOOD) 

Fig. I. Block diagram of the trcc-tmRis search 

As shown in the diagram, first, input acoustic 
observations are compared with HMM models and a 
corresponding log likelihood map is generated. The trellis 
search is then performed time (frame) synchronously in 
the forward (left-to-right) direction and the search is 
guided by a given grammar and/or any knowledge source 
which is incotporated into the Viterbi search. In addition 
to output the best sentence hypothesis, a path map of all 
partial paths is registered in the Viterbi search. The 
partial path map contains scores of all partial paths that 
lead to any grammar node at every time instant. 

At the end of the trellis search, a new, tree search for 
finding the best N sentence hypotheses is initiated. The 
search is performed backward in time and frame 
asynchronously. It is a best-first search implemented by 
using an A* search or the stack algorithm. The N-best 
candidates are found one at a time and each candidate is 
then fed sequentially to higher level processing modules. 
The final result of the whole system is a recognized 
(understood) string. In the following subsections we 
present individual modules of the trce-trctlls search in 
detail. 

11.1 Modified Viterbi Algorithm (MVA) 

The Viterbi algorithm (trellis search) is modified in the 
new tree-trellis search to generate a partial path map. 
The map is needed by the A* tree search. The modified 
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Viterbi algorithm is given as follows. 

Trell is  Search (Modified Viterbi) Algor i thm 

INITIALIZE: (1) path scores; (2) arc ranking indices; 
(3) backpointers (optional) 

LOOP I: loop over time indices from left to fight 

LOOP II: loop over grammar nodes 

LOOP III: loop over arcs of a grammar node 

LOOP IV: loop over states of an arc (word) 

Evaluate dynamic programming recursion 

Update accumulated likelihood arrays 
- -  Update backpointer arrays (optional) 

LOOP IV control 

For every grammar node, 

- -  sort accumulated likelihood path scores 
- -  register arc ranking index arrays 
- -  register "from frame" arrays (optional) 

LOOP III control 

LOOP II control 

LOOP I control 

After all bookkeeping arrays are initiated, four nested 
loops are performed. The dynamic programming starts 
first from the outermost loop, a loop over the time indices 
from left to right frame synchronously, over a loop of all 
grammar nodes, then over all arcs (words) of a grammar 
node and finally, over the innermost loop of all ,states 
associated with an arc (word). Since the best path will be 
obtained in the backward tree search as the first sentence 
hypothesis output, it is not necessary to register any 
backpointer arrays and all backtracking operations are 
only optional. The arc (word) ranking index arrays are 
recorded only when the number of possible arcs (words) 
at a node exceeds N, the number of sentences hypotheses 
to be found. In addition to the best partial path, an the 
other partial paths that lead to a grammar node, are 
recorded in the modified Viterbi algorithm. 

II.2 Tree  Search A ° Algori thm for Finding the N,best  
Strings 

At the end of  the modified Viterbi search, a backward tree 
search is initiated from a terminal node and the search is 
performed time asynchronously in a backward (fight-to- 
left) direction. The tree search is implemented using an 
A* search or the stack algorithm. However, different 
from a typical A ° search where the incomplete portion of 
a partial path is estimated (or predicted) using ~some 
heuristics, the tree search here uses the partial path map 
prepared in the first stage trellis search ar 4 the score of 

the incomplete portion of  a path in the search tree is then 
exactly known. The backward partial paths are rank 
ordered in the stack based upon the exact scores of their 
corresponding full but yet incomplete paths. The tree- 
trellis search algorithm has other advantages over a 
breadth-first N-best search in its ability to output 
sequentially the N-best hypotheses, one at a time, 
according to descending likelihood scores. The backward 
tree search can be best illustrated by a conceptual diagram 
depicted in Fig. 2. 

o -  . . . . .  

MAIN STACK J 

I 

/ I / I SECONDARY STACK 

Fig. 2. Conceptual diagram of path growing in a tree 

Two stacks, a main stack and a secondary stack, are two 
list data structures for storing partial hypotheses. In the 
main stack, all partial paths, are rank ordered according to 
their likelihood scores. The best partial path at the top of  
the main stack gets extended in every path growing cycle. 
As shown in the figure, the top entry in the main stack is 
first split into two parts, the best one word (arc) extension 
and the set of remaining one word (arc) extensions. 
These two extensions are stored temporaarily in the 
secondary stack and then reinserted back into the main 
stack so that all main stack entries are still rank ordered. 
The modified A ° algorithm used to grow a tree is 
summarized as foUows: 
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N-Best Tree Search (A °) Algorithm 

INITIALIZE: put the root node in a rank 
ordered list (main stack) to form a null partial path 

LOOP: best first path growing loop 

Take the top entry (the best partial path) off the main stack 

IF the top entry is a single path (i.e., not a group of partial paths), 
THEN 

IF the best partial path is complete (i.e., leads to a 
terminal node), THEN 

output the path and increment the output 
hypothesis counter by one 

IF output counter equals N, THEN 

stop 

ENDIF 

ELSE 

ENDIF 

Split the partial path into two sets: the best one-arc extension and the 
remaining one-arc extensions. 

Use the partial path map provided by the Viterbi algorithm in evaluating 
the one-arc extensions. 

Store the two sets temporarily into the secondary suck and then reinsert 
them back into the main stack such that the main stack is still rank 
ordered. Ranking is based upon complete path scores. 

ELSE 

Split the set of partial paths into two sets: the best partial path and the 
remaining partial paths in the set. 

Store them temporarily into the secondary stack and then reinsert them back 
into the main stack such that the main stack is still rank ordered. 

ENDIF 

LOOP CONTROL 

H.3 Partial Path Merging at a Grammar Node 

The search of the N-best paths in continuous speech 
recognition is somewhat more complicated than a typical 
graph search problem due to the time varying nature of 
the graph, i.e., the cost of a path varies with time. In other 
words, a single path in a graph is actually a set of paths 
of different time signatures (trajectories). Since we 
consider only paths of different word content, paths of the 
same word content but with different trajectories have to 
be compared first and only the best path is retained and it 

is then compared with other best paths of different word 
coment. In search of the N-best sentence hypotheses, the 
best paths between the start node and the terminal node 
can pass any given node in-between at any time instants 
should be compared. These paths can be filrther divided 
into two sets of partial paths: backward partial paths 
grown in the tree search with forward partial paths grown 
in the trellis search at a specific grammar node as 
illustrated in Fig. 3. 
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Fig. 3. Merging forward and backward partial paths 

As shown in the figure, solid lines represent partial paths 
grown by the backward tree search while broken lines 
represent partial paths grown by the forward trellis search. 
To be specific, partial paths leading to a grammar node, 
say the N m node, from a terminal node and partial paths 
stemming from the root node, passing a grammar node 
which is a predecessor of the N-th node, say the M-th 
node, along the arc of word i are merged at the N-th 
node at matched time instants. The best path is the one 
with the maximum summed likelihood scores. 

Ill .  Optimafity of the Tree-Trellis Search 

The optimality of the A* search has been proven before, 
e.g., [10]. It is stated as the admissibility of the A* 
algorithm. That is, if there is a path from the root node 
to a terminal node, A* terminates by finding an optimal 
path. There is also an interesting property that associates 
with any node n chosen for path growing. That is, the 
path score, a summation of the computed partial path 
score from the root node to the node n and the estimated 
incomplete partial path score from node n to the terminal 
node, is equal to or better than the optimal path score 
between the root node and the terminal node. The 
equality holds in our modified A* algorithm because the 
exact rather than an estimated score of the incomplete 
path between n and the terminal node is precomputed in 
the first stage Viterbi search and is readily available. This 
equality maximizes the A" search efficiency and 
minimizes the main stack size to N, the number of 

candidates. The search efficiency is maximized because 
the exact score for the incomplete partial path is used 
instead of an estimated upperbound. 

In terms of the storage, a main stack of size N, is 
sufficient to maintain the N-best hypotheses within the 
search procedure because any partial path on the stack 
does not change its optimal (complete) path score 
throughout the search. 

IV. Applications to Check-Sum Based Connected 
Digit Recognition 

The development of the fast tree-tretlis search for finding 
the N-best candidate sentence strings was originally 
motivated by a continuous digit recognition application. 
The American Express (AMEX) credit card company 
initiated a project recently to automate its procedure in 
verifying the merchant I.D., the credit card number and 
authorizing the dollar purchase m o u n t  via telephone 
calls. Currently all verifications and authorizations are 
carried out by human operators and the final goal of  the 
project is to replace as many human operators as possible 
by automatic speech recognizers while maintain 
comparable recognition performance. Both credit card 
numbers and merchant I.D.'s are fixed length digit strings, 
i.e., 10 digits for a merchant I.D. and 15 digits for a credit 
card number. 

The last digit of each digit string (merchant I.D. or a 
credit card, is a check-sum digit, which is a nonlinear, 
modulo, combination of the previous digits. The check- 
sum digit is installed for security reasons and the exact 
formulas for generating the check-sum digit axe not given 
here. The check-sum rules, despite their simplicity, can 
not be incorporated directly into a continuous speech 
recognizer. Because except by using an exhaustive, hence 
prohibitive, finite state network, the check sum formulas 
can not be tested before all digits in a string are available 
(recognized). Consequently, the search for the correct 
digit string is thus divided into two stages: a continuous 
digit recognition and a check-sum test. The fast tree- 
treU.is search for finding the top-N candidates is then ideal 
for this two-stage processing. The sentence hypotheses 
are found sequentially and they are tested against the 
check-sum rules. If at any time, a string passes the 
check-sum rules, search stops. Otherwise, the next digit 
string with a lower likelihood score is then fetched and 
tested. 

Two digits strings (credit card number and merchant 
I.D.) from each speaker were recorded over each local or 
long distance telephone call to the American Express 
processing facilities in Phoenix, Arizona. 1,800 digit 
strings recorded by 900 speakers constitute the training 
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data base. Separate 100 strings of merchant I.D.'s and 114 
strings of credit card numbers recorded by a different set 
of speakers form the test data base. Various "real world" 
conditions are present in the recordings, including: 
speakers with a strong foreign accent, music or human 
conversations in the background, tone noise, cross-channel 
interference from different telephone lines, etc. The SNR 
of the recordings is around 25 to 30 dB. 

In constructing word-based HMMs, 13 words were chosen 
to form the vocabulary, which consists of the ten digits, 
i.e., { " 0 "  to "9"} ,  "oh" ,  silence, and extraneous speech. 
Two HMM models were built for each word in the 
vocabulary. For each state in a word models, a 64 mixture 
component continuous Gaussian mixture probability 
density function was trained. Both the best string Viterbi 
search and the top-N, tree-trellis search were used to 
recognized the strings in the test data base. 

The recognition results are tabulated in Table I by string 
accuracies. 

Type Top 1 Top 10 + check sum 

Credit Card 84 98 

Merchant I.D. 82 97 

T a b l e  L Recognition String Accuracy (%) for the 
AMEX Trials 

The string accuracies of the best word hypothesis obtained 
from an unmodified Viterbi decoding are 84% and 82% 
for the credit card and merchant I.D. recognition, 
respectively. However, when we used the check-sum 
rules to check the top-10 candidate obtained from the 
tree-treUis search the string accuracy was improved from 
84% to 98% for the credit card number recognition and 
from 82% to 97% for the merchant I.D. recognition. This 
high level of recognition performance has been reported 
before e.g., [11], but it was achieved with a clean 
microphone data base recorded in a sound booth. The 
results of this experiment demonstrate that high 
performance connected digit recognition in a real world 
environment is achievable when simple error detection 
rules are used in conjunction with the new tree-treUis 
search algorithm. As an example, the top-10 candidates 
of a merchant I.D. recognition trial is listed according to 
their correspond decreasing likelihood scores. 

1 4 2 8 4 11 2 7 11 5 

time for likelihood map = 55.29 

time for Viterbi = 37.06 

1 19.25 1 4 2 8 4 11 2 7 11 5 
2 19.19 1 4 2 7 4 11 2 7 0 5 
3 19.18 1 4 2 8 4 I1 2 7 0 5 
4 19.15 1 4 2 9 4 11 2 7 11 5 
5 19.15 1 4 2 8 4 11 7 7 11 5 
6 19.14 1 4 2 8 4 11 2 7 11 4 
7 19.14 1 4 2 8 4 11 0 7 11 5 
8 19 .13  1 4 2 7 4 11 2 7 0 5 
9 19.12 1 4 2 6 4 11 2 7 11 5 

10 19.12 1 4 2 2 4 11 2 7 11 5 

time for multi-candidate tree search = 5.89 

In this example, while the best digit string happens to be 
the correct string, the rest 9 candidate suing are different 
from the correct string only by one or two digits and ail 
likelihood scores are very dose. Also shown are the CPU 
lime breakdown for computing the likelihood map, the 
trellis (Viterbi) search and the-tree search. The time 
required in the tree search for finding the top-10 candidate 
strings is only about 15% of the amount needed in the 
forward trellis search. A different example of merchant 
I.D. recognition is depicted in Fig. 4, where the 10-best 
digit strings are displayed with corresponding word 
boundaries, word likelihood scores (average) and their 
rankings. 
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The segmented but unmarked portions in the figure were 
recognized as either silence or extraneous speech, The 
correct string, or the second best recognized string, is 
different from the best recognized string by a single digit 
confusion ( " 2 "  with "7") .  Similar competing word 
tokens can be collected for training discriminative HMM 
models [12-15]. 

V. Applications to the DARPA Resource Management 
Task 

The new search procedure was also applied to the 
DARPA resource management task and some preliminary 
results are reported here. Forty seven context-independent 
HMM phone models were trained by using 3,200 
sentences (40 sentences/talker). Each phone HMM has 3 
states and the output probability density function (pdf) of 
each state is characterized by a 32-component, Gaussian 
mixture densities. A 150-sentence test set used by 
Lee [16] was used as a test  set and recognition string 
accuracies are given in Table III. 

Type Top 1 : Top 100 + FSN check 

CMU150 38 75 

Table II. String accuracy (%) for the DARPA task 

When a beam-search based Viterbi search was used to 
decode an input string under a word-pair grammar 
constraint, a sentence string accuracy of 38% was 
obtained (perplexity 60). But when we used the tree- 
trellis search and incorporated the finite state network 
(i.e., a perplexity 9) as the second stage processing, the 
sentence accuracy was almost doubled to 75% as shown 
in the table. This result, in principle, can be similarly 
achieved by using a full finite state grammar search but 

with much higher search complexities. An example of the 
top-10 candidates obtained in the search is given as 
follows along with their CO1Tesponding average log 
likelihood (per frame). 

The correct string is the 7-th candidate with an average 
log likelihood score of 11.806, only 0.03 less than the 
string with the highest score. Almost all major content 
words, especially those with longer durations, are 
recognized in the top-10 strings. The extra computation 
effort for finding the top--10 candidates in the tree search 
is 1.8 sec, about 2.5% of the time needed for the forward 
trellis beam search. 

VI. Computation Breakdown of the Tree-Trellis 
Algorithm 

By breaking the search into a treUis (modified Viterbi) 
and a tree search, the N-top sentence hypotheses can be 
obtained sequentially and the search effort is greatly 
reduced compared with other breadth-first based N-top 
candidate search. We used the internal timing routines of 
an Alliant computer to measure the CPU time spent on 
each individual module in the AMEX digit recognition 
trials. The breakdown is given in terms of percentage in 
Table m.  

Type Pementage (%) 

Likelihood Map 56 

Trellis 38 

Tree ( l o p  10 + checksum) 6 

Table IIl .  Computation breakdown (%) for the new 
search 

HOW SOON CAN ESTEEM CHOP TO ATLANTIC FLEET 

time for likelihood map = 16.79 

time for 

1 11.836 
2 11.824 
3 11.823 
4 11.823 
5 11.811 
6 11.811 
7 11.806 
8 11.804 
9 11.804 

10 11.799 

Viterbi beam search = 71.29 

HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FLEET 
HOW SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET 
HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FI.EET TO 
HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FLEET IN 
HOW 
HOW 
HOW 
HOW 
HOW 
HOW 

SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET TO 
SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET IN 
SOON CAN ESTEEM CHOP TO ATLANTIC FLEET *** 
SOON CAN ESTEEM TO SOUTH TWO ATLANTIC FLEET 
SOON CAN ESTEEM THE SOUTH TWO ATLANTIC FLEET 
SOON CAN ESTEEM IN SOUTH ATLANTIC FLEET 

time for multi-candidate nee search = 1.79 
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As shown in the table, the likelihood map computation, 
for the specific task (AMEX uials) and the HMMs used 
constitutes about 56% of the total CPU time. More 
efficient algorithm can be implemented, e.g., a partial 
rather than a full table of likelihood functions can be 
computed on demand, but it was not incorporated in our 
implementation. The trellis search, or the modified 
Viterbi algorithm, consumes about 38% of the CPU time 
while the final top-10 candidate, tree-search needs the rest 
6%. The check-sum test, based upon very simple 
arithmetics, takes virtually no CPU time at all. The extra 
computational needed for finding the top N candidates of 
the tree-trellis search is minimal. 

VII. Conclusion 

In this paper, we propose a new, tree-trellis based, fast 
search algorithm for finding the top N sentence 
hypotheses in continuous speech recognition. The 
algorithm uses a bi-directional search consisting of a 
forward, time synchronous, trellis search and a backward, 
time asynchronous, tree search. In the new algorithm, due 
to the partial path map prepared in the trellis search, the 
backward tree search is highly efficient and a shallow 
stack, i.e., of a size N, is needed. The algorithm has been 
tested successffially on two different data bases: the 
American Express credit service data base and the 
DARPA resource management data base. In the former 
data base, multiple candidate digit strings were 
successively generated and tested against some check-sum 
rules, the digit string accuracy was improved by 14-15%. 
For the DARPA database, when the finite state grammar 
was used to screen out invalid sentence hypotheses in the 
top 100 candidates, the string error was reduced by more 
than a half. It was also shown in the experiments that the 
top N candidates were obtained with a minimal 
computational overhead. 
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