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A B S T R A C T  

HMM recognizers using either a single Gaussian or a Gaussian mixture per state have been shown 
to work fairly well for 1000-word vocabulary continuous speech recognition. However, the large 
number of Gaussians required to cover the entire English language makes these systems unwieldy 
for large vocabulary tasks. Tied mixtures offer a more compact way of representing the observation 
pdf's. We have converted our independent mixture systems to tied mixtures and have obtained 
mixed results: a 13% improvement in speaker-dependent recognition without cross-word triphone 
models, but no improvement in our speaker-dependent system with cross-word boundary triphone 
models or in our speaker-independent system. There is also a reduction in CPU requirements 
during recognit ion--but  this is counter-balanced by an increase during training. This paper also 
includes a comment on the validity of the DARPA program's evaluation test system comparisons. 

I N T R O D U C T I O N  

Single Gaussian per state speaker-dependent (SD) HMM recognizers and low-order Gaussian mix- 
ture per state speaker-independent (SI) HMM recognizers have been shown to work fairly well for 
1000-word vocabulary, continuous speech recognition [10,11]. However, a SD system would require 
about 30,000 Gaussians to cover the word-internal triphones of English and a SI system would 
require at least 100,000. The strategy of one or more individual Gaussians per state is appropriate 
for small vocabulary systems, but becomes unwieldy for large vocabulary systems. Interpolation is 
often required to cluster models, smooth models, or to predict models which are not observed in 
t ra in ing--but  there is no clean strategy for interpolating independent Gaussian mixtures--ei ther  
the mean(s) are changed or the mixture order increases each time another model is included into 
an interpolated model. 

Tied mixtures [3,2,4] offer a solution for these problems while retaining a basic continuous observa- 
tion HMM system. (Gaussian tied mixtures are mixtures which share a common pool of Gaussians.) 
They are mixtures, and thus avoid the unimodal distribution limitation of single Gaussians. Un- 
like independent mixtures, they interpolate well by interpolating the weights of the corresponding 
Gaussians. And since the pool of Gaussians is of a given size, a mixture order cannot exceed this 
size. In effect, they form a middle ground between the histograms of discrete observation systems 
and non-tied-mixture systems. Tied mixtures can also be viewed as a discrete observation system 
modified to allow a simultaneous match to many templates with the degree of template match 
included. In contrast to the discrete observation system, there is no quantization error and the 
"templates"(Gaussians) can be jointly optimized with the rest of the HMM. 

1This work was sponsored by the Defense Advanced Research Projects Agency. 
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T I E D  M I X T U R E S  

A tied mixture HMM system simply substitutes a mixture with shared Gaussians for the observation 
pdf  in a continuous observation HMM: 

hi(o) = w sij(o) ( i) 

E wij = 1 (2) 

where i is the state (or arc), b is the observation pdf, o is an observation vector, w is the weight, 
and Nj is the set of shared Gaussians. The forward-backward re-estimation procedure is identical 
to the procedure for independent mixtures except the Gaussians are tied. (The equations can be 
derived trivially from the well known independent mixture case. They are presented in [3,2,4] and 
are not repeated here.) In general, all Gaussians are used by all states, but in practice most of the 
weights are set to zero by the training procedure. However, the average mixture order can be very 
high during the early phases of training. 

T I E D  M I X T U R E  S Y S T E M S  AT O T H E R  S I T E S  

Several other sites have experimented with tied mixture HMM recognizers [3,13,2,4]. However, the 
initial parameters for training these systems have been derived from existing discrete observation 
HMM systems. The initial Gaussian means and covariances were derived from the templates of 
the vector quantizer, and the mixture weights were initialized from the observation probability 
histograms. All of these sites reported moderate performance improvements over their discrete 
observation systems. The work reported here does not bootstrap from any discrete observation 
system. This provides some additional freedom in training which may influence the final recognition 
performance. 

T H E  T E S T S  

All system tests reported here were performed on the DARPA Resource Management (RM) database 
[12]. The SD system was trained on the designated 600 training sentences per speaker, and the SI 
system was trained on either 72 designated training speakers x 40 sentences per speaker = 2880 
sentences (SI-72) or the SI-72 + 37 development test speakers × 30 sentences per speaker = 3990 
sentences (SI-109). 0n ly  72 of the 80 SI training and 37 of the 40 SI development test speakers 
could be used because the other speakers are contained in the test set. Except for the evaluation 
tests, the test set in all cases was all 100 development test sentences per speaker for the 12 SD 
speakers. These 1200 sentences contain 10242 words. The word error rate is: 

(substitutions + insertions + deletions) 
correct nr of  words 

(3) 

The recognition development test results quoted in the text and in Table 1 are percent word error 
rate with the perplexity 60 word-pair grammar. 
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T H E  T I E D  M I X T U R E  S Y S T E M S  A N D  E X P E R I M E N T S  

The systems reported at the February 1989 DARPA meeting (the "Feb89" systems) [10,11] were 
a single Gaussian per state HMM with word (boundary) context-dependent (WCD) triphones for 
SD, and a variable order Gaussian mixture per state HMM with word (boundary) context-free 
(WCF) triphone models. All Gaussians used a single-tied (grand) diagonal covariance matrix. 
The observation vector is a 10 ms mel-cepstrum augmented with a temporal difference ("delta") 
mel-cepstrum. The development test performances are shown in Table 1. 

The tied-mixture systems were initialized by a modification of our monophone bootstrapping pro- 
cedure [10]. As in the Feb89 systems, single Gaussian monophone (context independent phone) 
models were trained from a "fiat" start (all phones identical) and used to initialize single Ganssian 
triphone models. This produced about 7200 (one per state) Gaussians with a tied (grand) variance. 
The means of these Gaussians were treated as observations and clustered down to 256 clusters by a 
binary-splitting k-means algorithm. (The tied variance was used but not altered during clustering.) 
The mixture weights were initialized by computing the Gaussian probability of the cluster mean 
given the state and then normalizing according to Eq. 2. All parameters (transition probabilities, 
distribution weights, Gaussian means, and tied variance) were trained. (Each stage of training used 
the forward-backward algorithm.) If a mixture weight became less than a threshold, the component 
was removed from the mixture. Thus the mixtures were automatically pruned in response to the 
training data to reduce the computation. Average mixture orders were initially very high, but were 
reduced significantly by the end of training. 

The first tied mixture system used only mel-cepstral observations, WCF triphone models, and 
256 Gaussians. (Unless otherwise noted, all of the following systems use WCF triphone models.) 
Results for SD (5.5% word errors) were very similar to the corresponding Feb89 system (5.2%), 
but the SI-72 performance was significantly degraded: 26.2% word errors vs. 12.9% for the Feb89 
system. The reduced performance without the delta mel-cepstral parameters was not unexpected. 
However, the number of Gaussians was reduced from 24,000 for SI-72 and 7200 for SD to 256. 

Delta mel-cepstral parameters were then returned to the system by augmenting the observation 
vector. The performance on the SD task decreased to 6.1% word errors, but the SI-72 task im- 
proved to 17.2% word error rate. Including the delta parameters changed the relation between the 
mel-cepstral and delta mel-cepstraJ observations for the SD system. In the single Gaussian case, 
the diagonal covariance matrix treated the mel-cepstral and the delta mel-cepstral observations 
as statistically independent. However, the mixture weights induced a relation between the two 
parameter sets. (They were already related in the SI system due to the independent mixtures.) 
Increasing the number of Ganssians to 512 to increase the system's ability to model the correlation 
between the mel-cepstral and delta mel-cepstral parameters improved the SD performance to 5.0% 
word errors but had no effect on SI-72: 17.1% word errors. It appears that there was insufficient 
data to train the correlations or still an insufficient number of Gaussians to model the correlations 
in the SI task. 

A number of other sites [14,5,6], for example, have improved performance with limited training 
data by separating different parameters into separate observation streams and multiplying their 
respective observation probabilities to force the HMM to treat them as if they were statistically 
independent. Therefore, the mel-cepstra and the delta mel-cepstra were split into separate obser- 
vation streams: 
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b (oo, od) = bc,i(oc) • (4) 

where c denotes mel-cepstrum and d denotes the delta mel-cepstrum. This maintained the perfor- 
mance on the SD task (5.0% word errors) and further improved the performance on the SI-72 task 
to 14.7% word errors. 

Next, the training procedure was modified by, instead of clustering the means of the Gaussians, 
clustering a subset of the training data, again using a binary-splitting k-means algorithm. It was 
hoped that this would provide an initialization with better representation of outliers which might 
have been suppressed by the single Ganssians. This change resulted in improvements in both tasks: 
the SD error rate went down to 4.7% and the SI-72 error rate went down to 13.7% 

A variation in the training procedure of the "kt" systems was tested. It was feared that the 
high-frequency triphones were dominating the Ganssian means in the early iterations of training 
causing damage to the modeling of low-frequency triphones. Therefore, the Ganssian means were 
not trained until the weights had settled. This was intended to protect the Gaussian means until 
the phone models had become very specific. No improvement was found. 

To fully test for outliers, the system was initialized wilth a set of Ganssians formed by binary- 
splitting k-means clustering a subset of the training data using the perceptually-motivated weighting 
[8,9] (which was again not altered during clustering). The system was started with flat start tied 
mixture monophones (maximum order mixtures with all weights equal). These monophone models 
were used to bootstrap the triphone models, again using the forward-backward algorithm at each 
stage. These "ks" systems provided the best performance for the SD task (4.5% word errors), but 
failed to improve on the SI-72 task (15.3% word errors), probably due to the slight smoothing 
induced by the old initialization. This SD performance is better than the corresponding Feb89 
system with WCF triphone models (5.2%). 

None of the above systems used word context (boundary) modeling. The "kt" system was tested 
on the SD task using word context-dependent models. The performance (4.0% word errors) was 
better than the WCF system (4.7% word errors), but was not better than the Feb89 SD systems 
with WCD models (3.0% word errors). The tied mixture system appears to require more training 
data than does a single Gaussian per state system. 

The above systems do not have any smoothing on the mixture weights. A preliminary attempt to 
use deleted interpolation across phonetic contexts [1,5] caused a slight increase in the error rate of 
an SI-72 system. 

D I S C U S S I O N  

The changeover to tied mixtures has achieved better performance than the WCF SD system. The 
improvement due to adding the delta mel-cepstral observations was quite small (5.5 to 5.0% word 
error rate) compared the improvement on the SI-72 task (26.7 to 14.7% word error rate). The SD 
improvement found here is similar to that achieved in a similar test with a single Gaussian per 
state WCF SD system. In contrast, BBN [14] achieved a dramatic improvement by adding delta 
observations to their SD system. It is not obvious why the effect of delta observations should be 
so variable. 
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The net improvement in the WCF SD system but not the WCD SD system and the SI systems 
in the context of the changeover to tied mixtures suggests the need for smoothing of the weights. 
(The WCF systems have about 2400 triphones and the SD WCD has about 6000 triphones.) The 
mixture weights in the tied mixture systems give more degrees of freedom in spectral matching than 
single Gaussians or low-order independent mixtures and, therefore, require more training data or 
smoothing to be effective. The "kt" system was SI-109 trained which, as expected, improved the 
results (13.7 to 11.2% word error). However, it still did not outperform the independent mixture 
system (10.1% word errors). The a t tempt  to use deleted interpolation to smooth the weights of an 
SI-72 system failed for reasons that  are as yet unknown. (It might be a defect in the details of our 
technique or just a bug in our program.) Smoothing will require re-examination. 

Tied mixture systems are very compute-intensive. Some of the other tied mixture systems have 
a t tempted to reduce computat ion by limiting the number of "active" Gaussians to a few with the 
highest probability [3,4,13]. The systems used here dynamically reduced the mixture order by 
removing components if their weights fell below a threshold. This resulted in long iteration times 
early in the training when the mixtures were still of a high order, but the later iterations proceeded 
at a reasonable pace. The recognizer, of course, saw only the lowest order mixtures from the final 
iteration of training. The net effect is an approximate doubling of the training time over the Feb89 
systems and a halving of the recognition times. Since most experiments require both training and 
recognition, the total experiment time was significantly increased. A changeover to limiting the 
number of active Gaussians may reduce the training time. 

Our work with tied mixtures has shown promise of improved performance. There are still a number 
of issues to be examined or re-examined, and we will continue working on tied mixture HMM 
recognition systems. 

C O M M E N T  ON C O M P A R A T I V E  E V A L U A T I O N  T E S T I N G  

The standard deviations in Table 1 are computed, assuming a binomial distribution. This stan- 
dard deviation is very optimist ic-- i t  assumes that  al___l conditions are equal and that  all errors are 
independent.  If it has any validity, it is valid only for comparisons of very similar (preferably min- 
imal pair) systems tested on exactly this data. A standard deviation computed across speakers is 
much higher--see Table 2 for some comparative values. This standard deviation gives an idea of 
the confidence one would have in predicting the recognition performance of a new speaker. The 
high across-speaker standard deviation also suggests that  comparisons between systems are highly 
dependent upon the speaker set used for the comparison tests. 

Using the SD February 89 evaluation test data, we compared the best six (of twelve) speaker lists 
from both the Lincoln and BBN systems, and found only three (50%) speakers common to both 
lists. This was true with and without the word-pair grammar.  A similar comparison on the best 
five (of ten) speakers yields a list intersection averaged over all site pairs with grammar and all 
site pairs without grammar of 63% for the SI-72 task (Lincoln, MIT, and SRI systems) and 73% 
for the SI-109 task (CMU, Lincoln, and SRI systems). In general, since the SI training only uses 
a moderate number of speakers, a higher correlation between the best lists is expected for SI than 
for SD because the SI test speakers may be more or less similar to the training speakers; whereas, 
no such systematic variation exists for the SD tests. 

This analysis is ad-hoc, but the high across-speaker standard deviation and the poor agreement in 
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the best speaker lists suggest a weakness in our current inter-site system comparison procedures. 
Strengthening our inter-site comparisons cannot be achieved just by more powerful tests for com- 
paring two sets of results for the same speaker--much larger test speaker sets and tests which take 
into account the inter-speaker variation are required. SRI has made a comparison based upon 
summing the per-speaker comparisons between two systems and reached a similar conclusion [7]. 
In practice, we may not be able to collect adequate data from, for example, 100 speakers for SD 
training and testing, but 100 test speakers for SI testing is quite practical. 

E V A L U A T I O N  T E S T S  R E S U L T S  

Immediately after the February 89 meeting, a bug was found in the recognition network generation 
software for the WCD models. (This bug only affected our SD WCD system.) The fix was not a 
change in concept, only a correction of the implementation. The development test results are shown 
in Table 1 as "'Feb89 WCD with bug" and "Feb89 WCD". The comparisons in this paper have 
been made with the "Feb89 WCD" system because it is (barring other bugs) the implementation 
of the system described in the talk and paper [10]. These tests were rerun and filed with NIST. 
A summary of the February 89 SD evaluation test results with and without the bug are shown in 
Table 3. 

Since our tied mixture systems have not shown better performance than our (fixed) SD "Feb89 
WCD" single Ganssian per-state system and our "Feb 89" independent mixture SI systems, the 
Feb89 systems are being used for the evaluation tests. A summary of the results is shown in Table 
4. 

There appears to be a bias in the SD test data relative to other test da t a - - the  SD tests show 
significantly fewer insertions than deletions. The effect is very strong for the with grammar  test 
where 10 of the 12 speakers showed no insertion errors. In contrast, only one speaker showed no 
deletion errors. The February 89 tests of the same SD system show a balance between the two forms 
of errors (Table 3). (There is a similar, but weaker, bias in the no grammar SD case. This weaker 
bias would not be noteworthy if the with grammar case did not call attention to it.) The insertion 
penalty, which controls this trade-off, was set for minimum word error rate on the development 
test data. Usually, this minimum occurs when the insertion and deletion error rates are similar. 
The skew observed here is large enough that  the SD word error rate would probably be reduced if 
the insertion penalty were adjusted to match this test data. (The excess of deletion errors in the 
current SI tests also occurred in the February 89 tests and is, therefore, not noteworthy.) 
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TABLE 1 
DEVELOPMENT TEST RESULTS WITH p=60 WORD-PAIR GRAMMAR 

% Word Errors (% std dev) 
Training Condition 

k-means 
System on SD SI-72 S1-109 
Feb89 WCF - 5.2 (.2) 12.9 (.3)* 10.1 (.3)* 

single observation stream 
cep tri 5.5 (.2) 26.2 (.4) 
cep+delta tri 6.1 (.2) 17.2 (.4) 
cep+delta, 512 Gaussians tri 5.0 (.2) 17.1 (.4) 

multiple observation streams 
cep+delta tri 5.0 (.2) 14.7 (.4) 
cep+delta: "kt" obs 4.7 (.2) 13.7 (.3) 
cep+delta: "ks" start  4.5 (.2) 15.3 (.4) 

11.2 (.3) 

word boundary context-dependent 
Feb89 WCD with bug - 3.4 (.2)* 
Feb89 WCD - 3.0 (.2)** 
cep+delta: WCD "kt" obs 4.0 (.2) 

All tests use the SD Development Test set: 12 SD speakers, 100 sentences per speaker, 10242 total words. 
The std dev assumes a binomial distribution. The "k-means on" column gives the data  used by the k- 
means algorithm to create the set of Gaussians used by the tied mixtures. All tied mixture systems use 256 
Gaussians unless otherwise noted. 

* Feb89 official test systems 
** fixed Feb89 SD test system 
k-means codes (see text for complete description): 

start = k-means of data, tied mixtures at all stages of training 
tri = single Gaussian bootstrap, k-means of triphone means 
obs = single Gaussian bootstrap, k-means of observation data  
- = not a tied mixture system 
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TABLE 2 
COMPARATIVE DEVELOPMENT TEST STANDARD DEVIATIONS 

Standard Deviations 
System Word Errors Binomial Across Speaker 
SD Feb89 WCD 3.0% .17% 1.03% 
SD Feb89 WCF 5.2% .22% 1.16% 
SI-72 Feb89 12.9% .33% 4.97% 
SI-109 Feb89 10.1% .30% 4.68% 

TABLE 3 
SUMMARY OF FEBRUARY 89 EVALUATIONS TEST RESULTS 

WITH WCD MODEL RECOGNIZER BUG FIXED 

System 

% Word Error Rates 
Word-Palr Grammar (p=60) No Grammar (p=991)* 

sub ins del word (sd) s e n t  sub ins del word (sd) sent 

Feb89 SD WCD, bug 2.7 1.0 .5 4.2 (.4) 28.0 8.4 2.9 2.0 13.2 (.7) 60.3 
Feb89 SD WCD 2.5 .6 .6 3.6 (.4) 25.7 8.6 2.5 2.1 13.1 (.7) 60.0 

* Homonyms equivalent 
Binomial standard deviations 
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TABLE 4 
SUMMARY OF OCTOBER 89 EVALUATION TEST RESULTS 

System 

% Word Error Rates 
Word-Pair Grammar (p=60) No Grammar (p=991)* 

sub ins del word (sd) sent sub ins del word (sd) sent 

October 89 test set 
Feb89 SD WCD 
Feb89 SI-72 
Feb89 SI-109 

2.5 .1 1.0 3.6 (.4) 24.0 
7.2 1.6 3.2 12.0 (.6) 52.7 
6.1 1.9 2.8 10.8 (.6) 44.7 

9.9 1.5 2.6 14.0(.7) 
21.9 4.4 8.2 34.5(.9) 
18.9 3.1 7.8 29.8(.9) 

63.7 
91.0 
88.3 

"Retest" test set 
Feb89 SD WCD 
Feb89 SI-109 

8.9 2.5 1.7 13.1(1.0) 
17.9 3.1 6.0 26.9(1.2) 

60.0 
78.7 

* Homonyms equivalent 
Binomial standard deviations 
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