
A PROPOSAL FOR SLS EVALUATION

Sean Boisen
Lance Ramshaw
Damafis Ayuso

Madeleine Bates

BBN Systems and Technologies Corporation
C a m b r i d g e , M A 0 2 1 3 8

ABSTRACT

This paper proposes an automatic, essentially domain-
independent means of evaluating Spoken Language Sys-
tems (SLS) which combines software we have devel-
oped for that purpose (the "Comparator") and a set of
specifications for answer expressions (the "Common An-
swer Specification", or CAS). The Comparator checks
whether the answer provided by a SLS accords with a
canonical answer, returning either true or false. The
Common Answer Specification determines the syntax of
answer expressions, the minimal content that must be
included in them, the data to be included in and ex-
cluded from test corpora, and the procedures used by
the Comparator. Though some details of the CAS are
particular to individual domains, the Comparator soft-
ware is domain-independent, as is the CAS approach.

1 INTRODUCTION

The DARPA community has recently moved forward
in beginning to define methods for common evaluation
of spoken language systems. We consider the existing
consensus to include at least the following points:

• Common evaluation involves working on a com-
mon domain (or domains). A common corpus
of development queries (in both spoken and tran-
scribed form), and answers to those queries in some
canonical format, are therefore required.

• One basis for system evaluation will be answers to
queries from a common database, perhaps in addi-
tion to other measures.

• Automatic evaluation methods should be used
whenever they are feasible.

• System output will be scored by NIST, though all
sites will be able to use the evaluation program in-
ternally.

• Development and test corpora should be subdivided
into several categories to support different kinds of
evaluation (particularly concerning discourse phe-
nomena).

An implicit assumption here is that we are consider-
ing database query systems, rather than any of the vari-
ous other natural language processing domains (message
understanding, command and control, etc.). Evaluating
systems for these other domains will naturally require
other evaluation procedures.

Building on the points of consensus listed above,
this proposal presents an evaluation procedure for the
DARPA Common Task which is essentially domain-
independent. The key component is a program, desig-
nated the Comparator, for comparing canonical answers
to the answers supplied by a Spoken Language System.
A specification for such answers, which incorporates the
requirements of the Comparator, is presented in Sec-
tion 2. This specification, called the Common Answer
Specification (CAS), is not intended to be suitable for
interactive systems: rather, it is designed to facilitate au-
tomatic evaluation. While we have attempted to cover
as broad a range of queries and phenomena as possible,
data which fall outside the scope of the CAS can simply
be left out of test corpora for now.

Section 3 presents some of the justification supporting
the proposal in Section 2, as well as amplifying several
points. Details on the Comparator are given in Section 4.

Section 5 concludes with a discussion of corpus devel-
opment, looking at what kind of data should be collected
and how corpora should be annotated to facilitate testing
various types of natural language.

135

2 THE PROPOSAL

Here we present the basic substance of our proposal for
a Common Answer Specification (CAS), deferring some
details and elaboration to Section 3. The CAS, which is
designed to support system evaluation using the Com-
parator, covers four basic areas."

1. The notation used for answer expressions.

2. The minimal content of canonical answers.

3. The material included in test corpora.

4. The procedure used by the Comparator for compar-
ing canonical answers to system output.

We assume an evaluation architecture like that in Fig-
tire 1. Everything on the right hand side of the figure is
the developer's responsibility 1. Items on the left side of
the diagram will be provided as part of the evaluation
process.

The Common Answer Specification was devised to en-
able common, automatic evaluation: it is expressly not
designed to meet the needs of human users, and should
be considered external. This means that developers are
free to implement any output format they find conve-
nient for their own use: we only propose to dictate the
form of what is supplied as input to the Comparator. It
is assumed that some simple post-processing of system
output by the developer will be required to conform to
the CAS.

While the central points of the CAS are domain-
independent, certain details relating to content can only
be determined relative to a specific domain. These por-
tions of the proposal are specified for the personnel do-
main and SLS Personnel Database (Boisen, 1989), and
all examples are taken from that domain as well.

2.1 Notation

S-1 The basic CAS expression will be a relation, that
is, a set of tuples. The types of the elements of tuples
will be one of the following: Boolean, number, string,
or date. Relations consisting of a single tuple with only
one element can alternatively be represented as a scalar.

1BBN has offered their ERL interpreter (Ramshaw, 1989) as a
backend database interface for those who desire one: use of the ERL
interpreter is explicitly not required for common evaluation, however,
and developers are free to use whatever database interface they find
suitable.

S-2 CAS expressions will be expressed as a Lisp-style
parenthesized list of non-empty lists. Scalar answers
may alternatively be represented as atomic expressions.
The two Boolean values are t r u e and f a l s e . Numeric
answers can be either integers or real numbers. Dates
will be an 9-character string like " 0 1 - J A N - 8 0 " . The
number and types of the elements of tuples must be the
same across tuples. An empty relation will be repre-
sented by the empty list. Alphabetic case, and white-
space between elements, will be disregarded, except in
strings.

A BNF specification for the syntax of the Common
Answer Specification is found in Appendix A. Here are
some examples of answers in the CAS format:

((false))
FALSE
2.9999999999
((3))
"04-JUL-89"
((2341 "SMITH") (5573 "JONES"))
()

2.2 Minimal Content

Certain queries only require scalar answers, among them
yes/no questions, imperatives like "Count" and "Sum",
questions like "How much/many _ _ ?", "How long
ago _ _ ?", and "When _ _ ?". Other queries may
require a relation for an answer: for these cases, the
CAS must specify (in linguistic terms) which of the en-
titles referred to in the English expression are required
to be included in the answer. For required entities, it is
also necessary to specify the database fields that identify
them.

S-3 For WH-questions, the required entity is the syn-
tactic head of the WH noun phrase. For imperatives,
the required NP is the head of the object NP. The nouns
"'list", "'table", and "'display" will not be considered
"true" heads.

Examples: For the query "Which chief
scientists in department 45 make more than
$70000?", the required entity is the scientists,
not the department or their salaries.

In the case of "Give me every employee's
phone number", the only required entity is the
phone number.

136

S S

Comparator F

SLS kernel

_l backend

I CAS formatting I

Figure 1: The evaluation process

For "Show me a list of all the depart-
ments", the required entity is the departments,
not a list.

For the query "Count the people in depart-
ment 43' , only the scalar value is required.

Entities often can be identified by more than one
database field: for example, a person could be repre-
sented by their employee identification number, their first
and last names, their Social Security Number, etc. For
any given domain, therefore, the fields that identify enti-
ties must be determined. If only one database identifier
is available (i.e., only the field s a l a r y can represent
a person's salary), the choice is clear: in other cases, it
must be stipulated.

S--4 (Personnel) In any evaluation domain,
canonical database identifiers for entities in the domain
must be determined. For the personnel domain, Table 1
will specify the database fields that are canonical identi-
fiers for entities with multiple database representations.

Example: For the query "List department 44
employees", the required database field is
e m p X o y e e - i d , so a suitable answer would
be

((4322) (5267) . . .)

where 4322, 5267, etc. are employee identifi-
cation numbers.

Certain English expressions in the personnel domain
are vague, in that they provide insufficient information
to determine their interpretation. We therefore stipulate
how such expressions are to be construed.

S-5 (Personnel) In any evaluation domain, the inter-
pretation of vague references must be determined. For
the personnel domain, Table 2 will designate the refer-
ents for several vague nominal expressions.

Example: For the query "What is Paul Tai's
phone number?", the expression will be inter-
preted as a request for Tai's work phone num-
ber, not his home phone.

137

entity database field

employees employee-id
countries country-code
degrees degree,

employee-id,
school-code

departments department
divisions division
majors major-code
schools school-code
states state-code

Table 1: Canonical field identifiers for domain entities
with multiple database representations.

expression I database field

telephone w o r k - p h o n e
name (of a person) Z a s t - n a n m
address street

Table 2: Database fields for vague nominal expressions.

Another case involves the specificity of job rifles.
In the Common Personnel Database, there are several
job rifles that are related to a specific type of pro-
fession: for example, "STAFF SCIENTIST", "SCIEN-
TIST", "CHIEF SCIENTIST", etc. We propose that all
these be considered scientists in the generic sense for
queries like "Is Mary Graham a scientist?" and "How
many scientists are there in department 45?".

S--6 (Personnel) Someone will be considered a scien-
tist i f and only if that person's j o b - t l t l e contains the
string "SCIENTIST". The same is true for the following
generic profession titles: engineer, programmer, clerk,
and accountant. The terms manager and supervisor will
be treated interchangeably, and someone will be consid-
ered a manager or supervisor only if that person is the
supervisor of some other person.

2.3 T e s t Corpora

S--7 The primary corpus will be composed of sim-
ple pairs of queries and their answers. In addition,
a distinct corpus will be used for evaluating the sim-
ple discourse capability of reference to an immediately
preceding query. This corpus will contain triplets of
(querltl , q u e r y , answer2), where quer!ll contains the
referent of some portion of querFz. The canonical an-
swer will then be compared to answer2.

Example: One entry in the discourse corpus
might be the following triplet:

query1: "What is Mary Smith's job fl0e?"

querFz: "What is her salary?"

a n s w e R : ((52000))

S-8 For the time being, we propose to exclude from
the test corpora queries that:

• are ambiguous

• are overly vague (i.e., "'Tell me about John Smith")

• don't have an answer because no data is available

• involve presupposition failure

• require sorting

• require "'meta-information" (e.g., "'List the ethnic
groups you know about")

• or otherwise lack a generally accepted answer.

2.4 T h e Comparator

S-9 The Comparator will use an "epsilon" measure
for comparing real numbers. The number in the canon-
ical answer will be multiplied by the epsilon figure to
determine the allowable deviation : numbers that differ
by more than this amount will be scored as incorrect.
The value of the epsilon figure will be initially set at
0.0001.

Example: If the canonical answer is
53200.0, the maximum deviation allowed will
be (53200.0 x 0.0001), or approximately 5.32.
Thus a system answer of 53198.8 would score
as correct, but 53190.9 would be incorrect.

138

S-10 Extra fields may be present in an answer relation,
and will be ignored by the Comparator. The order of
fields is also not specified: the mapping from fields in a
system answer to fields in the canonical answer will be
determined by the Comparator.

Example: For the query "Show Paul Tai's
name and employee id", with the canonical
answer

((4456 "TAI"))

any of the following would be an acceptable
answer:

((4456 "TAI PAUL")))
(("TAI" 4456)))

S-11 The only output of the Comparator will be "cor-
rect" or "'incorrect". Capturing more subtle degrees
of correctness will be accomplished by the quantity and
variety of the test data.

3 DISCUSSION

This section presents some of the justification supporting
the proposal in Section 2, as well as amplifying several
points and discussing some possible shortcomings and
extensions. It may be usefully omitted by those who are
not interested in these details. The organization follows
the four areas of the proposal: notation, minimal content,
test corpora, and the Comparator procedures.

3.1 Notation

The proposal in S-2 allows scalar values to be repre-
sented either as relations or as atomic expressions, i.e.,
either of

false
((false))

Treating the answer to questions like "Is Paul Tai a
clerk?" as a relation seems somewhat unfortunate. This
allows for a completely homogeneous representation of
answers, however, and is permitted for this reason.

The range of types in S- l , while adequate for the
personnel domain, may need to be enlarged for other
domains. One obvious omission is a type for amounts:
units are not specified for numbers. In the personnel

domain, there are only two amounts, years and dollars,
neither of which is likely to require expression in other
units (though one could conceivably ask "How many
days has Paul Tai worked for the company?"). Other
domains would not be similarly restricted, and might
require unit labels for amounts of length, speed, volume,
etc. Of course, it is always possible to simply specify
canonical units for the domain and require all numbers to
be in those units: this would increase the effort required
to conform to the CAS, however.

Answers to requests for percentages should express
the ratio directly, not multiplying by 100: so if 45 out
of 423 employees have PhD's, the answer to "What per-
centage of employees have PhD's?" should be

0.1064

3.2 Minimal Content

Under section S-3 of the proposal, one should note the
possibility of a required NP being conjoined or modi-
fied by a "conjoining" PP modifier, as in the following
examples:

List the clerks and their salaries.
List the clerks with their salaries.

Clearly in both of these cases the salaries as well as the
employee IDs should be required in the answer.

One possible objection to the approach proposed
in S-3 is that it ignores some well-documented concerns
about the "informativeness" or pragmatic capabilities of
question-answering systems. For example, in a normal
context, a suitably informative answer for

List the salary of each employee.

would provide not just a list of salaries but some identi-
fication of the employees as well, under the assumption
that this is what the user really wants. Since the pur-
pose of the CAS is automatic evaluation rather than user
convenience, this objection seems irrelevant, at least un-
til a metric for measuring pragmatic capabilities can be
defined. Note that S-10 means developers are free to
include extra fields for pragmatic purposes: such fields
are simply not required for correctness. A similar point
can be made concerning vague expressions (S-5). Only
the street field is explicitly required for references to
an address, since that should be sufficient to determine
correctness, but developers may also include c i t y and
state if they wish.

139

One might argue that the proposed treatment of man-
ager/supervisor in S-6 is inconsistent with the approach
taken for scientists, engineers, programmers, etc. Our
decision is essentially to consider manager and super-
visor as technical terms which indicate a supervisory
relation to another employee, rather than generic de-
scriptions of a profession. This has the possibly un-
fortunate consequence that employees in the Common
Personnel Database with job rifles like "SUPERVISOR"
and "PROJECT MANAGER" may not be considered
supervisors or managers in this technical sense. Never-
theless, given that these rifles seem less like descriptions
of a profession, the approach is not inconsistent.

There are probably other vague expressions which will
have to be dealt with on a case-by-case basis, either
by agreeing on a referent or eliminating them from the
corpora.

3 .3 T e s t C o r p o r a

Some comments are in order about various items ex-
cluded by section S-8 of the proposal. For example,
ambiguity (as opposed to vagueness) is barred at present,
primarily to simplify the Common Answer Specification.
It would not be difficult to enhance the canonical answer
to include several alternatives for queries which were
genuinely ambiguous: then the Comparator could see if
a system answer matched any of them, counting at least
one match as correct. A more challenging test would be
to only score answers as correct that matched all reason-
able answers. This would obviously require substantial
consensus on which queries were ambiguous and what
the possible readings were.

Presupposition is another area where one could imag-
ine extensions to the proposal: for queries like

List the female managers who make more than
$50000.

there is an implicit assumption that there are, in fact,
female managers. If no managers are female, the answer
would presumably be an empty relation. The reason
the answer set would be empty, however, would have
nothing to do with the data failing to meet some set of
restrictions, as in ordinary cases. Rather, the object NP
would have no referent: this is a different kind of failure,
and systems that can detect it have achieved a greater
degree of sophistication, which presumably ought to be
reflected in their evaluation. Such failure to refer can be
subdivided into two cases:

necessary failure: cases which are impossible by def-
inition. For example, the set of men and the set
of women are disjoint: therefore "the female men"
necessarily fails to refer to any entity.

contingent failure: cases which happen to fail because
of the state of the world (as in the example above).

One modification to the CAS that would include such
cases would be to extend S-1 to include types for fail-
ure, with several possible values indicating the failure
encountered. Then the canonical answer to the example
above might be the special token

contingent-failure

rather than simply

()

Until a broader consensus on this issue is achieved, how-
ever, we consider the best approach to be the elimination"
of such cases from the test corpora.

Section S-8 excludes queries whose answer is not
available due to missing data. As an example, in the
SLS Personnel Database the home phone number for
Richard Young, an attorney, is missing, and is therefore
entered as NIL. We therefore propose to exclude queries
like "What is Richard Young's home phone?" from test
corpora, since no data is available to answer the ques-
tion. On the other hand, the query "List the home phone
numbers of all the attorneys" would not be excluded.
The answer here would be the set of phone numbers,
including Richard Young's:

(("214-545-0306") (NIL)
("214-665-5043") ...)

Queries involving sorting are currently omitted pending
resolution of several technical problems:

• Given that extra fields are allowed, the primary sort
keys would have to be specified by the CAS.

Different sites might have different and incompati-
ble approaches to sub-sorts, ff the primary keys are
not unique.

• Since relations are assumed to not be ordered, a dif-
ferent notation for sorted answers would be needed.

140

In addition to these problems, evaluating queries that
require sorting would seem to contribute little to under-
standing the key technological capabilities of an SLS,
and is therefore at best a marginal issue. In light of
these points, we consider it expedient to simply omit
such cases for the present.

3.4 Comparator

The epsilon measure proposed in S-9 assumes that, if
an SLS does any rounding of real numbers, it will not
exceed the epsilon figure. Two particular cases where
this might be problematic are percentages and years: re-
peating an earlier example, the correct answer to a query
like "What percentage of employees have PhDs?" might
be

0.1064

and rounding this to 0 . 1 1 would score as incorrect.
Similarly, for a query like "How many years has Sharon
Lease worked here?", the years must not be treated as
whole units: an answer like

36.87

would score as correct, but 37 would be incorrect.
One consequence of S-10 is the small possibility of

a incorrect system answer being spuriously scored as
correct. This is especially likely when there are only a
few tuples and elements, and the range of possible values
is small. Yes/no questions are an extreme example: an
unscrupulous developer could always get such queries
correct by simply answering

((true false))

since the Comparator would generously choose the right
case. Eliminating such aberrations would require distin-
guishing queries whose answers are relations from those
that produce scalars, and imposing this distinction in the
CAS. We therefore assume for the time being that de-
velopers will pursue more pnncipled approaches, and we
rely on the variety of test corpora to de-emphasize the
significance of these marginal cases.

4 T H E C O M P A R A T O R

In this section we describe the Comparator, a Common
Lisp program for comparing system output (conforming

to the CAS) with canonical answers. We have chosen
this name to reflect an important but subtle point: eval-
uation requires human judgement, and therefore the best
we can expect from a program is comparison, not eval-
uation. Since the degree to which system output reflects
system capabilities is always imperfect, we view the re-
suits of the Comparator as only one facet of the entire ef-
fort of evaluating Spoken Language Systems. The Com-
parator software is available without charge from BBN
Systems and Technologies Corporation, which reserves
all fights to the software. To obtain a copy, contact
sboisen@bbn, con

The Comparator takes two inputs: the answer from a
particular SLS, and the canonical answer. The output is
a Boolean value indicating whether the system-supplied
answer matched the canonical one. To make that judge-
ment, the Comparator needs to perform type-appropriate
comparisons on the individual data items, and to handle
correctly system answers that contain extra values.

As described in S-9, real numbers are compared using
an epsilon test that compares only a fixed number of the
most significant digits of the two answers. The number"
of digits compared is intended to generously reflect the
accuracy range of the least accurate systems involved.
Note that there is still some danger of numeric impreci-
sion causing an answer to be counted wrong if the test
set includes certain pathological types of queries, like
those asking for the difference between two very similar
real numbers.

The other, more major issue for the Comparator con-
cerns the fact that table answers are allowed to include
extra columns of information, as long as they also in-
clude the minimal information required by the canonical
answer(S-10). Note that these additional columns can
mean that the system answer will also include extra tu-
pies not present in the canonical answer. For example, if
Smith and Jones both make exactly $40,000, they would
contribute only one tuple to a simple list of salaries, but
if a column of last names were included in the answer
table, there would be two separate tuples.

What the Comparator does with table answers is to ex-
plore each possible mapping from the required columns
found in the canonical answer to the actual columns
found in the system-supplied answer. (Naturally, there
must be at least as many columns as in the canonical
answer, or the system answer is clearly incorrect.) Ap-
plying each mapping in turn to the provided answer,
the Comparator builds a reduced answer containing only

141

those columns indicated by the mapping, with any du-
plicate tuples in the reduced answer eliminated. It is
this reduced answer that is compared with the canonical
answer, in terms of set equivalence.

Finally, it should be stressed that the Comparator
works within the context of relational database princi-
ples. It treats answer tables as sets of tuples, rather than
lists. This means first that order of tuples is irrelevant.
It also means that duplicate tuples are given no seman-
tic weight; any duplicates in a provided answer will be
removed by the Comparator before the comparison is
made.

5 C O R P U S D E V E L O P M E N T A N D T A G -

G I N G

Any corpus which is collected for SLS development and
testing will be more useful if it is easily sub-divided
into easier and harder cases. Different systems have dif-
ferent capabilities, particularly with respect to handling
discourse phenomena: the ideal corpus will therefore
include both the most basic case (i.e., no discourse phe-
nomena) and enough difficult cases to drive more ad-
vanced research.

We propose the tagging of corpora using a hierarchi-
cal categorization that reflects the richness of context
required to handle queries. These categories primarily
distinguish levels of effort for Spoken Language Sys-
tems, such that the lowest category should be attempted
by every site, and the highest category attempted only
by the most ambitious. Two other criteria for the cate-
gorization are the following:

• Categories should be maximally distinctive: there
is no need for fine distinctions that in practice only
separate a few cases.

• Categories should be easily distinguishable by those
who will do the tagging. That is, they should be
objective and clearly defined rather than relying on
sophisticated linguistic judgements.

Here is a candidate categorization, where the category
number increases as the context required becomes suc-
cessively richer:

Category 0: no extra-Sentential context is required (i.e.,
"0" context): the sentence can be understood in
isolation. This is the default case.

Category 1: "local" extra-sentential reference, exclud-
ing reference to answers: that is, the sentence can
be understood if the text of the previous question
is available. One is no t allowed to go back more
than one question, or look at the answer, to find the
referent.

Category 2: ellipsis cases, such as the following se-
quence:

"What's Sharon Lease's salary?"
"How about Paul Tai?"

Category 3: "non-local" reference. The referent is in
the answer to the previous query, or in the text of
a query earlier the previous one. This probably in-
cludes several other kinds of phenomena that would
be usefully separated out at a later date.

Category X: all cases excluded from corpora, both for
discot~se and other reasons (see S-8).

We propose two initial uses of this categorization for
SLS evaluation: creating basic test corpora of Category
0 queries, and designing simple discourse corpora that
include Category 1 queries (see S-7). The other cat-
egories would enable developers either to focus on or
to eliminate from consideration more difficult kinds of
discourse phenomena.

There may be other categories which are of interest
to particular developers: for such cases, it is suggested
that the developer do their own site-specific tagging,
using those features which seem reasonable to them.
This scheme is offered solely to expedite community-
wide evaluation: there are many possible categorizations
which might be useful for other purposes, but they are
independent of the considerations of common evalua-
tion.

6 C O R P U S C O L L E C T I O N

The evaluation scheme described in the previous sec-
tions assumes the existence of realistic test corpora: it
says nothing, however, about how such corpora will be
collected. This section describes our approach to corpus
collection, which uses a human simulation of a Spoken
Language System. Since the test and training corpora
will be shared, they need only be collected once, and
then distributed to SLS developers. The setup described

142

here has been delivered to Texas Instruments for use
in their effort to collect a common corpus for the SLS
community.

Our approach to corpus collection is to simulate the
behavior of a spoken language system (SLS) for database
access which is beyond the state of the art, but within
about 5 years of effort. We are concerned with obtaining
a large corpus of spontaneous task-oriented utterances,
without being restricted by current capabilities. Such a
corpus would help in prioritizing research for the next
few years, while providing a challenging base of exam-
pies for system evaluation.

Our methodology has been guided by the following
primary goals:

• The subject should be as unbiased as possible in
terms of the kinds of language which are possible.

• The subject should be performing a task, in order
to get realistic input exhibiting context-dependent
phenomena.

• The simulation mechanism must be fast enough to
maintain the interaction in a natural fashion.

• The simulation must be accurate enough that the
subject can rely on it: otherwise interactions tend to
degenerate into consistency checking by the subject.

• The system must behave cooperatively, especially
when it is unable to answer a query, so as not to
fruslrate the subject.

• Minimal training should be required so that rela-
tively naive subjects can be utilized.

We accomplish these goals by providing a human sim-
ulator (here referred to as the Wizard) of a speech recog-
nition system, using a "PNAMBC" setup ("Pay No At-
tention to the Man Behind the Curtain"). The Wizard is
provided with tools to obtain and display answers to user
queries, and to provide appropriate diagnostic messages
when the query cannot be satisfied.

6.1 The Setup

In a data collection session, the subject is first provided
with the following:

• general information describing the session

• a description of the database

• a list of possible tasks for the subject to pursue (in-
cluding specific details, but not examples of English
queries)

• pen and paper

The subject and the Wizard are kept in separate rooms,
in order to remove any influence of the Wizard's actions
on the subject. The Wizard is only allowed to commu-
nicate with the subject by displaying information on the
subject's console, either as an answer to a request, or by
using one of a fixed set of canned messages. A "push to
talk" microphone is used by the subject when directing
requests to the Wizard, and his utterances are recorded.
A diagram of the setup is in Figure 2.

There is a cyclic interaction which begins by the sub-
ject verbalizing a query, which the Wizard transcribes
and sends as text to the subject's screen. The Wizard
then submits the text to a natural language (NL) tool: we
have used Parlance TM, BBN's commercial NL interface,
for this component. If the query is correctly processed,
the Wizard echoes the response to the subject's screen.
If the NL tool fails, the Wizard may revise the request
and try again until it is understood, or until a predeter-
mined time limit expires (usually around a minute). All
revision is "behind the curtain", and unseen by the sub-
ject. The speed of the NL tool (a few seconds per query
for Parlance) allows for several revisions of a request if
necessary, while still keeping a fast turnaround time. If
the Wizard is unable to obtain a correct answer, or the
request is outside the scope of the simulation, the Wiz-
ard sends one of a predefined set of canned messages to
the user (see the next section for examples). All input
and output to the Wizard's window is recorded in a log.
file.

With this setup we are able to collect approximately
50 queries per hour, using one subject per hour.

6.2 The Wizard

Beyond the simple transcription of the spoken query, the
role of the Wizard is to extend the linguistic coverage of
the NL tool (by revising queries when necessary), while
keeping the simulation within the bounds of a system that
is realistically attainable in a few years. In our prelim-
inary experiments, the Wizard's involvement increased
the coverage of requests that were within the scope of
the simulated system from 67% to 94%.

143

Subject Wizard

I

2 : speech!_ n , record
, echo I

I
~ ! transcribe [

' ~ I-revise
I ~ if

~ 1 necessary

Figure 2: Data Collection Setup

Another important aspect of the Wizard's job is to
decide when a query is beyond the simulated system's
scope and give an appropriate reply. Any request that
can be understood by the NL tool is considered safely
within the scope of our simulated system. However,
other requests may be problematic, for example, queries
that require meta-level knowledge like "Are you able to
compute percentages?". When a query cannot be an-
swered within the bounds of the simulation, or the Wiz-
ard is unable to obtain an answer due to an NL tool
limitation (even though the query is considered reason-
able), the Wizard selects an appropriate canned message
and dispatches it to the subject. Currently there are 11
such messages, including the following:

• "No information is available on ~ ": the infor-
marion requested is not in the database---the Wizard
fills in the blank.

• "No information about the information itself is

available", when the subject's request assumes
meta-level knowledge.

• "Sorry, the system is unable to answer your query",
when the NL tool fails to process a request that is
within the scope of the simulated system.

A successful Wizard needs to know the domain,
though "expert" status is not necessary. In addition, the
Wizard must be familiar with the database and with the
extent of coverage provided by the particular Parlance
configuration. Some linguistic knowledge is also useful
to quickly diagnose likely problems with complex lin-
guistic constructions. We've found that a large set of
sample sentences, and few days experience with the NL
tool, is sufficient to train Wizard apprentices.

144

6.3 The NL Tool

The NL tool clearly performs a crucial role in the Oz
simulations. In principle, this tool could be just a low-
level database query language interface. This would
sacrifice turnaround speed, however, since the Wiz-
ard would have to compose and enter long, complex
database queries.

Using Parlance as a NL tool provides a very fast and
reliable system for processing the natural language re-
quests. In our initial experiments simulating an SLS
front end to a personnel database, 67% of the requests
that were within the bounds of the simulated system were
handled by Parlance without revision. Parlance also pro-
vides us with the Learner TM, its knowledge acquisition
tool. With the Learner, Parlance can be quickly brought
to high coverage on a new database, allowing for corpus
collection in various domains ff so desired.

A A BNF SPECIFICATION FOR THE
CAS NOTATION

The following BNF describes the syntax of the Common
Answer Specification:

answer , scalar-value I relation

boolean-value , true I false

date , " digit digit - month - digit
digit "

digit , 0 - 9

month , JAN . . .DEC

number-value , in teger I real -number

relation ~ (tuple*)

scalar-value , boolean-value I date [
number-value [s t r i n g

tuple , (value +)

value , scalar-value I N I L

We assume as primitives the values integer, real-
number , and string. Integers and reals are not distin-
guished. Note that, unlike the special tokens t r u e ,
f a l s e and n i l , strings are case-sensitive, and in the

personnel domain should usually be upper-case (since
that's the form used in the SLS Personnel Database).
Only non-exponential real numbers are allowed.

Answer relations must be derived from the existing
relations in the database, either by subsetting and com-
bining relations or by operations like averaging, summa-
tion, etc. For the SLS Personnel Database, this implies
allowing NIL as a special case for any value.

Empty tuples are not allowed (but empty relations
are). Reiterating S-2, all the tuples in a relation must
have the same number of values, those values must be
of the same respective types (boolean, string, date, or
number), and the types in the answer must be the same
as the types in the database (i.e., database values like
"1355" cannot be converted from strings to numbers in
answer expressions).

B A SAMPLE TEST CORPUS

Based on the Common Personnel Database, we have
prepared a small corpus of queries and their answers in
the Common Answer Specification. These provide con-
crete examples of the answer expressions that a Spoken
Language System is expected to match, within the lee-
way allowed by the Comparator (Section 4). The intent
here is not to provide a wide range of natural language
contructions, but rather to provide a check on the clar-
ity and completeness of the CAS. Note that discourse
capabilities are not exercised in this corpus.

"How many employees are there in department 45?"
4 8

"When did Sharon Lease join the company?"
"06-0CT-52"

"Show me a list of the Hispanic employees."
((1468) (4688) (6213))

"Are there any clerks who make over $50000?"
false

"What's the number of female scientists in the com-
pany?"

20

"How long ago did Sharon Lease join the company?"
36.87

"How many years has Sharon Lease worked here?"
36.87

145

"Does Sharon Lease work in department 10?"
true

"Are Sharon Lease and Paul Hayes both in department
10?"

false

"Sum the salaries of the managers."
2331300

"Give me the average salary of managers who graduated
from Harvard."

72400.0

"What are the ethnic groups of the members of depart-
ment 11?"

(("BLACK") ("HISPANIC")
("WHITE"))

"Show me every manager's last name and the number
of people they supervise."

((71 "GRAY") (i "BRADY")
(40 "JACOBSON") (4 "BEEK")
(3 "EASTON") (i "BOFF")
(8 "BANDANZA") (20 "BURRUSS")
(96 "MCGLEW") (12 "FRANKLIN")
(24 "PAYNE") (5 "BUONO")
(28 "MACLEAN") (4 "LANDER")
(29 "FAY") (47 "SEABORN")
(3 "LI") (26 "DI"))

"List the degrees of Sharon Lease, Jose Vasquez, and
Martha Nash."

(("HA" 1028 3761) ("MA" 1458
3514) ("BA" 1458 3434) ("PHD"
2099 3434) ("MA" 2099 3434)
("HA" 2099 2074))

"Tell me the names of all senior scientists."
(("BURRUSS") ("SPATOLA")
(" SYKLEY") ("CAVANAUGH")
("KANYUCK") ("SEABORN")
("KINGSLEY") ("MESSENGER")
("ZXNrZ"))

"What is Sharon Lease's phone number?"
"6218"

"What's the average salary for level 31 employees?"
((270275.0))

"List the home phones of people living in Irving."
((NIL) ("214-545-0306")
("214-665-5043")
("214-492-3575 ")
("214-696-8397")

("214-625-4682")
("214-884-1708")
("214-484-3185")
("214-646-4192"))

"List all the programmers in department 20."
()

"What percentage of employees have PhDs?"
0.1064

"Give me a list of the addresses of all the accountants."
(("9 LAKEVIEW TERR")
("35 MYOPIA HILL RD")
("58 HIGH ST")
("30 DELANO PARK")
("74 GODEN ST")
("'49 LAWMARISSA RD")
("240 BRATTLE ST")
("380 WALTHAM ST")
("223 BROADWAY")
("33 SUMMIT AVE") ("269 RICE ST")
("21 HAWTHORNE ST") ("76 WEBSTER ST")
("55 OAK ST") ("147 GLOUCESTER ST"))

Acknowledgements

The work reported here was supported by the Advanced
Research Projects Agency and was monitored by the Of-
rice of Naval Research under Contract No. 00014-89-
C-0008. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced
Research Projects Agency or the United States Govern-
ment.

References

S. Boisen. The SLS Personnel Database (Release 1).
SLS Notes No. 2, BBN Systems and Technologies Cor-
poration, 1989.

L. Ramshaw. Manual for SLS ERL (Release 1). SLS
Notes No. 3, BBN Systems and Technologies Corpora-
tion, 1989.

146

