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Abstract 

For many pattern recognition applications including speech recognition and optical character recognition, 
prior models of language are used to disambiguate otherwise equally probable outputs. It is common 
practice to use tables of probabilities of single words, pairs of words, and triples of words (n-grams) as a 
prior model. Our research is directed to 'backing-off' methods, that is, methods that build an (n+l)- 
gram model from an n-gram model. 

In principle, n-gram probabilities can be estimated from a large sample of text, by counting the number 
of occurrences of each n-gram of interest and dividing by the size of the training sample. Unfortunately, 
this simple method, known as the "maximum likelihood estimator" (MLE), is unsuitable because n- 
grams which do not occur in the training text are assigned zero probability. In addition, the MLE does 
not distinguish among bigrams with the same frequency. 

We study two alternative methods for estimating the frequency of a given bigram in a test corpus, given 
a training corpus. The first method is an enhanced version of the method due to Good and Turing 
(Good, 1953). Under the modest assumption that the distribution of each bigram is binomial, Good 
provided a theoretical result that increases estimation accuracy. The second method assumes even less, 
merely that training and test corpora are generated by the same process. We refer to this purely 
empirical method as the Categorize-Calibrate (or Cat-Cal) method. 

We emphasize three points about these methods. First, by using a second predictor of the probability in 
addition to the observed frequency, it is possible to estimate different probabilities for bigrams with the 
same frequency. We refer to this use of a second predictor as "enhancement." With enhancement, we 
find 1200 significantly different probabilities (with a range of five orders of magnitude) for the group of 
bigrams not observed in the training text; the MLE method would not be able to distinguish any one of 
these bigrams from any other. Second, both methods provide (estimated) variances for the errors in 
estimating the n-gram probabilities. Third, the variances are used in a refined testing method that 
enables us to study small differences between methods. We find that Cat-Cal should be used when 
counts are very small, and otherwise, GT is the method of choice. 

1. Materials 

Our corpus was selected from articles distributed by the Associated Press (AP) during 1988. Some 
portions of the year were lost. The remainder was processed automatically by Riley and Liberman to 
remove nearly identical articles. There remained N = 4.4x107 words in the corpus, with a vocabulary 
of V = 400,653. When we speak of "words," we use a common term to hide a number of processing 
decisions. Roughly, a word is a string of characters delimited by white space. For instance, The and 
the are different words, and so are need and needs. In addition, punctuation such as period and comma 
are treated as "words". Additional tokens are inserted automatically to delimit sentences, paragraphs 
and discourses. In the future we hope to use a more balanced sample of general English. However, for 
the purpose of testing methods, a large sample is desirable; the the AP corpus is considerably larger than 
alternatives such as the Brown Corpus. The vocabulary size is also considerably larger than the 5000 
word vocabulary reported in (N~das, 1984). 
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We split the 1988 AP wire into two halves by assigning bigrams beginning with even numbered words 
to one sample, those beginning with odd numbered words to the other. It is important that we made this 
split by taking every other bigram. We have found that spliting the corpus into two half-year periods, 
for example, generates two quite different samples, which complicates matters considerably. Since our 
aim is to study methods, we have adopted this extreme measure in order to construct two very similar 
samples. 

Our goal is to develop a methodology for extending an n-gram model to an (n+l)-gram model. We 
regard the model for unigrams as completely fixed before beginning to study bigrams. This includes 
specifying V, the vocabulary, and e(p(x)), an estimate of the probability of each word. We also 
suppose that variances of the estimates are known. Likewise, we would regard a bigram model as fixed 
before studying a trigram model. 

2. Estimation Methods 

Let r* be the adjusted frequency for a type observed r times. Then p, the probability of the type, is 
estimated by r*/N. In order to satisfy the constraint ~ p =  1, the adjusted frequencies must satisfy 

r* = N. Two such methods will be considered at length: the Good-Turing Method (GT) and the 
Categorize-Calibrate Method (CC). 

These methods are considerably better than the Maximum Likelihood Estimator (MLE): r* = r. The 
main problem with MLE is that bigrams will be assigned zero probability if they didn't happen to occur 
in the training sample. Moreover, there are large errors when the counts are small (e.g., less than 20). 
In addition, the MLE fails to distinguish among bigrams with the same count. In our application there 
are billions of bigrams with a count of zero, some of which are much more likely than others. Their 
probability is neither zero nor identical. 

2.1 The Basic Good-Turing and Cat-Cal Methods 

We use the adjective basic to distinguish these methods from the enhanced methods that will be 
discussed in the next section. The main difference is that basic methods treat bigrams at atomic objects 
with no internal structure; enhanced methods will "back-off" and use the unigram model when 
appropriate. 

The Good-Turing method has been used very successfully by IBM speech recognition group (Niidas, 
1984; Nitdas, 1985; Katz, 1987). The key insight suggested by Turing and developed by Good (1953), 
is the use of Nr, the number of bigrams which occur r times. We may refer to N,. as the frequency of 
frequency r. The GT estimate is r* = (r+I)N,.+i/N~ and it has a variance of r*( l+(r+l)*-r*) .  
In practice it is necessary to use smoothed estimates of N~ instead of raw observations, especially when 
N~ is small. (Smoothing will not be discussed in this paper in order to save space.) 

The following table illustrates a use of the basic GT estimate (BGT). (This example was selected so 
that the Nr 's  are large enough that smoothing is not too important.) 
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r (=MLE) N ,  BGT r* BGT o 2 

0 1 .605x1011 1.28x10 -5 1.85x10 -5 
1 2,053,146 0.446 0.808 
2 458,136 1.26 2.49 
3 191,809 2.24 4.50 
4 107,522 3.25 6.31 
5 69,883 4.19 8.47 
6 48,809 5.21 10.4 
7 36,345 6.21 12.9 
8 28,201 7.28 
9 22,821 

The adjusted frequencies, r*, can be compared to the raw frequencies, r; they have the same order, and 
do not differ greatly. The GT method assigns some probability to bigrams which have not been seen, 
suggesting that we should act as if we had seen each of them 0.0000128 times instead of zero times. In 
order to compensate for moving 160 billion bigrams from 0 to 0.0000128, some other bigrams must be 
adjusted downwards. In this case, all bigrams with r > 0 will be adjusted downwards. 

Notice that the calculation of r* for r = 0 depends on No, the number of bigrams that we have not 
seen. We can calculate No because V is provided by the the unigram model. (This marks a great 
difference in our application of the Good-Turing formula from many applications in population biology, 
where inferences about the population size are the desideratum.) The total universe of bigrams that we 
wish to know about has size V2=l.6xl011. No is the difference between V 2 and the number of distinct 
bigrams seen, ~ N r .  Note that No=V 2 since V 2 > N O > V 2 - N  and N << V 2. In other words, 

r > 0  

most bigrams have not been seen. In our experience, the problem only gets worse as we look at larger 
corpora because V 2 tends to grow faster than N. 

GT improves on MLE by making use of more information, namely {Nr}. CC gathers even more 
information. The training text is divided into two halves. Categorize each bigram, b, by its observed 
frequency r l (b) in the first part of the text. Denote the number of distinct bigrams in the category by 
Nr = ~ 1. Calibrate the category by counting all occurrences of all the bigrams in the category 

blrl(b)=r 
in the second part of the text, C, ~- ~ r2(b), where the r2(b) is the observed frequency of the 

bJrt(b)=r 
bigram, b, in the second half. The adjusted frequency is then: r* = Cr/N, .  The only assumption 
behind this method is that both samples are generated by the same process. This assumption is weaker 
than the binomial assumption of GT. We refer to this method as the basic Cat-Cal method (BCC); the 
next section will consider an enhanced version that makes use of the bigrams' internal structure. 

Basic Cat-Cai Method 
r N,. Cr BCC r* repeat BGT r* 

0 1.605x10 ll 2,046,125 1.27x10 -5 1.27x10 -5 1.28x10 -a 
1 2,053,146 919,645 0.448 0.448 0.446 
2 458,136 577,518 1.26 1.26 1.26 
3 1 9 1 , 8 0 9  431,839 2.25 2.25 2.24 
4 1 0 7 , 5 2 2  347,424 3.23 3.22 3.25 
5 69,883 293,953 4.22 4.23 4.19 
6 48,809 257,141 5.20 5.22 5.21 
7 36,345 223,574 6.20 6.19 6.21 
8 28,201 205,171 7.22 7.25 7.28 

The adjusted frequencies for the BCC can be compared to the adjusted frequencies for the BGT as well 
as to the MLE. The differences between the BCC and the BGT are limited to the third significant 
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figure, while the differences of either from the MLE are in the first significant figure. 

The fifth column of the table, labeled repeat, contains the results of repeating the basic Cat-Cal method 
after exchanging the texts used for categorization and calibration. The differences are again limited to 
the third significant figure, showing that BCC agrees well with our standard. We originally established 
the Cat-Cal method as a standard against which to compare other methods. However, we came to 
realize that it could itself be used as a practical method. Thus Cat-Cal plays two roles: standard and 
potential method. 

The CC method can be extended to compute variances as illustrated below. Note that the variances 
computed by the CC method agree closely with those computed by GT. 

2.2 

Variances 
r Nr Cr 2 BCCff  2 G Ta2 
0 1.605X1011 2,980,905 1.85X10 -5 1.85X10 -> 
1 2,053,146 2,069,343 0.808 0.808 
2 458,136 1,865,654 2.48 2.49 
3 1 9 1 , 8 0 9  1,831,325 4.48 4.50 
4 1 0 7 , 5 2 2  1,805,150 6.36 6.31 
5 69,883 1,827,811 8.41 8.47 
6 48,809 1,858,543 10.5 10.4 
7 36,345 1,832,738 12.4 12.9 
8 28,201 1,898,443 14.5 

The Enhanced Methods 

A key suggestion of this work is the introduction of a second predictor of frequency of observation in 
addition to an observed frequency; accounting for the second predictor constitutes what we call an 
enhanced method. We study an enhanced Good-Turing method and an enhanced Cat-Cal method. Both 
enhanced methods allow us to differentiate among the many bigrams which have not been seen. We 
will show that about 1200 significantly different probabilities can be estimated for bigrams not seen in 
the training text. 

A possible second predictor for bigrams is the following: j i i  = N e(p(x)) e(p(y)), where e(p(x))  and 
e(p(y))  are the unigram model's estimates of the probability of the first and second word in the bigram. 
j i i  is an acronym for "joint if independent". We refer to values of j i i  as "Unigram Estimates (UE)" 
when we compare them to other estimates such as MLE or GT. In many of the following plots, we 

/ / 

group bigrams into approximately 35 bins using the binning rule: j = [31oglojii I. 
I_ .J 

Other second predictors are possible. We do not know what makes one variable better than another for 
grouping. A necessary property of the grouping variable is that it be possible to count the number of 
types included in each group, because we need to know No. We hypothesize that if one variable 
predicts r better than another, then it will make a better grouping variable. It is useful for smoothing 
that j i i  is a continuous variable. 

3. Qualitative Evaluation 

We find that the both GT and CC estimates agree very well with the standard estimates over the entire 
range of data that we can test. The smallest frequency observations are the most critical. The following 
figure shows the results for r = 1. Five predicted frequencies are shown in this and following figures: 
(1) the standard, S, shown by points, (2) the maximum likelihood estimate, MLE, shown by long dashes, 
(3) the unigram estimate, UE, shown by long dashes, (4) the enhanced Cat-Cal estimate, CC, shown by 
a solid line, and (5) the enhanced Good-Turing estimate, GT, shown by short dashes. These estimates 
are plotted against the logarithm of the unigram estimator, jii. Note that CC and GT agree closely with 
the standard. They are quite distinct from either the MLE or UE but lie approximately between these 
two primary estimators. 
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Enhanced Good-Turing and Cat-Cal Agree with the Standard for r=l  
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Enhanced Good-Turing and Cat-Cal Agree with the Standard for r=0 
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For frequency zero, the range of CC and GT is about five orders of magnitude, four orders of magnitude 
larger than for any other frequency. Over this range, both GT and CC agree well with the standard 
estimates. At the resolution shown, there is no visible difference between the three estimates for most 
of the range. 
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Enhanced Good-Turing and Cat-Cal Agree with the Standard for Small r 
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Note that r* depends more on jii when r is small; the slope of r* is very steep for r = 0, and pretty 
flat for r = 17. This means that UE is more important when r is small. We will return to this when 
we consider the number of significantly different probabilities. 

4. Quantitative Evaluation 

It is natural to evaluate methods with a t-score tjr = ( r ' j ,  - r~r)/C~y~, where r ' j r  is an estimate 
produced by one of the proposed methods for bin j and frequency r, r~ is the standard for the same jr 
cell, and c~j, is the standard deviation for the same jr cell. We use the GT method to estimate the 
standard deviation because it appears to match the CC variance while being less noisy and defined in 
more cells. 

We have some expectations about these t-scores. A perfect predictor would give an RMS t-score of 
about one, because the variance of one standard observation is used as the denominator. We find that 
GT is nearly perfect with RMS t-scores very close to one except for small r. In contrast, CC is not 
perfect anywhere because both the categorization and the calibration samples have the assumed variance. 
However, when r is very small, it appears that the binomial assumption is inappropriate, and 
consequently, the the more empirical, though imperfect, CC method is preferable. 

The two plots below show the RMS t-value averaged within each jii bin. The solid lines compare CC 
with the standard; the short dashed lines compare GT with the standard. The best performance 
theoretically possible is an RMS error of one, shown by a long dashed line in each panel. GT 
approaches this ideal quickly, though CC is preferable at very small frequencies. The CC values in the 
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upper panel are adjusted for sample size to be comparable to GT values. 

Comparison of the Enhanced Good-Turing and Cat-Cal Methods 
Cat-Cal is better for small r and worse for large r 
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The following plot shows that MLE does not reach ideal performance within the range shown. 
Moreover, for frequencies less than about 40, MI.E is substantially worse than GT. Over the smallest 
ten frequencies the MI.E has RMS t-values ranging from five to thirty times those of enhanced G(x3d- 
Turing estimates. 

Comparison of the Enhanced Good-Turing and MLE Methods 
Good-Turing is better, especially when r is small 
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5. How Many Significantly Different Probabilities? 

In this section we show that estimates in adjacent j i i  bins differ quite significantly. This implies that 
interpolation is justified, and leads to an estimate of the equivalent number of significantly different 
estimates. 

For each jii, let f j ,  denote a frequency estimated for bigrams in the jan bin and frequency r. Let ~j, be 
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variance of fir. The following figure investigates the t-score 

t =  ()S,--/O-,r) / 

for the particularly important case of r = 0. The solid line shows the t-statistics for CC; the short 
dashed line shows the GT differences. Long dashed lines are drawn at conventional significance levels 
of +_ 1.65. These differences are highly significant, indicating that interpolation between the observed 
values is justified. We estimate the equivalent number of significantly different values by taking the 
sum of all the t-statistics and dividing by 1.65. For r = 0, the equivalent number of significantly 
different values is 1245. 

About 1200 Significantly Different Probabilities for r = 0 
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The following figure shows the equivalent number of significant differences as a function of frequency. 
The dashed lines are drawn at log101 and 1og102. While the number of significantly different values 
falls rapidly with increasing r, it remains above two through r = 40, and continues to be greater than 
one even through frequency 100. This range encompasses the majority of bigram tokens and indicates 
the value of a second predictor for practical applications, indicating that enhancement is of considerable 
value for practical applications. 

Equivalent Number of Significantly Different Probabilities 
we can distinguish bigrams with the same frequency very well for small frequencies 
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6. Conclusions 

This paper has proposed two specific methods for backing-off bigrarn probability estimates to unigram 
probabilities: the enhanced Good-Turing method, and the Cat-Cal method. Three important points in 
this paper have extended the strength of these methods over previous methods: 
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• the use of a second predictor (e.g., jii) to exploit the structure of n-grams, the distinguishing feature 
between the enhanced Good-Turing method and the basic Good-Turing method. 

• the estimation of variances for the bigram probabilities, which allows building significance tests for 
various practical applications, and in particular allows 

• the use of refined testing methods that can show important qualitative differences even though 
quantitative differences may be small. 

The use of a second predictor is the basis on which we distinguish the enhanced Good-Turing method 
(GT) proposed here from the basic Good-Turing method and the enhanced Cat-Cal (CC) from a basic 
Cat-Cal. If we had not introduced a second predictor, all bigrams that were observed once would be 
considered equally likely, and all bigrams that were observed twice would also be considered equally 
likely, and so on. This is extremely undesirable. Note that there are a large number of bigrams that 
have been seen just once (2,053,146 in a training corpus of 22 million words); we do not want to model 
all of them as equally probable. Much worse, there are a very large number of bigrams that have not 
been seen (160 billion bigrams in the same training corpus of 22 million words); we really do not want 
to model all of them as equally probable. By introducing the second predictor jii as we did, we were 
able to make much finer distinctions within groups of bigrams with the same number of observations r. 
In particular, for bigrams not seen in the training corpus, we have about 1200 significantly different 
estimates. 

It would be interesting to consider other variables besides jii. One might consider, for example, the 
number of letters in the bigram. Katz (1987) proposes an alternative variable: the first word of the n- 
gram. Any variable that is not completely correlated with r would be of some use. jii has some 
advantages; it makes it possible to summarize the data so concisely that the relevant structure can be 
observed in a simple plot. Moreover, jii has a natural order and is continuous, so the number of bins 
can be adjusted for accuracy. In contrast, selecting the first word of the n-gram prescribes the number 
of bins. 

The second point, the calculation of variances, is often not discussed in the literature on using the 
Good-Turing model for language modeling. Variances are necessary to make statements about the 
statistical significance of differences between observed and predicted frequencies. In other work 
(Church, Gale, Hanks, and Hindle, 1989), we have used variances to distinguish unusual n-grams from 
chance. 

The third point we want to emphasize, the use of relined tests for differences in methods, is discussed in 
section 4. Four methods, MLE, UE, CC, and GT, were compared to the standard, t-scores were 
calculated for the differences between the standard and a proposed method and aggregate results across 
jii. We find that the GT method rapidly approaches ideal performance, though it is outperformed by CC 
when r is very small, presumably because the binomial assumption is apparently not quite satisfied for 
small frequencies. 

There are many ways that the language model presented could be improved. We have said very little 
about the unigram model; in fact, the unigram model was estimated with the MLE method. One could 
apply the methodology developed here to improve greatly on this. One could also obtain much 
improved estimates by starting with a better sample; the 1988 AP corpus is not a balanced sample of 
general English. This paper is primarily concerned with developing methods and evaluation procedures; 
in future work, we hope to use these results to construct better language models. 
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