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A B S T R A C T  

Recently, we initiated a project to develop a phonetically-based spoken language understanding system 
called SUMMIT. In contrast to many of the past efforts that make use of heuristic rules whose development 
requires intense knowledge engineering, our approach attempts to express the speech knowledge within a 
formal framework using well-defined mathematical tools. In our system, features and decision strategies are 
discovered and trained automatically, using a large body of speech data. This paper describes the system, 
and documents its current performance. 

I N T R O D U C T I O N  

For slightly over a year, we have focused our research effort on the development of a phonetically-based 
spoken language understanding system called SUMMIT. Our approach is based on the belief that advanced 
human/machine communication systems must build on our understanding of the human communication 
process. Despite recent development of some speech recognition systems with high accuracy, the performance 
of such systems typically falls far short of human capabilities. We are placing heavy emphasis on designing 
systems that can make use of the knowledge gained over the past four decades on human communication, 
in the hope that such systems will one day have a performance approaching that  of humans. 

We are basing the design of our system on the premise that robust speech recognition is tied to our 
ability to successfully extract the linguistic information from the speech signal and discard those aspects 
that are extra-linguistic. Like others before us, we have chosen phonemes and other related descriptors such 
as distinctive features and syllables as the units to relate words in the lexicon to the speech signal. However, 
there are several aspects that collectively distinguish our approach from those pursued by others. First, 
we believe that many of the acoustic cues for phonetic contrast are encoded at specific times in the speech 
signal. Therefore, one must explicitly establish acoustic landmarks in the speech signal in order to fully 
utilize these acoustic attributes. Second, unlike previous attempts at explicit utilization of speech knowledge 
by heuristic means, we seek to make use of the available speech knowledge by embedding such knowledge 
in a formal framework whereby powerful mathematical tools can be utilized to optimize its use. Third, the 
system must have a stochastic component to deal with the present state of ignorance in our understanding 
of the human communication process and its inherent variabilities throughout. It is our belief that speech- 
specific knowledge will enable us to build more sophisticated stochastic models than what is currently being 
attempted, and to reduce the amount of training data necessary for high performance. Finally, the ultimate 
goal of our research is the understanding of the spoken message, and the subsequent accomplishment of a 
task based on this understanding. To achieve this goal, we must fully integrate the speech recognition part 
of the problem with natural language processing so that higher level linguistic constraints can be utilized. 

*This research was supported by DARPA under Contract N00039-85-C-0254, monitored through Naval Electronic Systems 
Command. 
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This paper describes those parts of our system dealing with acoustic segmentation, phonetic classification, 
and lexical access, and documents its current performance on the DARPA Resource Management task [1]. 

S Y S T E M  D E S C R I P T I O N  

There are three major components in the SUMMIT system, as illustrated in Figure 1. The first component 
transforms the speech signal into an acoustic-phonetic description. The second expands a set of baseform 
pronunciations into a lexical network. The final component provides natural language constraints. Our 
preliminary efforts in natural langauge are described in a companion paper [2]. The acoustic-phonetic and 
lexical components will be discussed in more detail in the following sections. 
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Figure 1: The major components of the SUMMIT system. 

A C O U S T I C - P H O N E T I C  R E P R E S E N T A T I O N  

The phonetic recognition subsystem of SUMMIT takes as input the speech signal and produces as output 
a ne tw ork  of phonetic labels with scores indicating the system's confidence in the segments and in the 
accuracy of the labels. The subsystem contains three parts: signal representation, acoustic segmentation, 
and phonetic classification. In this section, we describe each of these three parts in some detail. 

Signal Rep re sen t a t i on  

The phonetic recognition process starts by first transforming the speech signal into a representation based 
on Seneff's auditory model [3]. The model has three stages. The first stage is a bank of linear filters, equally 
spaced on a critical-band scale. This is followed by a nonlinear stage that models the transduction process of 
the hair cells and the nerve synapses. The output of the second stage bifurcates, one branch corresponding 
to the mean firing rate of an auditory nerve fiber, and the other measuring the synchrony of the signal to 
the fiber's characteristic frequency. 
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The outputs from various stages of this model are appropriate for different operations in our subsystem. 
The nonlinearities of the second stage produce sharper onsets and offsets than are achieved through simple 
linear filtering. In addition, irrelevant acoustic information is often masked or suppressed. These properties 
make such a representation well-suited for the detection of acoustic landmarks. The synchrony response, on 
the other hand, provides enhanced spectral peaks. Since these peaks often correspond to formant frequencies 
in vowel and sonorant consonant regions, we surmise that the synchrony representation may be particularly 
useful for performing fine phonetic distinctions. Advantages of using an auditory model for speech recognition 
have been demonstrated in many contexts, and can be found readily in the literature [4,5,6]. 

Acoust ic  S e g m e n t a t i o n  

Outputs of the auditory model are used to perform acoustic segmentation. The objective of the segmen- 
tation procedure is to establish explicit acoustic landmarks that will facilitate subsequent feature extraction 
and phonetic classification. Since there exists no single level of segmental representation that can adequately 
describe all the acoustic events of interest, we adopted a multi-level representation that enables us to capture 
both gradual and abrupt changes in one uniform structure. Once such a structure has been determined, 
acoustic-phonetic analysis can then be formulated as a path-finding problem in a highly constrained search 
space. 

The construction of the multi-level representation has been described elsewhere [7,8]. Briefly, the al- 
gorithm delineates the speech signal into regions that are acoustically homogeneous by associating a given 
frame to one of its immediate neighbors. Acoustic boundaries are marked whenever the association direction 
switches from past to future. The procedure is then repeated by comparing a given acoustic region with 
its neighboring regions. When two adjacent regions associate with each other, they are merged together to 
form a single region. The process repeats until the entire utterance is described by a single acoustic event. 
By keeping track of the distance at which two regions merge into one, the multi-level description can be 
displayed in the form of a dendrogram, as is illustrated in Figure 2 for the utterance "Call an ambulance for 
medical assistance." From the bot tom towards the top of the dendrogram, the acoustic description varies 
from fine to coarse. The release of t h e / k / i n  "call," for example, may be considered to be a single acoustic 
event or a combination of two events (release plus aspiration) depending on the level of detail desired. By 
comparing the dendrogram with the time-aligned phonetic transcription shown below, we see that,  for this 
example, most of the acoustic events of interest have been captured. 

P h o n e t i c  R e c o g n i t i o n  

The multi-level acoustic segmentation provides an acoustic description of the signal. Before lexical access 
can be performed, the acoustic regions must be converted into a form that reflects the way words are 
represented in the lexicon, which, in our case, is in terms of phonemes. Since some of the phonemes can have 
more than one stable acoustic region, the mapping between phonemes and acoustic region cannot be one-to- 
one. Currently, we allow up to two acoustic regions to represent a single phoneme. This is implemented by 
creating an acoustic-phonetic (AP) network from the dendrogram that includes all single and paired regions. 
We have experimentally found this choice to be a reasonable compromise between a flexible representation 
and computational tractability. To account for the fact that certain paths through the AP network are more 
likely to occur than others, each segment is assigned a weight. 

Next, each of the segments in the AP network is described in terms of a set of attributes, which are 
then transformed into a set of phoneme hypotheses. Rather than defining specific algorithms to measure 
the acoustic attributes, we define generic property detectors based on our knowledge of acoustic phonetics. 
These detectors have free parameters that control the details of the measurement. Their optimal settings 
are established by a search procedure using a large body of training data [11]. 

This process is illustrated in Figure 3. In this example, we explore the use of the spectral center of gravity 
as a generic property detector for distinguishing front from back vowels. It has two free parameters, the 
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Figure 2: Acoustic segmentation of the sentence, "Call an ambulance for medical assistance." The display 
panel on the right contains: a) spectrogram, b) a dendrogram, c) the time-aligned phonetic transcription, 
and d) an acoustic-phonetic network. 

lower and upper frequency edges. An example of this measurement for a vowel token is superimposed on the 
spectral slice below the spectrogram, with the horizontal line indicating the frequency range• To determine 
the optimal settings for the free parameters, we first compute the classification performance on a large set 
of training data for all combinations of the parameter settings. We then search for the maximum on the 
surface defined by the classification performance. The parameter settings that correspond to the maximum 
are chosen to be the optimal settings. For this example, the classification performance of this attribute, 
using the automatically selected parameter settings, is shown at the top right corner. Note that an attribute 
can also be used in conjunction with other attributes, or to derive other attributes. 

We believe that the procedure described above is an example of successful knowledge engineering in 
which the human provides the knowledge and intuition, and the machine provides the computational power. 
Frequently, the settings result in a parameter that agrees with our phonetic intuitions. In this example, the 
optimal settings for this property detector result in an attribute that closely follows the second formant, 
which is known to be important for the front/back distinction. Our experience with this procedure suggests 
that it is able to discover important acoustic parameters that signify phonetic contrasts, without resorting 
to the use of heuristic rules. 

Once the attributes have been determined, they are selected through another optimization process• 
Classification is achieved using conventional pattern classification algorithms [9]. In our current scheme, 
we use a double-layered approach, with the first layer distinguishing among a small set of classes, and the 
second layer defining a mapping from these classes to the phone labels used to represent the lexicon. This 
approach enables us to build a small number of simple classifiers that distinguish the speech sounds along 
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Figure 3: An example of interactive discovery of acoustic attributes for phonetic classification. 

several phonetic dimensions. The aggregate of these dimensions describes the contextual variations, which 
can then be captured in the mapping between the classes and the lexicon. Our experience indicates that 
such an approach leads to rapid convergence in the models with only a small number of training tokens for 
each label. 

The current scheme for scoring the N classes begins with N(N- 1)/2 pairwise Gaussian classifiers, each 
of which uses a subset of the acoustic attributes selected to optimize the discrimination of the pair. The 
probability of a given class is obtained by summing the probabilities from all the relevant pairwise results. 
The classes are then mapped to an orthogonal space using principal component analysis. Finally, the score for 
each phoneme label is obtained from a Gaussian model of the distributions of the scores for the transformed 
classes. 

Following phone classification, each segment in the AP network is represented by a list of phone candi- 
dates, with associated probability, as illustrated in Figure 2. The network is shown just below the transcrip- 
tion. In this display, only the AP segments surrounding the most probable path are displayed. The network 
displays only the top-choice label, although additional information can easily be accessed. For this example, 
the / k /  in "call" is correctly identified, and its score, in terms of probability, is displayed in the left-hand 
panel along with several near-miss candidates. On the other hand, the same panel shows that the correct 
label for the first schwa in "assistance" is the third most likely candidate, b e h i n d / n / a n d / r j / .  

L E X I C A L  R E P R E S E N T A T I O N  

We are adopting the point of view that it is preferable to offer several alternative pronunciations for each 
word in the lexicon, and then to build phoneme models that can be made more specific as a consequence. If 
accurate pronunciation probabilities can be acquired for the alternate forms, then this is a viable approach 
for capturing inherent variability in the acceptable pronunciations of words. For example, the last syllable 
in a word such as 'cushion' could be realized as a single syllabic nasal consonant or as a sequence of a vowel 
and a nasal consonant. The vowel could be realized as a short schwa, or as a normal lax vowel. For the 
system to be able to accept all of these alternatives, they must be entered into the lexicon in the form of 
a network. Currently, lexical pronunciations are expanded by rule to incorporate both within-word and 
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across-word-boundary phonological effects. 1 These rules describes common low-level phonological processes 
such as flapping, palatalization, and gemination. 

We have developed an automatic  procedure for establishing probability weighting on all of the arcs in 
the word pronunciation networks. Currently the weights are entered into the total  log probability score and 
are centered around a score of zero representing no influence. These weights were generated automatically 
by determining both the recognition path as well as the forced recognition path (i.e., the path obtained 
when the system is given the correct answer) for a large number of utterances. From this information, we 
computed: 1) the number of times an arc was used correctly, R, 2) the number of times an arc was missed, 
M,  and 3) the number of times an arc was used incorrectly, W. Once these numbers were tabulated we 
could assign a weight to each lexical arc. Currently, this weight corresponds to the log ratio of R +  M, which 
is the total  number of times an arc was used in the forced recognition path,  to R ÷ W, which is the total 
number of times an arc was used in the normal recognition path. Thus,  if an arc was missed more often than 
it was used incorrectly, a positive weight is added to the lexical score, which will make the system prefer to 
use this arc. When the arc is more often incorrect, a negative weight is added, penalizing that  arc. When 
there are the same number of misses as incorrect uses of the arc, or when they form a small fraction of the 
total  number of times an arc was used correctly, the weight has little influence. 

D E C O D E R  

The lexical representation described above consists of pronunciation networks for the words in the vo- 
cabulary. These networks may be combined into a single network that  represents all possible sentences by 
connecting word end nodes with word s tar t  nodes that  satisfy the inter-word pronunciation constraints. 
Local grammatical  constraints may also be expressed in terms of allowable connections between words. 

The task of lexical decoding can be expressed as a search for the best match between a path in this 
lexical network and a path  in the AP network. Currently, we use the Viterbi algorithm to search for this 
best scoring match. Since we cannot expect the phonetic network to always contain the appropriate  phonetic 
sequence, the search algorithm allows for the insertion and deletion of phonetic segments with penalties that  
are based on the performance of the AP network on training data. The search algorithm is illustrated in 
Figure 4. 

The possible alignments of nodes in the lexical network to nodes in the phonetic network are represented 
by a matr ix  of node-pairs. A match between a path in the lexical network and a path in the phonetic 
network can be represented as a sequence of allowable links between these node-pairs. The allowable links 
fall into four categories: normal matches, insertions, deletions, and interword connections. Examples of each 
are shown in Figure 4. Link (a) is a normM match between an arc in the lexical network and an arc in 
the phonetic network. Link (b) is an example of an insertion of a phonetic segment (the path  advances by 
a phonetic segment while staying at the same point in the lexical network). Link (c) is an example of an 
interword connection. Link (d) is an example of a deletion of a phonetic segment (the path  contains a lexical 
arc without advancing in the phonetic network). 

The score for a match is the sum of the scores of the links in the match. This allows the search for 
the best  path to proceed recursively since the best score to arrive at a given node-pair is the best of the 
score of each arriving link plus the best score to arrive at s tart  of the link. Currently, the scores include a 
phonetic match component,  an existence score based on the probability of the particular segmentation, a 
lexical weight associated with the likelihood of the pronunciation, and a duration score based on the phone 
duration statistics. The best match for the utterance is the best match that  ends at terminal nodes of the 
lexical network and phonetic network. 

1 Our sys tem currently uses a phonological expansion program, called RULE, developed by researchers at  SRI International 

[121. 
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Figure 4: Illustration of Viterbi search used in SUMMIT. 

P E R F O R M A N C E  E V A L U A T I O N  

P H O N E T I C  R E C O G N I T I O N  

The effectiveness of the acoustic-phonetic component has been reported elsewhere [7,13]. The performance 
of the segmentation algorithm was measured by first finding a path through the dendrogram that corresponds 
best to a time-aligned phonetic transcription, as illustrated by the path highlighted in white in Figure 2, and 
then tabulating the differences between these two descriptions. On 500 TIMIT [10] sentences spoken by 100 
speakers, the algorithm deleted about 3.5% of the boundaries along the aligned path, while inserting an extra 
5%. Analysis of the time difference between the boundaries found and those provided by the transcription 
shows that more than 70% of the boundaries were within 10 ms of each other, and more than 90% were 
within 20 ms. 

The phonetic classification results are evaluated by comparing the labels provided by the classifier to those 
in a time-aligned transcription. We have performed the evaluation on two separate databases, as summarized 
in Table 1. Performance was measured oil a set of 38 context-independent phone labels. This particular 
set was selected because it has been used in other recent evaluations within the DARPA community. For 
a single speaker, the top-choice classification accuracy was 77%. The correct label is within the top three 
nearly.95% of the time. For multiple and unknown speakers, the top-choice accuracy is about 70%, and the 
correct choice is within the top three over 90% of the time. Figure 5 shows the rank order statistics for the 
speaker-independent case. 
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No. of No. of No. of No. of Top-Choice 
Database Training Training Test Test Accuracy 

Sentences Speakers Sentences Speakers (%) 
1 510 1 210 same 77 
2 1500 300 225 45 70 

Table h Summary of speaker-dependent and-independent  phonetic classification results. 
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Figure 5: Rank order statistics for the current phone classifier on a speaker-independent task. There are 38 
context-independent phone labels: 14 vowels, 3 semivowels, 3 nasals, 8 fricatives, 2 affricates, 6 stops, 1 flap, 
and one for silence. 

W O R D  R E C O G N I T I O N  

The SUMMIT system was originally developed for the task of recognizing sentences from the TIMIT 
database. Over the past three, months, we have ported the system to the DARPA 1000-word Resource 
Management (RM) task, and evaluated its recognition performance. The phoneme models were seeded from 
1500 TIMIT sentences, and re-tralned on the RM task using 40 sentences each from 72 designated training 
speakers [1]. The system was evaluated on two test sets, and for two conditions. The first test set, containing 
10 sentences each from 15 speakers, is known as the '87 Test Set  The second test set, called the '89 Test 
Set, was recently released to the DARPA community, and it contains 30 sentences each from 10 speakers. 
Each test set was evaluated under both the all-word condition (i.e. no language model) and the word-pair 
conditions, in which a designated language model with a perplexity of 60 is used. 

The results of our evaluation are summarized in Table 2. ~ Note that  this result is obtained by using 75 
phoneme models, 32 of which are used to denote 16 stressed/unstressed vowel pairs. At the moment, our 
system does not explicitly make use of context-dependent models. 

2The accuracy is computed from the error rate which includes insertions, deletions, and substitutions 
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All-Word Word Pair 
Test Set Accuracy Accuracy 

(%) (%) 
'87 42.3 87.2 
'89 46.2 86.4 

Table 2: Summary of word recognition performance results. 

D I S C U S S I O N  

This paper summarizes the current status of the SUMMIT system. We have described the implemen- 
tation and reported results for phonetic classification as well as word recognition for the DAR.PA Resource 
Management tasks with and without a language model. 

Our evaluation results on phonetic classification indicate that performance is much better for a single 
speaker than for multiple, unknown speakers. This result should not be surprising, since the acoustic 
variability across speakers is much larger than that within a speaker. One way to assess these results is to 
compare them to human performance on a similar task. We have conducted some preliminary listening tests 
in which subjects were asked to identify a phoneme excised from the same database of multiple speakers 
with minimal contextual information. The results suggest that human performance may be at the 60 to 70% 
level. 

An area where further research is definitely needed is the appropriate representation for acoustic-to-lexical 
mapping. This includes a more flexible association of phonemes with acoustic segments than is currently 
allowed, a different choice for the intermediate phonetic representation, and the development of context- 
dependent models. Presently the choice of the classes in the first layer of the classifier is somewhat arbitrary. 
We believe that  an inventory of classes that is based on distinctive feature theory may be more appropriate. 
In the first place, the pairwise discrimination analysis is well-suited to a binary feature representation, where 
phonetic units with contrasting feature values logically define the two sets to be discriminated. Similarly, 
context-dependent lexical labels in the second stage could also be mapped to a feature-based form to take 
into account allophonic variations. For example, an /a~/followed by a nasal and an /a~/ followed by an 
alveolar would be marked with the right context [+ nasalized] and [+ alveolar], respectively. Thus, the vowel 
in the word "can" would be pooled with all other instances of/a~/fol lowed by nasals, and, separately, with 
all other instances of /a~/fol lowed by alveolars (/s,t,d/, etc.), to form two distinct second-layer mappings. 
This approach may provide an elegant way to incorporate context dependency into our recognition system. 
It may also help to overcome the sparse data problems inherent in very specific context-dependent models. 

The RULE system developed by SRI for phonological expansion has been very useful in providing networks 
of alternate pronunciations. Nevertheless, we have recently initiated an effort to develop a pronunciation 
expansion program that  'allows researchers to write phonological rules more efficiently and flexibly, and to 
conform to the architecture of other parts of the SUMMIT system. We expect that it will be completed 
within the next two months. The use of lexical weights was found experimentally to improve the performance 
of the recognition system by a significant amount. Note that a similar procedure could be used incrementally 
to allow the system to adapt to a particular speaker's pronunciation preferences. 

One still-unresolved issue has to do with how to combine the scores for the individual matches to form 
a total score for lexical decoding. One possibility is to assign equal weight for equal time. Such a scheme 
results in an inordinately large weight for long sustained vowels as compared with rapid nonstatic sounds 
such as stop releases. Within the segmental framework, we have the capability to explore several alternative 
approaches. With a time-normalization scheme, the system can accept a very short erroneous phoneme with 
a terrible score, but with a per-phoneme weight a reverse effect can occur, where a very long badly-matching 
phoneme can survive because it gets such little weight. We have come up with an approach which essentially 
accumulates a total score without any normalization, but adds to the log-probability estimate with each 
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update an offset factor that tends to keep the correct answer near zero. This strategy compared favorably 
with others that we tried, and also required less computation. 

The Viterbi search algorithm is a very efficient mechanism for pruning paths when they merge with 
better-scoring competitors. However, it loses a great deal of its advantage when a true language model 
capable of natural language understanding is incorporated, because many fewer paths can be collapsed into 
a single equivalent class. Our hope, however, is that a Viterbi-like pruning strategy can be incorporated into 
a hierarchical structure representing a syntactic analysis by keeping a record of equivalent subparses locally 
with each node in the hierarchy. We plan to pursue this kind of strategy when we join our recognizer with 
a natural language component. 

The word recognition performance of SUMMIT is fairly consistent across test sets. While it is ahvays 
difficult to compare the performance of recognition systems directly, the establishment of standard datasets, 
language model, and evaluation guidelines has made the task a lot easier. For example, the SPHINX system 
developed at CMU [14], when evaluated on the '87 Test Set using the word-pair grammar, achieved a word 
recognition rate of 84% and 93% using 48 and 1000 models. Our result of 87% on 75 models is quite 
competitive, using a very different approach to speech recognition than hidden Markov modelling. However, 
it is sobering to note that these results fall far short of human performance. For example, we found that the 
human word recognition rate for the '89 Test Set was approximately 99.9% for a single listener. Clearly we 
still have a long way to go! 
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