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Abstract

We develop an unsupervised semantic role
labelling system that relies on the direct
application of information in a predicate
lexicon combined with a simple probabil-
ity model. We demonstrate the usefulness
of predicate lexicons for role labelling,
as well as the feasibility of modifying an
existing role-labelled corpus for evaluat-
ing a different set of semantic roles. We
achieve a substantial improvement over an
informed baseline.

1 Introduction

Intelligent language technologies capable of full
semantic interpretation of domain-general text re-
main an elusive goal. However, statistical advances
have made it possible to address core pieces of
the problem. Recent years have seen a wealth of
research on one important component of seman-
tic interpretation—automatic role labelling (e.g.,
Gildea and Jurafsky, 2002; Pradhan et al., 2004; Ha-
cioglu et al., 2004, and additional papers from Car-
reras and Marquez, 2004). Such work aims to an-
notate each constituent in a clause with a semantic
tag indicating the role that the constituent plays with
respect to the target predicate, as in (1):

(1) [YUka]Agent [Whispered]Pred to [Dar]Recipient
Semantic role labelling systems address a crucial
first step in the automatic extraction of semantic re-
lations from domain-general text, taking us closer to
the goal of comprehensive semantic mark-up.

Most work thus far on domain-general role la-
belling depends on supervised learning over statis-
tical features extracted from a hand-labelled corpus.
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The reliance on such a resource—one in which the
arguments of each predicate are manually identified
and assigned a semantic role—limits the portability
of such methods to other languages or even to other
genres of corpora.

In this study, we explore the possibility of using a
verb lexicon, rather than a hand-labelled corpus, as
the primary resource in the semantic role labelling
task. Perhaps because of the focus on what can
be gleaned from labelled data, existing supervised
approaches have made little use of the additional
knowledge available in the predicate lexicon asso-
ciated with the labelled corpus. By contrast, we ex-
ploit the explicit knowledge of the role assignment
possibilities for each verb within an existing lexi-
con. Moreover, we utilize a very simple probability
model within a highly efficient algorithm.

We use VerbNet (Kipper et al., 2000), a computa-
tional lexicon which lists the possible semantic role
assignments for each of its verbs. Our algorithm
extracts automatically parsed arguments from a cor-
pus, and assigns to each a list of the compatible roles
according to VerbNet. Arguments which are given
only a single role possibility are considered to have
been assigned an unambiguous role label. This set
of arguments constitutes our primary-labelled data,
which serves as the noisy training data for a simple
probability model which is then used to label the re-
maining (role ambiguous) arguments.

This method has several advantages, the foremost
of which is that it eliminates the dependence on a
role labelled corpus, a very expensive resource to
produce. Of course, a verb lexicon is also an expen-
sive resource, but one that is highly reusable across a
range of NLP tasks. Moreover, the approach points
at some potentially useful information that current
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supervised methods have failed to exploit. Even if
one has access to an annotated corpus for training,
our work shows that directly calling on additional
information from the lexicon itself may prove useful
in restricting the possible labels for an argument.

The method has disadvantages as well. The in-
formation available in a predicate lexicon is less di-
rectly applicable to building a learning model. In-
evitably, our results are noisier than in a super-
vised approach which has access to a labelled sam-
ple of what it must produce. Still, the method shows
promise: on unseen test data, the system yields an
F-measure of .83 on labelling of correctly extracted
arguments, compared to an informed baseline of .74,
and an F-measure of .65 (compared to .52) on the
overall identification and labelling task. The latter is
well below the best supervised performance of about
.80 on similar tasks, but it must be emphasized that
it is achieved with a simple probability model and
without the use of hand-labelled data. We view this
as a starting point by which to demonstrate the util-
ity of deriving more explicit knowledge from a pred-
icate lexicon, which can be later extended through
the use of additional probabilistic features.

We face a methodological challenge arising from
the particular choice of VerbNet for the prototyp-
ing of our method: the lexicon has no associated
semantic role labelled corpus. While this under-
scores the need for approaches which do not rely
on such a resource, it also means that we lack a
labelled sample of data against which to evaluate
our results. To address this, we use the existing
labelled corpus of FrameNet (Baker et al., 1998),
and develop a mapping for converting the FrameNet
roles to corresponding VerbNet roles. Our mapping
method demonstrates the possibility of leveraging
existing resources to support the development of role
labelling systems based on verb lexicons that do not
have an associated hand-labelled corpus.

2 VerbNet Roles and the Role Mapping

Before describing our labelling algorithm, we first
briefly introduce the semantic role information
available in VerbNet, and describe how we map
FrameNet roles to VerbNet roles.
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whisper
Frames:
Agent V
Agent V Prep(+dest) Recipient
Agent V Topic
Verbs in same (sub)class:
[bark, croon, drone, grunt, holler, ...]

Figure 1: A portion of a VerbNet entry.

2.1 The VerbNet Lexicon

VerbNet is a manually developed hierarchical lexi-
con based on the verb classification of Levin (1993).
For each of almost 200 classes containing a total of
3000 verbs, VerbNet specifies the syntactic frames
along with the semantic role assigned to each argu-
ment position of a frame.! Figure 1 shows an exam-
ple VerbNet entry. The thematic roles used in Verb-
Net are more general than the situation-specific roles
of FrameNet. For example, the roles Speaker, Mes-
sage, and Addressee of a Communication verb such
as whisper in FrameNet would be termed Agent,
Topic, and Recipient in VerbNet. These coarser-
grained roles are often assumed in linguistic the-
ory, and have some advantages in terms of capturing
commonalities of argument relations across a wide
range of predicates.

2.2 Mapping FrameNet to VerbNet Roles

As noted, VerbNet lacks a corpus of example role as-
signments against which to evaluate a role labelling
based upon it. We create such a resource by adapting
the existing FrameNet corpus. We formulate a map-
ping between FrameNet’s larger role set and Verb-
Net’s much smaller one, and create a new corpus
with our mapped roles substituted for the original
roles in the FrameNet corpus.

We perform the mapping in three steps. First we
use an existing mapping between the semantically-
specific roles in FrameNet and a much smaller inter-
mediate set of 39 semantic roles which subsume all
FrameNet roles.” The associations in this mapping
are straightforward—e.g., the Place role for Abusing
verbs and the Area role for Operate-vehicle verbs are
both mapped to Location.

!"Throughout the paper we use the term “frame” to refer to
a syntactic frame—a configuration of syntactic arguments of a

verb—possibly labelled with roles, as in Figure 1.
>This mapping was provided by Roxana Girju, UIUC.



Second, from this intermediate set we create a
simple mapping to the set of 22 VerbNet roles. Some
roles are unaffected by the mapping (e.g., Cause
alone in the intermediate set maps to Cause in the
VerbNet set). Other roles are merged (e.g., Degree
and Measure both map to Amount). Moreover, some
roles in FrameNet (and the intermediate set) must be
mapped to more than one VerbNet role. For exam-
ple, an Experiencer role in FrameNet is considered
Experiencer by some VerbNet classes, but Agent by
others. In such cases, our mappings in this step must
be specific to the VerbNet class.

In this second step, some roles have no subsum-
ing VerbNet role, because FrameNet provides roles
for a wider variety of relations. For example, both
FrameNet and the intermediate role set contain a
Manner role, which VerbNet does not have. We
create a catch-all label, “NoRole,” to which we
map eight such intermediate roles: Condition, Man-
ner, Means, Medium, Part-Whole, Property, Pur-
pose, and Result. These phrases labelled NoRole are
adjuncts—constituents not labelled by VerbNet.

In the third step of our mapping, some of the roles
in VerbNet—such as Theme and Topic, Asset and
Amount—which appear to be too-fine grained for us
to distinguish reliably, are mapped to a more coarse-
grained set of VerbNet roles. The final set consists
of 16 roles: Agent, Amount, Attribute, Beneficiary,
Cause, Destination, Experiencer, Instrument, Loca-
tion, Material, Predicate, Recipient, Source, Stimu-
lus, Theme and Time; plus the NoRole label.

3 The Frame Matching Process

A main goal of our system is to demonstrate the
usefulness of predicate lexicons for the role la-
belling task. The primary way that we apply the
knowledge in our lexicon is via a process we call
frame matching, adapted from Swier and Steven-
son (2004). The automatic frame matcher aligns
arguments extracted from an automatically parsed
sentence with the frames in VerbNet for the target
verb in the sentence. The output of this process is
a highly constrained set of candidate roles (possi-
bly of size one) for each potential argument. The
resulting singleton sets constitute a (noisy) role as-
signment for their corresponding arguments, form-
ing our primary-labelled data. This data is then used
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to train a probability model, described in Section 4,
which we employ to label the remaining arguments
(those having more than one candidate role).

3.1 Initialization of Candidate Roles

The frame matcher construes extracted arguments
from the parsed sentence as being in one of the
four main types of syntactic positions (or slots) used
by VerbNet frames: subject, object, indirect object,
and PP-object.> Additionally, we specialize the lat-
ter by the individual preposition, such as “object of
for”” For the first three slot types, alignment be-
tween the extracted arguments and the frames is rel-
atively straightforward. An extracted subject would
be aligned with the subject position in a VerbNet
frame, for instance, and the subject role from the
frame would be listed as a possible label for the ex-
tracted subject.

The alignment of PP-objects is similar to that
of the other slot types, except that we add an ad-
ditional constraint that the associated prepositions
must match. For PP-object slots, VerbNet frames of-
ten provide an explicit list of allowable prepositions.
Alternatively, the frame may specify a required se-
mantic feature such as +path or +1oc. In order
for an extracted PP-object to align with one of these
frame slots, its associated preposition must be in-
cluded in the list provided by the frame, or have the
specified feature. To determine the latter, we manu-
ally create lists of prepositions that we judge to have
each of the possible semantic features.

In general, this matching procedure assumes that
frames describing a syntactic argument structure
similar to that of the parsed sentence are more likely
to correctly describe the semantic roles of the ex-
tracted arguments. Thus, the frame matcher only
chooses roles from frames that are the best syntac-
tic matches with the extracted argument set. This
is achieved by adopting the scoring method of Swier
and Stevenson (2004), in which we compute the por-
tion %Frame of frame slots that can be mapped to
an extracted argument, and the portion %Sent of
extracted arguments from the sentence that can be
mapped to the frame. The score for each frame is
given by %Frame+%Sent, and only frames having
the highest score contribute candidate roles to the

3Since VerbNet has very few verbs with sentential comple-
ments, we do not consider them for now.



Extracted Slots
Possible Frames for Verb V SUBJ OBJ %Frame | %Sent | Score
Agent V Agent 100 50 150
Agent V Theme Agent Theme 100 100 200
Instrument V Theme Instrument | Theme 100 100 200
Agent V Recipient Theme Agent Theme 67 100 167

Table 1: An example of frame matching.

extracted arguments. An example scoring is shown
in Table 1. Note that two of the frames are tied for
the highest score of 200, resulting in two possible
roles for the subject (Agent and Instrument), and
Theme as the only possible role for the object.

As mentioned, this frame matching step is very
restrictive, and it greatly reduces role ambiguity.
Many potential arguments receive only a single can-
didate role, providing the primary-labelled data we
use to train our probability model. Some slots re-
ceive no candidate roles, which is an error for argu-
ment slots but which is correct for adjuncts. The re-
duction of candidate roles in general is very helpful
in lightening the subsequent load on the probability
model to be applied next, but note that it may also
cause the correct role to be omitted. We experiment
with choosing roles from the frames that are the best
syntactic matches, and from all possible frames.

3.2 Adjustments to the Role Mapping

We further extend the frame matcher, which has ex-
tensive knowledge of VerbNet, for the separate task
of helping to eliminate some of the inconsistencies
that are introduced by our role mapping procedure.
This is a process that applies concurrently with the
initialization of candidate roles described above, but
only affects the gold standard labelling of evaluation
data.*

For instance, FrameNet assigns the role Side2 to
the object of the preposition with occurring with the
verb brawl. Side2 is mapped to Theme by our role
mapping; however, in VerbNet, brawl does not ac-
cept Theme as the object of with. Our mapping thus
creates a target (i.e., gold standard) label in the eval-
uation data that is inconsistent with VerbNet. Since
there is no possibility of the role labeller assigning a
label that matches such a target, this unfairly raises

*Of course, the fact that the frame matcher “sees” the evalu-

ation set as part of its dual duties is not allowed to influence its
assignment of candidate roles.
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the task difficulty. However, since brawl does ac-
cept Theme in another slot, it is not an option to
entirely eliminate this role in the mapping for the
verb. Instead, we use our frame matcher to verify
that each target role generated by our mapping from
FrameNet is allowed by VerbNet in the relevant slot.
If the target role is not allowed, then it is converted to
NoRole in the evaluation set. Constituents labelled
as NoRole are not considered target arguments, and
it is correct for the system to not assign labels in
these cases.

The NoRole conversions help to ensure that our
gold standard evaluation data is consistent with our
lexicon, but the method does have limitations. For
instance, some of the arguments which the sys-
tem fails to extract might have had their target role
changed to NoRole if they were properly extracted.
Additionally, in some cases a target role is converted
to NoRole when there is an actual role that VerbNet
would have assigned instead.

4 The Probability Model

Once argument slots are initialized with sets of pos-
sible roles, the algorithm uses a probability model
to label slots having two or more possibilities. Since
our primary goal is to demonstrate how much can be
accomplished through the frame matcher, we com-
pare a number of very simple probability models:

e P(r|v,s): the probability of a role given the
target verb and the slot; the latter includes sub-
ject, object, indirect object, and prepositional
object, where each PP slot is specialized by the
identity of the preposition;

e P(r|s): the probability of a role given the slot;

e P(r|sc): the probability of a role given the slot
class, in which all prepositional slots are treated
together.



Each probability model predicts a role given certain
conditioning information, with maximum likelihood
estimates determined by the primary-labelled data
directly resulting from the frame matching step.’

We also compare one non-probabilistic model to
resolve the same set of ambiguous cases:

e Default assignment: candidate roles for am-
biguous slots are ignored; the four slot classes
of subject, object, indirect object and PP-object
are assigned the roles Agent, Theme, Recipi-
ent, and Location, respectively.

These are the most likely roles assigned by the frame
matcher over our development data.

For comparison, we also apply the iterative algo-
rithm developed by Swier and Stevenson (2004), us-
ing the same bootstrapping parameters. The method
uses backoff over three levels of specificity of prob-
abilities.

5 Materials and Methods
5.1 The Target Verbs

For ease of comparison, we use the same verbs as in
Swier and Stevenson (2004), except that we measure
performance over a much larger superset of verbs. In
that work, a core set of 54 target verbs are selected
to represent a variety of classes with interesting role
ambiguities, and the system is evaluated against only
those verbs. An additional 1105 verbs—all verbs
sharing at least one class with the target verbs—are
also labelled, in order to provide more data for the
probability estimations. Here, we consider our sys-
tem’s performance over the 1159 target verbs that
consist of the union of these two sets of verbs.

5.2 The Corpus and Preprocessing

The majority of sentences in FrameNet II are taken
from the British National Corpus (BNC Reference
Guide, 2000). Our development and test data con-
sists of a percentage of these sentences. For some
experiments, these sentences are then merged with
a random selection of additional sentences from the
BNC in order to provide more training data for the
probability estimations. We evaluate performance

Note that we assume the probability of a role for a slot is in-

dependent of other slots—that is, we do not ensure a consistent
role assignment to all arguments across an instance of a verb.
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only on FrameNet sentences that include our target
verbs.

All of our corpus data was parsed using the
Collins parser (Collins, 1999). Next, we use TGrep2
(Rohde, 2004) to automatically extract from the
parse trees the constituents forming potential argu-
ments of the target verbs. For each verb, we label as
the subject the lowest NP node, if it exists, that is im-
mediately to the left of a VP node which dominates
the verb. Other arguments are identified by finding
sister NP or PP nodes to the right of the verb. Heads
of noun phrases are identified using the method of
Collins (1999), which primarily chooses the right-
most noun in the phrase that is not inside a preposi-
tional phrase or subordinate clause. Error may be in-
troduced at each step of this preprocessing—the sen-
tence may be misparsed, some arguments (such as
distant subjects) may not be extracted, or the wrong
word may be found as the phrase head.

5.3 Validation and Test Data

A random selection of 30% of the preprocessed
FrameNet data is set aside for testing, and another
random 30% is used for development and valida-
tion. For experiments involving additional BNC
data, each 30% of the FrameNet sentences is em-
bedded in a random selection of 20% of the BNC.
We selected these percentages to yield a sufficient
amount of data for experimentation, while reserving
some unseen data for future work. The FrameNet
portion of the validation set includes 515 types of
our target verbs (across 161 VerbNet classes) in
4300 sentences, and contains a total of 6636 target
constituents—i.e., constituents that receive a valid
VerbNet role as their gold standard label, not No-
Role. The test set includes 517 of the target verbs
(from 163 classes) in 4308 sentences, yielding 6705
target constituents.®

To create an evaluation set, we map the manually
annotated FrameNet roles in the corpus to VerbNet
roles (or NoRole), as described in Sections 2.2 and
3.2. We use this role information to calculate perfor-
mance: the system should assign roles matching the
target VerbNet roles, and make no assignment when
the target is NoRole.

The verbs appearing in the validation and test sets occur
respectively across 161 and 165 FrameNet classes (what in
FrameNet are called “frames”).
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One of the decisions we face is how to evaluate the
identification of extracted arguments generated by
the system against the manually annotated target ar-
guments provided by FrameNet. We try two meth-
ods, the most strict of which is to require full-phrase
agreement: an extracted argument and a target ar-
gument must cover exactly the same words in the
sentence in order for the argument to be considered
correctly extracted. This means, for instance, that
a prepositional phrase incorrectly attached to an ex-
tracted object would render the object incompatible
with the target argument, and any system label on
it would be counted as incorrect. This evaluation
method is commonly used in other work (e.g., Car-
reras and Marquez, 2004).

The other method we use is to require that only
the head of an extracted argument and a target argu-
ment match. This latter method helps to provide a
fuller picture of the range of arguments found by the
system, since there are fewer near-misses caused by
attachment errors. Since heads of phrases are often
the most semantically relevant part of an argument,
labels on heads provide much of the same informa-
tion as labels on whole phrases. For these reasons,
we use head matching for most of our experiments
below. For comparison, however, we provide results
based on full-phrase matching as well.

Methods of Argument Identification

6 Experimental Results
6.1 Experimental Setup

We evaluate our system’s performance on several as-
pects of the overall role labelling task; all results are
given in terms of F-measure, 2PR/(P + R).” The
first task is argument identification, in which con-
stituents considered by our system to be arguments
(i.e., those that are extracted and labelled) are eval-
uated against actual target arguments. The second
task is labelling extracted arguments, which evalu-
ates the labelling of only those arguments that were
correctly extracted. Last is the overall role labelling
task, which evaluates the system on the combined
tasks of identification and labelling of all target ar-
guments.

We compare our results to an informed baseline
that has access to the same set of extracted argu-

"In each case, P and R are close in value.
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ments as does the frame matcher. The baseline la-
bels all extracted arguments using the default role
assignments described in Section 4.

In addition to experiments in which we employ
various methods of resolving ambiguous assign-
ments, we also evaluate the system with varying
types and amounts of training data, and with two al-
ternate methods for choosing frames from which to
draw candidate roles.

6.2 Evaluation of Probability Models

We first evaluate our system with the three very
simple probability models, as well as the non-
probabilistic default assignment, to determine roles
for the extracted arguments that the frame matcher
considers to be ambiguous. We also report results
after only the frame matcher has been applied, to
indicate how much work is being done by it alone.
Because we have constructed the frame matcher to
be highly restrictive in assigning candidate roles to
extracted arguments, a large number (about 62%)
become primary-labelled data and so do not require
resolution of ambiguous roles. Only about 16% of
our extracted arguments have role ambiguities, and
about 22% (many of which are adjuncts) do not re-
ceive any candidates and remain unlabelled.

Task: Id. | Lab. | Id. + Lab.
Baseline 80 | .74 52
FM + P(r|sc) .83 | .83 .65
FM + P(r|s) 83 | .84 .65
FM + P(r|v, s) 83 | .78 .61
FM + Dflt. Assgnmt. || .83 | .82 .64
FM only 83 | .76 .60

As shown in the table, all models perform equally
well on identification, which is determined by the
frame matcher (FM); i.e., any extracted argument
receiving one or more candidate roles is “identi-
fied” as an argument. Performance is somewhat
above the baseline, which must label all extracted
arguments. For the task of labelling correctly ex-
tracted arguments and for the combined task, the
simplest probability models, P(r|sc) and P(r|s),
perform about the same. On the combined task, they
achieve .13 above the informed baseline, indicating
the effectiveness of such simple models when com-
bined with the frame matcher. The more specific
model, P(r|v,s), performs less well, and may be
over-fitting on this relatively small amount of train-
ing data.



Two observations indicate the power of the frame
matcher. First, even using the non-probabilistic de-
fault assignments to resolve ambiguous roles sub-
stantially outperforms the baseline (and indeed per-
forms quite close to the best results, since the default
role assignment is often the same as that chosen by
the probability models). Importantly, the baseline
uses the same default assignments, but without the
benefit of the frame matcher to further narrow down
the possible arguments. Second, the frame matcher
alone achieves .60 F-measure on the combined task,
not far below the performance of the best models.
These results show that once arguments have been
extracted, much of the labelling work is performed
by the frame matcher’s careful application of lexical
information.

Henceforth we consider the use of the frame
matcher plus P(r|sc) as our basic system, since this
is our simplest model, and no other outperforms it.

6.3 Evaluation of Training Methods

In our above experiments, the probabilistic mod-
els are trained only on primary-labelled data from
the frame matcher run on the FrameNet data. We
would like to determine whether using either more
data or less noisy data may improve results. To pro-
vide more data, we ran the frame matcher on the
additional 20% of the BNC. This provides almost
600K more sentences containing our target verbs,
yielding a much higher amount of primary-labelled
data. To provide less-noisy data, we trained the
probability models on manually annotated target la-
bels from system-identified arguments in 1000 sen-
tences. While fewer sentences are used, all argu-
ments in the training data are guaranteed to have a
correct role assignment, in contrast to the primary-
labelled data output by the frame matcher. (We
chose 1000 sentences as an upper bound on an
amount of data that could be relatively easily anno-
tated by human judges.)

Training || Prim.-lab. | Prim.-lab. | 1K sents
Data: FN BNC annot’d
Baseline .52
FM + P(r|sc) .65 .65 .65
FM + P(r|v, s) .61 .62 .63

For our basic model, P(r|sc), these variations in
training data do not affect performance. Only the
most specific model, P(r|v, s), shows improvement
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when trained on more data or on manually annotated
data, although it still does not perform as well as the
simplest model. Because the models only choose
from among candidate roles selected by the frame
matcher, differences in the learned probability esti-
mations must be quite large to have an effect. At
least for the simplest model, these estimations do
not vary with a larger corpus or one lacking in noise.
However, the increase in performance seen here for
the more specific model, albeit small, may indicate
that richer probability models may require more or
cleaner training data.

6.4 Evaluation of Frame Choice

“Best” frames | All Frames
Baseline 52
FM + P(r|sc) .65 [ .63

The frame matcher has been shown to shoulder
much of the responsibility in our system, and it is
worth considering variations in its operation. For
example, by having the frame matcher only choose
roles from the frames that are the best syntactic
matches to the sentence, role ambiguity is mini-
mized at the cost of possibly excluding the correct
role. To determine whether we may do better by re-
lying more on the probability model and less on the
frame matcher, we instead include role candidates
from all frames in a verb’s lexical entry. The effect
of this choice is more role ambiguity, decreasing the
number of primary-labelled slots by roughly 30%.
We see that performance using P(r|sc) is slightly
worse with the greater ambiguity admitted by using
all frames, indicating the benefit of precise selection
of candidate roles.

6.5 Differing Argument Evaluation Methods

Heads | Full Phrase
Baseline 52 49
FM + P(r|sc) .65 .61

As mentioned, for most of our evaluations we match
the arguments extracted by the system to the tar-
get arguments via a match on phrase heads, since
head labels provide much useful semantic informa-
tion. When we instead require that the extracted
arguments match the targets exactly, the number of
correctly extracted arguments falls from about 80%
of the roughly 6700 targets to about 74%, due to in-
creased parsing difficulty. As expected, this results



in both the system and the baseline having perfor-
mance decreases on the overall task.

7 Related Work

Most role labelling systems have required hand-
labelled training data. Two exceptions are the sub-
categorization frame based work of Atserias et al.
(2001) and the bootstrapping labeller of Swier and
Stevenson (2004), but both are evaluated on only a
small number of verbs and arguments. In related un-
supervised tasks, Riloff and colleagues have learned
“case frames” for verbs (e.g., Riloff and Schmelzen-
bach, 1998), while Gildea (2002) has learned role-
slot mappings (but does not apply the knowledge for
the labelling task).

Other role labelling systems have also relied on
the extraction of much more complex features or
probability models than we adopt here. As a point
of comparison, we apply the iterative backoff model
from Swier and Stevenson (2004), trained on 20% of
the BNC, with our frame matcher and test data. The
backoff model achieves an F-measure of .63, slightly
below the performance of .65 for our simplest proba-
bility model, which uses less training data and takes
far less time to run (minutes rather than hours).

In general, it is not possible to make direct com-
parisons between our work and most other role la-
bellers because of differences in corpora and role
sets, and, perhaps more significantly, differences in
the selection of target arguments. However, the
best supervised systems, using automatic parses to
identify full argument phrases in PropBank, achieve
about .82 on the task of identifying and labelling
arguments (Pradhan et al., 2004). Though this is
higher than our performance of .61 on full phrase ar-
guments, our system does not require manually an-
notated data.

8 Conclusion

In this work, we employ an expensive but highly
reusable resource—a verb lexicon—to perform role
labelling with a simple probability model and a
small amount of unsupervised training data. We out-
perform similar work that uses much more data and
a more complex model, showing the benefit of ex-
ploiting lexical information directly. To achieve per-
formance comparable to that of supervised methods
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may require human filtering or augmentation of the
initial labelling. However, given the expense of pro-
ducing a large semantically annotated corpus, even
such “human in the loop” approaches may lead to
a decrease in overall resource demands. We use
such a corpus for evaluation purposes only, modi-
fying it with a role mapping to correspond to our
lexicon. We thus demonstrate that such existing re-
sources can be bootstrapped for lexicons lacking an
associated annotated corpus.
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