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Abstract

Dictionaries and word translation models
are used by a variety of systems, espe-
cially in machine translation. We build
a multilingual dictionary induction system
for a family of related resource-poor lan-
guages. We assume only the presence
of a single medium-length multitext (the
Bible). The techniques rely upon lexical
and syntactic similarity of languages as
well as on the fact that building dictionar-
ies for several pairs of languages provides
information about other pairs.

tational linguistics work, at least as presented at the
international conferences, such as the ACL.

The situation is not surprising, nor is it likely to
significantly change in the future. Luckily, most
of these less-represented languages belong to lan-
guage families with several prominent members. As
a result, some of these languages have siblings with
more resources and published researéh. Inter-
estingly, the better-endowed siblings are not always
the ones with more native speakers, since political
considerations are often more importantlf one
is able to use the resources available in one lan-
guage (henceforth referred to smurcg to facilitate
the creation of tools and resource in another, related

languagetargel), this problem would be alleviated.
This is the ultimate goal of this project, but in the
first stage we focus on multi-language dictionary in-
Modern statistical natural language processing tecbluction.

niques require large amounts of human-annotated Building a high-quality dictionary, or even bet-
data to work well. For practical reasons, the requiregér, a joint word distribution model over all the lan-
amount of data exists only for a few languages ofuages in a given family is very important, because
major interest, either commercial or governmentalysing such a model one can use a variety of tech-
As a result, many languages have very little comniques to project information across languages, e.g.
putational research done in them, especially outside parse or to translate. Building a unified model for
the borders of the countries in which these languagesore than a pair of languages improves the quality
are spoken. Some of these languages are, howeugyer building several unrelated pairwise models, be-
major languages with hundreds of millions of speakcause relating them to each other provides additional
ers. Of the top 10 most spoken languages, Lirinformation. If we know that word: in languageA
guistic Data Consortium at University of Pennsylhas as its likely translation wortlin languageB,
vania, the premier U.S. provider of corpora, offerainds is translated asin C, then we also know that

text corpora only in 7 (The World Factbook (2004), is likely to be translated as without looking at

2000 estimate) Only a few of the other languages

(French, Arabic, and Czech) have resources pro- ‘The search through ACL Anthology, for e.g., Telugu70

vided by LDC. Many Asian and Eastern Europeaﬁ"";o” speakers) shows (.)n.Iy casual mentlon of the Ianguage.
. Telugu’s fellow Dravidian languag&amil (~65 million

languages number tens of millions of speakers, Ygpeakers) has seen some papers at the ACL

very few of these seem to have any related compu- 3This is the case with Tamil vs. Telugu.

1 Introduction and Motivation
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the A to C model. 3 Description of the Problem

2 Previous Work Let us assume that we have a group of related lan-
guages,L; ... L,, and a parallel sentence-aligned
There has been a lot of work done on building dicmultitext C, with corresponding portions in each
tionaries, by using a variety of techniques. Onéanguage denoted &$ ... C,. Such a multitext ex-
good overview is Melamed (2000). There is workists for virtually all the languages in the form of the
on lexicon induction using string distance or otheBible. Our goal is to create a multilingual dictionary
phonetic/orthographic comparison techniques, sudly learning the joint distributioP(x . .. 2)zcr,
as Mann and Yarowsky (2001) or semantic comwhich is simply the expected frequency of the
parison using resources such as WordNet (Kondratyple of words in a completely word-aligned mul-
2001). Such work, however, primarily focuses oritext. We will approach the problem by learning
finding cognates, whereas we are interested in transairwise language models, although leaving some
lations of all words. Moreover, while some tech-parameters free, and then combine the models and
niques (e.g., Mann and Yarowsky (2001)) use mulearn the remaining free parameters to produce the
tiple languages, the languages usaeresources joint model.

such as dictionaries between some language pairs, gt us, therefore, assume that we have a set of
Wg: do not require any dictionaries for any languagg,qgels {P(2,910:)ser yer, }iz; Wheredij is a
pair. parameter vector for pairwise model for languages
An important element of our work is focusing onr,; andZ.;. We would like to learn how to combine
more than a pair of languages. There is an actiMpese models in an optimal way. To solve this prob-
research area focusing on multi-source translatiqem, let us first consider a simpler and more general
(e.g., Och and Ney (2001)). Our setting is the resetting.
verse: we do not use multiple dictionaries in order

to translate, but translate (in a very crude way) in . _
order to build multiple dictionaries. 3.1 Combining Models of Hidden Data

Many machine translation techniques require diG- ot ¥ pe a random variable with distribution

tionary building as a step of the process, and therg;true(x)’ such that no direct observations of it exist.

fore have also attacked this problem. They use a Viyo\yever, we may have some indirect observations
riety of approaches (a good overview is Koehn anf¢ v anq have built several models af's distri-

Knight (2001)), many of which require advanceobution,{Pi(xwi> »_, each parameterized by some

tools for both languages which we are not able 8, ameter vectat;. P; also depends on some other
use. They also use bilingual (and to some extenf, o meters that are fixed. It is important to note that
monolingual) corpora, which we do have availabley,, space of models obtained by varyihds only a

They do not, however, focus on related languagegm | subspace of the probability space. Our goal is
and tend to ignore lexical similarit§; nor are they to find a good estimate @yyelz).
able to work on more than a pair of languages at a

time The main idea is that if somE; and P; are close

. . by some measure) 6 they have to be close
It is also worth noting that there has been some. ) Brue they

. 0 each other as well. We will therefore make the
MT work. on rgla’Fed Ianguaggs which explqres I"?mélssumption that if some models af are close to
guage similarity in an opposite way: by using dIC'ea(:h other (and we have reason to believe they are
_tlonarles and tools for both Ianguages_, and assu air approximations of the true distribution) they are
ing that a near word-for-word approach is reasonab

Haiic et al.. 2000 also close to the true distribution. Moreover, we
(Hajic etal, ) would like to set the parameteés in such a way

— _ that P(z;]60;) is as close to the other models as pos-
Much of recent MT research focuses on pairs of languages.

which are not related, such as English-Chinese, English-Arabi§,'b|e' This leads us to look for an estimate that is

etc. as close to all of our models as possible, under the
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optimal values of);'s, or more formally: — Forifrom 1ton

. . - x Setf; in such a way as to minimize
Pest=argminmin. .. mind(P(+), P1(-01), ... P.(-]05))

P 01 ’ v D(P(X)||P:(X|6:))
R — Computed according to the above for-
whered measures the distance betwegeand all the mula

P; under the parameter settiflg Since we have no ) S )
reason to prefer any of thé, we choose the follow- ~ Each step of the algorithm minimizes It is also
ing symmetric form for: easy to see that_ m|n|m|2|n@(P(X)||13i(X|ei)) is
the same as setting the parametgis order to max-
A i imize [T,c x Pi(2|6;)"®), which can be interpreted
Z;D(P(')HPZ('WZ)) as maximizing the probablll'Ey undeP; of a cor-
pus in which wordz appearsP(z) times. In other
where D is a reasonable measure of distance bgyords, we are now optimizing’; (X) given an ob-
tween probability distributions. The most approserved corpus ak, which is a much easier problem.
priate and the most commonly used measure i many types of models foP; the Expectation-
such cases in the Kullback-Leibler divergence, alsgaximization algorithm is able to solve this prob-

known as relative entropy: lem.
D(pllq) = Zp ) 3.2 Combining Pairwise Models
Following the methods outlined in the previous
section, we can find an optimal joint probability

It turns out that it is possible to find the optimial . .
P(z1...20)s,er, if we are given several models
under these circumstances. Taking a partial derlvz?D )
.xp|0;). Instead, we have a number of pair-

tive and solving, we obtain: wise models. Depending on which independence as-
. [T, Pi(x]6;)'/™ sumptions we make, we can define a joint distribu-
P(z) = S I, P8 tion over all the languages in various ways. For ex-
vex ’ ' ample, for three languaged, B, andC, and we can
Substituting this value into the expression foluse the following set of models:
function d, we obtain the following distance mea-
sure between thg;’s: Pi(A,B,C) = P(A|B)P(B|C)P(C)
P,(A,B,C) = P(C|A)P(A|B)P(B)

d'(Py(X1]61) ... Po(X|0n)) P3(A,B,C) = P(B|C)P(C|A)P(A)
= ming d(P, Pi(X]601),. .. Pa(X|60))
— —logX,ex Ty Filal6,) /" and

This function is a generalization of the well-

known Bhattacharyya distance for two distributions = D(P[|P1) + D(P[[P2) + D(P|[P3)
(Bhattacharyya, 1943): = 2H(P(A,C),P(A,Q))
+ 2H(P(A,B),P(A,B))
q) =Y Vbiti + 2H(P(B,C), P(B,C)) — 3H(P)
’ — H(P(A),P(4)) — H(P(B), P(B))
These results suggest the followiAdgorithm 1 — H(P(C),P(C))

to optimized (andd'):
P ( ) whereH (-) is entropy,H (-, -) is cross-entropy, and

e Set allg; randomly P(A, B) meansP marginalized to variables, B.
The last three cross-entropy terms involve monolin-
gual models which are not parameterized. The en-
— Compute P according to the above for- tropy term does not involve any of the pairwise dis-
mula tributions. Therefore, if? is fixed, to maximizel’

e Repeat until change idis very small:
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we need to maximize each of the bilingual crosseach discussed in a separate section below:
entropy terms.

This means we can apply the algorithm from Pa—p(ylz)
the previous section with a small modification
(Algorithm 2):

Afw(T) Prowa—p(y|o)
)\bw(x)waAﬂB(y‘x)

)\char (l‘)Pcha’rA—>B (y|x) (1)
)\pref(x)PprefAﬂB(ma:)
)‘suf(li)PsquaB(mx)

)\cons (x)PconsAHB(y"x)

+

e Set all §;; (for each language paif, j) ran-
domly

where allAs sum up to one. Thas are free pa-
e Repeat until change idis very small: rameters, although to avoid over-training we tie the
As for z’s with similar frequencies. These lambdas
— ComputeP; fori = 1...k wherek isthe form a part of thef;; parameter mentioned previ-
number of the joint models we have cho-ously, wherel; = AandL; = B.

sen The components represent various constraints that
— ComputeP from { P;} are likely to hold between related languages.
— Fori, j such that # j 4.1 GIZA (forward)
* MarginalizeP to (L;, L;) This component is in fact GIZA++ software, origi-
* Setf;; in such a way as to minimize nally created by John Hopkins University’s Summer
D(P(Li, L;)||P;(Li, L;|055)) Workshop in 1999, improved by Och (2000). This
— Computed according to the above for- software can be used to create word alignments for
mula sentence-aligned parallel corpora as well as to in-

duce a probabilistic dictionary for this language pair.

The general approach taken by GIZA is as fol-

Most of thed parameters in our models can b ;
X : .Jows. LetL, and Lp be the portions of the par-
set by performing EM, and the rest are discrete wit . )
allel text in languagesi and B respectively, and

only a few choices and can be maximized over b
trying all combinations of them. %eAfin_eP(i)ii“g :Snd Lp = (gi)i=1.m- We can
BlLa

4 Building Pairwise Models L .
max max ZZPA—’B (yjlzs) Paligns(xi‘j)

; - _Pa—n Pajigns;=1 j=1
We now know how to combine pairwise translation

models with some free parameters. Let us now dis- The GIZA software does the maximization by

cuss how such models might be built. building a variety of models, mostly described by
Our goal at this stage is to take a parallel bitexgrown et al. (1993). GIZA can be tuned in various
in related languaged and B and produce a joint \yays most importantly by choosing which models
probability modelP(x, y), wherex € A,y € B. g run and for how many iterations. We treat these
Equivalently, since the modelBs(z) and Ps(y) parameters as free, to be set along with the rest at a
are easily estimated by maximum likelihood techigter stage.
niques from the bitext, we can estimatg . 5(y|) As a side effect of GIZA's optimization, we obtain
or .PBHA($|y). Without loss of generality, we will o Pa_p(y|z) that maximizes the above expres-
build Pa—5(ylz). sion. It is quite reasonable to believe that a model
The model we are building will have a number ofof this sort is also a good model for our purposes.
free parameters. These parameters will be set by tireis model is what we refer to @8, 4_5(y|z) in
algorithm discussed above. In this section we wilthe model overview.
assume that the parameters are fixed. GIZA's approach is not, however, perfect. GIZA
Our model is a mixture of several componentshuilds several models, some quite complex, yet it
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does not use all the information available to it, no- Let us define (the unnormalized) character model:
tably the lexical similarity between the languages.
Furthermore, GIZA tries to map words (especially
rare ones) into other words if possible, even if thée., estimating the length of first, andy itself af-
sentence has no direct translation for the word iterward. We make an independence assumption that
guestion. the length ofy depends only on length of, and are

These problems are addressed by using othable to estimate the second term above easily. The
models, described in the following sections. first term is harder to estimate.

First, let us consider the case where lengths of

4.2 GIZA (backward) andy are the samenf = n). Then,
In the previous section we discussed using GIZA to n
try to optimize P(Lg|L4). Itis, however, equally Perarien(ylz,n) = H P.(yi|z;)
reasonable to try to optimizB(L 4|Lp) instead. If i=1
we do so, we can obtaifs, 5 a(z[y) that pro- | etyi be wordy with j's character removed. Let

duces maximal probability for”(L4|Lg). We, ys now consider the case when> n. We define
however need a model 64—, p(y|x). Thisis easily (recursively):

obtained by using Bayes' rule:

PfWBHA(J:’y)PB(y) Pcharlen yl:c m Z Pcharlen Y ‘;p m — 1)
Py(z)

uchar(y’:r) = Pcharlen(y|$a m)Plength(m|$>

Pywa—p(ylz) =
Similarly, if n > m:

which requires us to havBg(y) and P4(z). These

models can be estimated directly frabn; and L 4, Peharten(y]z) = Z —Peparten(ylz',m)

by using maximum likelihood estimators:
It is easy to see that this is a valid probability

Pu(z) = 2 0(wi, ) model over all sequences of characters. However,
n y is not a random sequence of characters, but a word
and in languageB, moreover, it is a word that can serve
S 0(vis ) as a potential translation of word So, to define a
Pp(y) = T m proper distribution over wordg given a wordx and

where §(x,y) is the Kronecker’s delta function, a set of possible translations ofT'(z)

which is equal to 1 if its arguments are equal, and P,,.(y|z) = Puehar (y|z,y € T(2))

to O otherwise. Pychar (Y,y€T (z)|2)
¥ €T (z) uchar(y ‘;1;)

= Oyer(s)

4.3 Character-based model This is the complete definition aP.;,,, except

This and the following models all rely on having afor the fact that we are implicitly relying upon the
model of P4_.p(y|z) to start from. In practice it character-mapping model’., which we need to
means that this component is estimated followingomehow obtain. To obtain it, we rely upon GIZA
the previous components and uses the models thagain. As we have seen, GIZA can find a good word-
provide as a starting point. mapping model if it has a bitext to work from. If we

The basic idea behind this model is that in relatetlave aP,_. g word-mapping model of some sort, it
languages words are also related. If we have a modslequivalent to having a parallel bitext with worgds
P, of translating characters in language A into charandz treated as a sequence of characters, instead of
acters in language B, we can define the model fandivisible tokens. Eaclix,y) word pair would oc-
translating entire words. cur P4, p(z,y) times in this corpus. GIZA would

Let word z in languageA consists of characters then provide us with thé’. model we need, by opti-
x1 throughz,,, and wordy in languageB consist of mizing the probabilityB language part of the model
characterg, throughy,,. given the languagd part.
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4.4 Prefix Model occurs much more often than can be expected based

This model and the two models that follow are buil®n the frequency of its first letter in the penultimate
on the same principle. Let there be a functipn position, times the frequency of its second letter in
A — C4 and a functiory : B — Cj. These func- the last position. We then proceed in a similar way
tions group words im and B into some finite set of for three-letter suffixes. The threshold value is a free
classes. If we have sonfé,_. 5 (y|) to start with, Parameter of this model.

we can define 4.6 Constituency Model

Prya—p(y|x) If we had information about constituent boundaries
= P(ylg(y)) P(g(y)|f(x)) P (f(x)|z) in either language, it would have been useful to
Ply) Dot (a )= F2) D) =g () P& ) make_a model favori_ng alignments that do not cross
(Zz,:ﬂz,):fm P(w’)) (Zy,:g(y,):g(y) P(y’)) con_stltuent pounglanes. We do not have this infor-
mation at this point. We can assume, however, that
For the prefix model, we rely upon the following any sequence of three words is a constituent of sorts,
idea: words that have a common prefix often tend tand build a model based on that assumption.
be related. Related words probably should translate As before, letLy = (;)i=1.,» and Lg =
as related words in the other language as well. 1fy;);—; ,,. Let us define asCa(i) a triple
other words, we are trying to capture word-level seef words (x;_1,;,x;+1) and asCp(j) a triple
mantic information. So we define the following set(y;_;,y;,y,+1). If we have some modéP,_. 5, we
of f andg functions: can define

fn(x) = prefix(z,n) Po,—cp(ild) = &Pasp(yj-1lzi—1)Pa_p(y;lz:)
X Pap(yjsilzis1)

gm(y) = prefix(y, m) . .
whereC is the sum ovey of the above products, and
where n and m are free parameters, whose values Werves to normalize the distribution.

will determine later. We therefore defid®, ;4.5

asPy, with f andg specified above. Peonsa—p(y|T)

, = > 2 PUICE()Pey—cp (1) P(Ca(i)x)

4.5 Suffix Model = Diar—e 21 PUICE () Poy—cys i)

Similarly to a prefix model mentioned above, itis = m w2 jiyi—y POa—Cp (G]1)

also useful to have a suffix model. Words that have =

the same suffixes are likely to be in the same gran;  Eygluation

matical case or share some morphological feature

which may persist across languages. In either casghe output of the system so far is a multi-lingual

if a strong relationship exists between the resulfword translation model. We will evaluate it by pro-

ing classes, it provides good evidence to give highdlucing a tri-lingual dictionary (Russian-Ukrainian-

likelihood to the word belonging to these classes. Belorussian), picking a highest probability transla-

is worth noting that this feature (unlike the previougion for each word, from the corresponding Bibles.

one) is unlikely to be helpful in a setting where lan-Unfortunately, we do not have a good hand-built tri-

guages are not related. lingual dictionary to compare it to, but only one
The functionsf andg are defined based on a set o@ood bilingual one, Russian-Ukrainfan We will

suffixesS 4 andSp which are learned automatically. therefore take the Russian-Ukrainian portion of our

f(z) is defined as the longest possible suffixaof dictionary and compare it to the hand-built one.

that is in the sefS4, andg is defined similarly, for Our evaluation metric is the number of entries that

Sp. match between these dictionaries. If a word has sev-
The setsS 4 andSp are built as follows. We start eral translations in the hand-built dictionary, match-

with all one-character suffixes. We then consider sty,q 1ack of such dictionaries is precisalihy we do this

two-letter suffixes. We add a suffix to the list if it work
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Ing any of them cou_nt_s as _correct. Itis worth not"l'able 1: Evaluation for Russian-Ukrainian (with Be-
ing that for all the dictionaries we generate, the to; .
L , orussian to tune)

tal number of entries is the same, since all the worols
that occur in the source portion of the corpus have
entry. In other words, precision and recall are pr
portional to each other and to our evaluation metri
Not all of the words that occur in our dictionary

occur in the hand-built dictionary and vice versa. Ar

_nStage Pair Joint
Forward (baseline) 62.3%| 71.7%
Forward+chars 77.1% | 84.2%
, Forward+chars+backward 81.3% | 84.1%

absolute upper limit of performance, therefore, for FW+chars+bw-prefix | 83.5% 84.5%
this evaluation measure is the number of left-hand-FW+chars+bw+prefix+suffix | 84.5% | 85%
side entries that occur in both dictionaries. Fw-+chars+bw+pref+suf+const84.5% | 85.2%

In fact, we cannot hope to achieve this numbef.“Oracle” setting for\’s 84.6% | \
First, because the dictionary translation of the word

in question might never occur in the corpus. Second,

even if it does, but never co-occurs in the same sen- ) ) o )
tence as its translation, we will not have any basis@Ple 2: Evaluation for Russian-Ukrainian (with Be-

to propose it as a translatién. Therefore we have 'orussian and Polish)

a “achievable upper limit”", the number of words | Tuned by Pair Joint
that have their “correct” translation co-occur at least | Belorussian (prev. table) 84.5% | 85.2% &
once. We will compare our performance to this up- | Polish 84.6% | 78.6%
per limit. Both 84.5% | 85.2%

Since there is no manual tuning involved we do
not have a development set, and use the whole bible
for training (the dictionary is used as a test set, as
described above).

We evaluate the performance of the model witltause the joint model relies on three pairwise mod-
just the GIZA component as the baseline, and adels equally, and Russian-Belorussian and Ukrainian-
all the other components in turn. There are two pod$3elorussian models are bound to be less reliable for
sible models to evaluate at each step. The pairwigtussian-Ukrainian evaluation. It appears, however,
model is the model given in equation 1 under théhat our Belorussian bible is translated directly from
parameter setting given by Algorithm 2, with Be-Russian rather than original languages, and parallels
lorussian used as a third language. The joint mod&ussian text more than could be expected.

is the full model over these three languages as ©S"To insure our results are not affected by this fact

“T“ated by AIg(_J_rithm 2'_ I_n st pick_ Ave also try Polish separately and in combination
highest probability Ukrainian word as a translatloquth Belorussian (i.e. a model over 4 languages)
of a given Russian word. as shown in Table 2 '

The results for Russian-Ukrainian bibles are pre-
sented in Table 1. The “oracle” setting is the set- These results demonstrate that the joint model
ting obtained by tuning on the test set (the dictiolS not as good for Polish, but it still finds the
nary). We see that using a third language to tun@Ptimal parameter setting. This leads us to pro-
works just as well, obtaining the true global maxose the following extension: let us marginalize
imum for the model. Moreover, the joint mode”Oint Russian-Ukrainian-Belorussian model intOjUSt
(which is more flexible than the model in EquationRussian-Ukrainian, and add this model as yet an-

1) does even better. This was unexpected for us, bather component to Equation 1. Now we cannot use
Belorussian as a third language, but we can use Pol-

6Stl’iCﬂy speaking, we might be able to infer the word’s EXiS-ish’ which we know works just as well for tuning.

tence in some cases, by performing morphological analysis angF . = 70
proposing a word we have not seen, but this seems too hard e resulting performance for the model8s.7%,

the moment our best result to date.

“Oracle” tuning | 84.5%| \
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6 Discussion and Future Work words in the target language. These are the words
_ o ~ that tend to vary the most between related (and even
We have built a system for multi-dictionary in-nrelated) languages. The relatively rare words (e.g.
duction from parallel corpora which Signiﬁcam'ydomain-specific and technical terms) can often be
improves quality over the standard existing t00}ansiated simply by inferring morphological rules
(GIZA) by taking advantage of the fact that lan-yansforming words of one language into another.
guages are related and we have a group of mofi§,ys, one may expand the dictionary coverage us-
than two of them. Because the system attempts {Qqy non-parallel texts in both languages, or even in

be completely agnostic about the languages it work§st one language if its morphology is sufficiently
on, it might be used successfully on many Ianguaqeegmar_

groups, requiring almost no linguistic knowledge on
the part of the user. Only the prefix and suffix com-
ponents are somewhat language-specific, but ev&eferences

they are sufficiently general to work, with varyingThe Central Intelligence Agency. 2004. The world fact-
degree of success, on most inflective and agglutina- book.

tive languages (Which form a large majority of Ian'A. Bhattacharyya. 1943. On a measure of divergence be-
guages). For generality, we would also need a model tween two statistical populations defined by their prob-
of infixes, for languages such as Hebrew or Arabic. ability distributions.Bull. Calcutta Math. So¢35:99—
We must admit, however, that we have not tested 109
our approach on other language families yet. It i®.F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.
our short term plan to test our model on several Ro- Mercer. 1993. The mathematics of statistical machine
; ranslation: Parameter estimaticomputational Lin-
mance .Ianguages,_ e.g: Spanish, Portuguese, Frenchguistics 19(2)-263-311.
Looking at the first lines of Table 1, one can see =~ _ _
that using more than a pair of languages with 4 Hajic, J. Hric, and V. Kubon. 2000. Machlne transla-
del using onlv a small feature set can dramat- tion c_)f very close languages. I?roccgadmgs of the 6th
_mo ] g y Applied Natural Language Processing Conference
ically improve performance (compare second and .
third columns), while able to find the optimal val-P- Koehn and K. Knight. 2001. Knowledge sources
for word-level translation models. IRroceedings of

ues for. all internf’;ll parameters.. _ the Conference on Empirical Methods in Natural Lan-
As discussed in the introduction, the ultimate goal guage Processing

of this project is tf) produce tools, such as a Pars&s kondrak. 2001. Identifying cognates by phonetic
for languages which lack them. Several approaches and semantic similarity. IRroceedings of the Second
are possible, all involving the use of the dictionary Meeting of the North American Chapter of the Asso-
we built. While working on this project, we would ~ ciation for Computational Linguistics, Pittsburgh, PA
no longer be treating all languages in the same way. pages 103-110.
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