
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 787–794, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Comparing and Combining Finite-State and Context-Free Parsers

Kristy Hollingshead and Seeger Fisherand Brian Roark
Center for Spoken Language Understanding

OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, 97006
{hollingk,fishers,roark }@cslu.ogi.edu

Abstract
In this paper, we look at comparing high-
accuracy context-free parsers with high-
accuracy finite-state (shallow) parsers on
several shallow parsing tasks. We
show that previously reported compar-
isons greatly under-estimated the perfor-
mance of context-free parsers for these
tasks. We also demonstrate that context-
free parsers can train effectively on rel-
atively little training data, and are more
robust to domain shift for shallow pars-
ing tasks than has been previously re-
ported. Finally, we establish that combin-
ing the output of context-free and finite-
state parsers gives much higher results
than the previous-best published results,
on several common tasks. While the
efficiency benefit of finite-state models
is inarguable, the results presented here
show that the corresponding cost in accu-
racy is higher than previously thought.

1 Introduction
Finite-state parsing (also called chunking or shallow
parsing) has typically been motivated as a fast first-
pass for – or approximation to – more expensive
context-free parsing (Abney, 1991; Ramshaw and
Marcus, 1995; Abney, 1996). For many very-large-
scale natural language processing tasks (e.g. open-
domain question answering from the web), context-
free parsing may be too expensive, whereas finite-
state parsing is many orders of magnitude faster and
can also provide very useful syntactic annotations
for large amounts of text. For this reason, finite-state
parsing (hereafter referred to as shallow parsing) has
received increasing attention in recent years.

In addition to the clear efficiency benefit of
shallow parsing, Li and Roth (2001) have further

claimed both an accuracy and a robustness benefit
versus context-free parsing. The output of a context-
free parser, such as that of Collins (1997) or Char-
niak (2000), can be transformed into a sequence of
shallow constituents for comparison with the output
of a shallow parser. Li and Roth demonstrated that
their shallow parser, trained to label shallow con-
stituents along the lines of the well-known CoNLL-
2000 task (Sang and Buchholz, 2000), outperformed
the Collins parser in correctly identifying these con-
stituents in the Penn Wall Street Journal (WSJ) Tree-
bank (Marcus et al., 1993). They argued that their
superior performance was due to optimizing directly
for the local sequence labeling objective, rather than
for obtaining a hierarchical analysis over the entire
string. They further showed that their shallow parser
trained on the Penn WSJ Treebank did a far better
job of annotating out-of-domain sentences (e.g. con-
versational speech) than the Collins parser.

This paper re-examines the comparison of shal-
low parsers with context-free parsers, beginning
with a critical examination of how their outputs
are compared. We demonstrate that changes to the
conversion routine, which take into account differ-
ences between the original treebank trees and the
trees output by context-free parsers, eliminate the
previously-reported accuracy differences. Second,
we show that a convention that is widely accepted
for evaluation of context-free parses – ignoring
punctuation when setting the span of a constituent –
results in improved shallow parsing performance by
certain context-free parsers across a variety of shal-
low parsing tasks. We also demonstrate that context-
free parsers perform competitively when applied to
out-of-domain data. Finally, we show that large im-
provements can be obtained in several shallow pars-
ing tasks by using simple strategies to incorporate
context-free parser output into shallow parsing mod-
els. Our results demonstrate that a rich context-free

787



parsing model is, time permitting, worth applying,
even if only shallow parsing output is needed. In
addition, our best results, which greatly improve on
the previous-best published results on several tasks,
shed light on how much accuracy is sacrificed in
shallow parsing to get finite-state efficiency.

2 Evaluating Heterogeneous Parser Output

Two commonly reported shallow parsing tasks are
Noun-Phrase (NP) Chunking (Ramshaw and Mar-
cus, 1995) and the CoNLL-2000 Chunking task
(Sang and Buchholz, 2000), which extends the NP-
Chunking task to recognition of 11 phrase types1

annotated in the Penn Treebank. Reference shal-
low parses for this latter task were derived from
treebank trees via a conversion script known as
chunklink 2. We follow Li and Roth (2001) in
usingchunklink to also convert trees output by a
context-free parser into a flat representation of shal-
low constituents. Figure 1(a) shows a Penn Tree-
bank tree and Figure 1(c) its corresponding shallow
parse constituents, according to the CoNLL-2000
guidelines. Note that consecutive verb phrase (VP)
nodes result in a single VP shallow constituent.

Just as the original treebank trees are converted
for training shallow parsers, they are also typ-
ically modified for training context-free parsers.
This modification includes removal of empty nodes
(nodes tagged with “-NONE-” in the treebank), and
removal of function tags on non-terminals; e.g., NP-
SBJ (subject NP) and NP-TMP (temporal NP) are
both mapped to NP. The output of the context-free
parser is, of course, in the same format as the train-
ing input, so empty nodes and function tags are not
present. This type of modified tree is what is shown
in Figure 1(b); note that the original treebank tree,
shown in Figure 1(a), had an empty subject NP in
the embedded clause which has been removed for
the modified tree.

To compare the output of their shallow parser with
the output of the well-known Collins (1997) parser,
Li and Roth applied thechunklink conversion
script to extract the shallow constituents from the
output of the Collins parser on WSJ section 00. Un-

1These include: ADJP, ADVP, CONJP, INTJ, LST, NP, PP,
PRT, SBAR, UCP and VP. Anything not in one of these base
phrases is designated as “outside”.

2Downloaded from http://ilk.kub.nl/∼sabine/chunklink/.

(a) S

�
��

H
HH

NP-SBJ-1

They

VP
�� HH

are VP

�� HH
starting S

���
HHH

NP-SBJ

-NONE-

*-1

VP

�
��

H
HH

to VP

��� HHH

buy NP

�� HH
growth stocks

(b) S

���
HHH

NP

They

VP

���
HHH

are VP

���
HHH

starting S

VP

��� HHH

to VP

�
��

H
HH

buy NP

�� HH
growth stocks

(c) [NP They] [VP are starting to buy] [NP growth stocks]

Figure 1: (a) Penn WSJ treebank tree, (b) modified treebank
tree, and (c) CoNLL-2000 style shallow bracketing, all of the
same string.

fortunately, the script was built to be applied to the
original treebank trees, complete with empty nodes,
which are not present in the output of the Collins
parser, or any well-known context-free parser. The
chunklink script searches for empty nodes in the
parse tree to perform some of its operations. In par-
ticular, any S node that contains an empty subject
NP and a VP is reduced to just a VP node, and
then combined with any immediately-preceding VP
nodes to create a single VP constituent. If the S
node does not contain an empty subject NP, as in
Figure 1(b), thechunklink script creates two VP
constituents: [VP are starting] [VP to buy], which
in this case results in a bracketing error. However,
it is a simple matter to insert an empty subject NP
into unary S→VP productions so that these nodes
are processed correctly by the script.

Various conventions have become standard in
evaluating parser output over the past decade. Per-
haps the most widely accepted convention is that
of ignoring punctuation for the purposes of assign-
ing constituent span, under the perspective that, fun-

788



Phrase Evaluation Scenario
System Type (a) (b) (c)
“Modified” All 98.37 99.72 99.72
Truth VP 92.14 98.70 98.70
Li and Roth All 94.64 - -
(2001) VP 95.28 - -
Collins (1997) All 92.16 93.42 94.28

VP 88.15 94.31 94.42
Charniak All 93.88 95.15 95.32
(2000) VP 88.92 95.11 95.19

Table 1:F-measure shallow bracketing accuracy under three
different evaluation scenarios: (a) baseline, used in Li and Roth
(2001), with originalchunklink script converting treebank
trees and context-free parser output; (b) same as (a), except that
empty subject NPs are inserted into every unary S→VP produc-
tion; and (c) same as (b), except that punctuation is ignored for
setting constituent span. Results for Li and Roth are reported
from their paper. The Collins parser is provided with part-of-
speech tags output by the Brill tagger (Brill, 1995).

damentally, constituents are groupings of words.
Interestingly, this convention was not followed in
the CoNLL-2000 task (Sang and Buchholz, 2000),
which as we will see has a variable effect on context-
free parsers, presumably depending on the degree to
which punctuation is moved in training.

2.1 Evaluation Analysis
To determine the effects of the conversion routine
and different evaluation conventions, we compare
the performance of several different models on one
of the tasks presented in Li and Roth (2001). For
this task, which we label theLi & Roth task, sec-
tions 2-21 of the Penn WSJ Treebank are used as
training data, section 24 is held out, and section 00
is for evaluation.

For all trials in this paper, we report F-measure
labeled bracketing accuracy, which is the harmonic
mean of the labeled precision (P ) and labeled recall
(R), as they are defined in the widely used PARSE-
VAL metrics; i.e. the F-measure accuracy is2PR

P+R .
Table 1 shows baseline results for the Li and

Roth3 shallow parser, two well-known, high-
accuracy context-free parsers, and the reference
(true) parses after being modified as described

3We were unable to obtain the exact model used in Li and
Roth (2001), and so we use their reported results here. Note
that they used reference part-of-speech (POS) tags for their re-
sults on this task. All other results reported in this paper, unless
otherwise noted, were obtained using Brill-tagger POS tags.

above (by removing empty nodes and function
tags). Evaluation scenario (a) in Table 1 corre-
sponds to what was used in Li and Roth (2001) fol-
lowing CoNLL-2000 guidelines, with the original
chunklink script used to transform the context-
free parser output into shallow constituents. We
can see from the performance of the modified truth
in this scenario that there are serious problems
with this conversion, due to the way in which
it handles unary S→VP productions. If we de-
terministically insert empty subject NP nodes for
all such unary productions prior to the use of the
chunklink script, which we do in evaluation sce-
nario (b) of Table 1, this repairs the bulk of the
errors. Some small number of errors remain, due
largely to the fact that if the S node has been an-
notated with a function tag (e.g. S-PRP, S-PRD, S-
CLR), then chunklink will not perform its re-
duction operation on that node. However, for our
purposes, this insertion repair sufficiently corrects
the error to perform meaningful comparisons. Fi-
nally, evaluation scenario (c) follows the context-
free parsing evaluation convention of ignoring punc-
tuation when assigning constituent span. This af-
fects some parsers more than others, depending on
how the parser treats punctuation internally; for
example, Bikel (2004) documents that the Collins
parser raises punctuation nodes within the parse
tree. Since ignoring punctuation cannot hurt perfor-
mance, only improve it, even the smallest of these
differences are statistically significant.

Note that after inserting empty nodes and ignor-
ing punctuation, the accuracy advantage of Li and
Roth over Collins is reduced to a dead heat. Of
the two parsers we evaluated, the Charniak (2000)
parser gave the best performance, which is consis-
tent with its higher reported performance on the
context-free parsing task versus other context-free
parsers. Collins (2000) reported a reranking model
that improved his parser output to roughly the same
level of accuracy as Charniak (2000), and Charniak
and Johnson (2005) report an improvement using
reranking over Charniak (2000). For the purposes
of this paper, we needed an available parser that
was (a) trainable on different subsets of the data to
be applied to various tasks; and (b) capable of pro-
ducingn-best candidates, for potential combination
with a shallow parser. Both the Bikel (2004) imple-

789



System NP-Chunking CoNLL-2000 Li & Roth task
SPRep averaged perceptron 94.21 93.54 95.12
Kudo and Matsumoto (2001) 94.22 93.91 -
Sha and Pereira (2003) CRF 94.38 - -

Voted perceptron 94.09 - -
Zhang et al. (2002) - 94.17 -
Li and Roth (2001) - 93.02 94.64

Table 2:Baseline results on three shallow parsing tasks: the NP-Chunking task (Ramshaw and Marcus, 1995); the CoNLL-2000
Chunking task (Sang and Buchholz, 2000); and the Li & Roth task (Li and Roth, 2001), which is the same as CoNLL-2000 but
with more training data and a different test section. The results reported in this table include the best published results on each of
these tasks.

mentation of the Collins parser and then-best ver-
sion of the Charniak (2000) parser, documented in
Charniak and Johnson (2005), fit the requirements.
Since we observed higher accuracy from the Char-
niak parser, from this point forward we report just
Charniak parser results4.

2.2 Shallow Parser
In addition to the trainablen-best context-free parser
from Charniak (2000), we needed a trainable shal-
low parser to apply to the variety of tasks we were
interested in investigating. To this end, we repli-
cated the NP-chunker described in Sha and Pereira
(2003) and trained it as either an NP-chunker or with
the tagset extended to classify all 11 phrase types
included in the CoNLL-2000 task (Sang and Buch-
holz, 2000). Our shallow parser uses exactly the fea-
ture set delineated by Sha and Pereira, and performs
the decoding process using a Viterbi search with a
second-order Markov assumption as they described.
These features include unigram and bigram words
up to two positions to either side of the current word;
unigram, bigram, and trigram part-of-speech (POS)
tags up to two positions to either side of the current
word; and unigram, bigram, and trigram shallow
constituent tags. We use the averaged perceptron al-
gorithm, as presented in Collins (2002), to train the
parser. See (Sha and Pereira, 2003) for more details
on this approach.

To demonstrate the competitiveness of our base-
line shallow parser, which we label theSPRep av-
eraged perceptron, Table 2 shows results on three
different shallow parsing tasks. The NP-Chunking

4The parser is available for research purposes at
ftp://ftp.cs.brown.edu/pub/nlparser/ and can be run inn-
best mode. The one-best performance of the parser is the same
as what was presented in Charniak (2000).

task, originally introduced in Ramshaw and Marcus
(1995) and also described in (Collins, 2002; Sha and
Pereira, 2003), brackets just base NP constituents5.
The CoNLL-2000 task, introduced as a shared task
at the CoNLL workshop in 2000 (Sang and Buch-
holz, 2000), extends the NP-Chunking task to label
11 different base phrase constituents. For both of
these tasks, the training set was sections 15-18 of
the Penn WSJ Treebank and the test set was section
20. We follow Collins (2002) and Sha and Pereira
(2003) in using section 21 as a heldout set. The third
task, introduced by Li and Roth (2001), performs the
same labeling as in the CoNLL-2000 task, but with
more training data and different testing sets: training
was WSJ sections 2-21 and test was section 00. We
used section 24 as a heldout set; this section is often
used as heldout for training context-free parsers.

Training and testing data for the CoNLL-2000
task is available online6. For the heldout sets for
each of these tasks, as well as for all data sets
needed for the Li & Roth task, reference shallow
parses were generated using thechunklink script
on the original treebank trees. All data was tagged
with the Brill POS tagger (Brill, 1995) after the
chunklink conversion. We verified that using
this method on the original treebank trees in sections
15-18 and 20 generated data that is identical to the
CoNLL-2000 data sets online. Replacing the POS
tags in the input text with Brill POS tags before the

5We follow Sha and Pereira (2003) in deriving the NP con-
stituents from the CoNLL-2000 data sets, by replacing all non-
NP shallow tags with the “outside” (“O”) tag. They mention
that the resulting shallow parse tags are somewhat different than
those used by Ramshaw and Marcus (1995), but that they found
no significant accuracy differences in training on either set.

6Downloaded from the CoNLL-2000 Shared Task website
http://www.cnts.ua.ac.be/conll2000/chunking/.

790



chunklink conversion results in slightly different
shallow parses.

From Table 2 we can see that our shallow parser
is competitive on all three tasks7. Sha and Pereira
(2003) noted that the difference between their per-
ceptron and CRF results was not significant, and
our performance falls between the two, thus repli-
cating their result within noise. Our performance
falls 0.6 percentage points below the best published
result on the CoNLL-2000 task, and 0.5 percentage
points above the performance by Li and Roth (2001)
on their task. Overall, ours is a competitive approach
for shallow parsing.

3 Experimental Results
3.1 Comparing Finite-State and

Context-Free Parsers
The first two rows of Table 3 present a comparison
between the SPRep shallow parser and the Charniak
(2000) context-free parser detailed in Charniak and
Johnson (2005). We can see that the performance
of the two models is virtually indistinguishable for
all three of these tasks, with or without ignoring of
punctuation. As mentioned earlier, we used the ver-
sion of this parser with improvedn-best extraction,
as documented in Charniak and Johnson (2005), al-
though without the reranking of the candidates that
they also report in that paper. For these trials, we
used just the one-best output of that model, which is
the same as in Charniak (2000).

Note that the standard training set for context-free
parsing (sections 2-21) is only used for the Li &
Roth task; for the other two tasks, both the SPRep
and the Charniak parsers were trained on sections
15-18, with section 21 as heldout. This demonstrates
that the context-free parser, even when trained on a
small fraction of the total treebank, is able to learn a
competitive model for this task.

3.2 Combining Finite-State and
Context-Free Parsers

It is likely true that a context-free parser which has
been optimized for global parse accuracy will, on
occasion, lose some shallow parse accuracy to sat-
isfy global structure constraints that do not constrain

7Sha and Pereira (2003) reported the Kudo and Matsumoto
(2001) performance on the NP-Chunking task to be 94.39 and
to be the best reported result on this task. In the cited paper,
however, the result is as reported in our table.

a shallow parser. However, it is also likely true
that these longer distance constraints will on occa-
sion enable the context-free parser to better identify
the shallow constituent structure. In other words,
despite having very similar performance, our shal-
low parser and the Charniak context-free parser are
likely making complementary predictions about the
shallow structure that can be exploited for further
improvements. In this section, we explore two sim-
ple methods for combining the system outputs.

The first combination of the system outputs,
which we callunweighted intersection, is the sim-
plest kind of ‘rovered’ system, which restricts the
set of shallow parse candidates to the intersection
of the sets output by each system, but does not
combine the scores. Since the Viterbi search of
the SPRep model provides a score for all possi-
ble shallow parses, the intersection of the two sets
is simply the set of shallow-parse sequences in the
50-best candidates output by the Charniak parser.
We then use the SPRep perceptron-model scores to
choose from among just these candidates. We con-
verted the 50-best lists returned by the Charniak
parser intok-best lists of shallow parses by using
chunklink to convert each candidate context-free
parse into a shallow parse. Many of the context-free
parses map to the same shallow parse, so the size of
this list is typically much less than 50, with an aver-
age of around 7. Each of the unique shallow-parse
candidates is given a score by the SPRep percep-
tron, and the best-scoring candidate is selected. Ef-
fectively, we used the Charniak parser’sk-best shal-
low parses to limit the search space for our shallow
parser.

The second combination of the system outputs,
which we callweighted intersection, extends the un-
weighted intersection by including the scores from
the Charniak parser, which are log probabilities.
The score for a shallow parse output by the Char-
niak parser is the log of the sum of the probabili-
ties of all context-free parses mapping to that shal-
low parse. We normalize across all candidates for
a given string, hence these are conditional log prob-
abilities. We multiply these conditional log proba-
bilities by a scaling factorα before adding them to
the SPRep perceptron score for a particular candi-
date. Again, the best-scoring candidate using this
composite score is selected from among the shallow

791



NP-Chunking CoNLL-2000 Li & Roth task
Punctuation Punctuation Punctuation

System Leave Ignore Leave Ignore Leave Ignore

SPRep averaged perceptron94.21 94.25 93.54 93.70 95.12 95.27
Charniak (2000) 94.17 94.20 93.77 93.92 95.15 95.32

Unweighted intersection 95.13 95.16 94.52 94.64 95.77 95.92
Weighted intersection 95.57 95.58 95.03 95.16 96.20 96.33

Table 3: F-measure shallow bracketing accuracy on three shallow parsing tasks, for the SPRep perceptron shallow parser, the
Charniak (2000) context-free parser, and for systems combining the SPRep and Charniak system outputs.

parse candidates output by the Charniak parser. We
used the heldout data to empirically estimate an op-
timal scaling factor for the Charniak scores, which
is 15 for all trials reported here. This factor com-
pensates for differences in the dynamic range of the
scores of the two parsers.

Both of these intersections are done at test-time,
i.e. the models are trained independently. To remain
consistent with task-specific training and testing sec-
tion conventions, the individual models were always
trained on the appropriate sections for the given task,
i.e. WSJ sections 15-18 for NP-Chunking and the
CoNLL-2000 tasks, and sections 2-21 for the Li &
Roth task.

Results from these methods of combination are
shown in the bottom two rows of Table 3. Even
the simple unweighted intersection gives quite large
improvements over each of the independent systems
for all three tasks. All of these improvements are
significant atp < 0.001 using the Matched Pair
Sentence Segment test (Gillick and Cox, 1989). The
weighted intersection gives further improvements
over the unweighted intersection for all tasks, and
this improvement is also significant atp < 0.001,
using the same test.

3.3 Robustness to Domain Shift

Our final shallow parsing task was also proposed in
Li and Roth (2001). The purpose of this task was
to examine the degradation in performance when
parsers, trained on one relatively clean domain such
as WSJ, are tested on another, mismatched domain
such as Switchboard. The systems that are reported
in this section are trained on sections 2-21 of the
WSJ Treebank, with section 24 as heldout, and
tested on section 4 of the Switchboard Treebank.
Note that the systems used here are exactly the ones
presented for the original Li & Roth task, in Sec-

Punctuation
System Leave Ignore
Li & Roth (reference tags) 88.47 -
SPRep avg perceptron
Reference tags 91.37 91.86
Brill tags 87.94 88.42

Charniak (2000) 87.94 88.44
Unweighted intersection 88.66 89.16
Weighted intersection 89.22 89.69

Table 4:Shallow bracketing accuracy of several different sys-
tems, trained on sections 2-21 of WSJ Treebank and applied
to section 4 of the Switchboard Treebank. Li and Roth (2001)
results are as reported in their paper, with reference POS tags
rather than Brill-tagger POS tags.

tions 3.1 and 3.2; only the test set has changed, train-
ing and heldout sets remain exactly the same, as do
the mixing parameters for the weighted intersection.
In the trials reported in Li and Roth (2001), both of
the evaluated systems were provided with reference
POS tags from the Switchboard Treebank. In the
current results, we show our SPRep averaged per-
ceptron system provided both with reference POS
tags for comparison with the Li and Roth results,
and provided with Brill-tagger POS tags for com-
parison with other systems. Table 4 shows our re-
sults for this task. Whereas Li and Roth reported
a more marked degradation in performance when
using a context-free parser as compared to a shal-
low parser, we again show virtually indistinguish-
able performance between our SPRep shallow parser
and the Charniak context-free parser. Again, using a
weighted combined model gave us large improve-
ments over each independent model, even in this
mismatched domain.

3.4 Rerankedn-best List

Just prior to the publication of this paper, we were
able to obtain the trained reranker from Charniak

792



WSJ Sect. 00 SWBD Sect. 4
Punctuation Punctuation

System Leave Ignore Leave Ignore
SPRep 95.12 95.27 87.94 88.43
C & J one-best 95.15 95.32 87.94 88.44
(2005) reranked 95.81 96.04 88.64 89.17
Weighted intersection 96.32 96.47 89.32 89.80

Table 5:F-measure shallow bracketing accuracy when trained
on WSJ sections 2-21 and applied to either WSJ section 00 or
SWBD section 4. Systems include our shallow parser (SPRep);
the Charniak and Johnson (2005) system (C & J), both initial
one-best and reranked-best; and the weighted intersection be-
tween the reranked 50-best list and the SPRep system.

and Johnson (2005), which allows a comparison of
the shallow parsing gains that they obtain from that
system with those documented here. The reranker is
a discriminatively trained Maximum Entropy model
with an F-measure parsing accuracy objective. It
uses a large number of features, and is applied to the
50-best output from the generative Charniak parsing
model. The reranking model was trained on sections
2-21, with section 24 used as heldout. This allows us
to compare its shallow parsing accuracy with other
systems on the tasks that use this training setup: the
Li & Roth task (testing on WSJ section 00) and the
domain shift task (testing on Switchboard section
4). Table 5 shows two new trials making use of this
reranking model.

The Charniak and Johnson (2005) system out-
put (denotedC & J in the table) before rerank-
ing (denotedone-best) is identical to the Charniak
(2000) results that have been reported in the other
tables. After reranking (denotedreranked), the per-
formance improves by roughly 0.7 percentage points
for both tasks, nearly reaching the performance
that we obtained with weighted intersection of the
SPRep model and then-best list before reranking.
Weighted intersection between the reranked list and
the shallow parser as described earlier, with a newly
estimated scaling factor (α=30), provides a roughly
0.5 percentage point increase over the result ob-
tained by the reranker. The difference between the
Charniak output before and after reranking is statis-
tically significant atp < 0.001, as is the difference
between the reranked output and the weighted inter-
section, using the same test reported earlier.

3.5 Discussion
While it may be seen to be overkill to apply a
context-free parser for these shallow parsing tasks,

we feel that these results are very interesting for
a couple of reasons. First, they go some way to-
ward correcting the misperception that context-free
parsers are less applicable in real-world scenarios
than finite-state sequence models. Finite-state mod-
els are undeniably more efficient; however, it is
important to have a clear idea of how much ac-
curacy is being sacrificed to reach that efficiency.
Any given application will need to examine the ef-
ficiency/accuracy trade-off with different objectives
for optimality. For those willing to trade efficiency
for accuracy, it is worthwhile knowing that it is pos-
sible to do much better on these tasks than what has
been reported in the past.

4 Conclusion and Future Work

In summary, we have demonstrated in this paper that
there is no accuracy or robustness benefit to shal-
low parsing with finite-state models over using high-
accuracy context-free models. Even more, there is a
large benefit to be had in combining the output of
high-accuracy context-free parsers with the output
of shallow parsers. We have demonstrated a large
improvement over the previous-best reported re-
sults on several tasks, including the well-known NP-
Chunking and CoNLL-2000 shallow parsing tasks.

Part of the misperception of the relative benefits
of finite-state and context-free models is due to dif-
ficulty evaluating across these differing annotation
styles. Mapping from context-free parser output
to the shallow constituents defined in the CoNLL-
2000 task depends on many construction-specific
operations that have unfairly penalized context-free
parsers in previous comparisons.

While the results of combining system outputs
show one benefit of combining systems, as presented
in this paper, they hardly exhaust the possibilities
of exploiting the differences between these models.
Making use of the scores for the shallow parses out-
put by the Charniak parser is a demonstrably ef-
fective way to improve performance. Yet there are
other possible features explicit in the context-free
parse candidates, such as head-to-head dependen-
cies, which might be exploited to further improve
performance. We intend to explore including fea-
tures from the context-free parser output in our per-
ceptron model to improve shallow parsing accuracy.

Another possibility is to look at improving

793



context-free parsing accuracy. Within a multi-pass
parsing strategy, the high-accuracy shallow parses
that result from system combination could be used
to restrict the search within yet another pass of a
context-free parser. That parser could then search
for the best global analysis from within just the
space of parses consistent with the provided shallow
parse. Also, features of the sort used in our shallow
parser could be included in a reranker, such as that
in Charniak and Johnson (2005), with a context-free
parsing accuracy objective.

A third possibility is to optimize the definition of
the shallow-parse phrase types themselves, for use
in other applications. The composition of the set of
phrase types put forth by Sang and Buchholz (2000)
may not be optimal for certain applications. One
such application is discourse parsing, which relies
on accurate detection of clausal boundaries. Shal-
low parsing could provide reliable information on
the location of these boundaries, but the current set
of phrase types may be too general for such use. For
example, consider infinitival verb phrases, which of-
ten indicate the start of a clause whereas other types
of verb phrases do not. Unfortunately, with only one
VP category in the CoNLL-2000 set of phrase types,
this distinction is lost. Expanding the defined set of
phrase types could benefit many applications.

Future work will also include continued explo-
ration of possible features that can be of use for ei-
ther shallow parsing models or context-free parsing
models. In addition, we intend to investigate ways
in which to encode approximations to context-free
parser derived features that can be used within finite-
state models, thus perhaps preserving finite-state ef-
ficiency while capturing at least some of the accu-
racy gain that was observed in this paper.

Acknowledgments

We would like to thank Eugene Charniak and Mark
Johnson for help with the parser and reranker doc-
umented in their paper. The first author of this pa-
per was supported under an NSF Graduate Research
Fellowship. In addition, this research was supported
in part by NSF Grant #IIS-0447214. Any opin-
ions, findings, conclusions or recommendations ex-
pressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF.

References
Steven Abney. 1991. Parsing by chunks. In Robert Berwick,

Steven Abney, and Carol Tenny, editors,Principle-Based
Parsing. Kluwer Academic Publishers, Dordrecht.

Steven Abney. 1996. Partial parsing via finite-state cascades.
Natural Language Engineering, 2(4):337–344.

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.
Computational Linguistics, 30(4).

Eric Brill. 1995. Transformation-based error-driven learning
and natural language processing: A case study in part-of-
speech tagging.Computational Linguistics, 21(4):543–565.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-finen-
best parsing and MaxEnt discriminative reranking. InPro-
ceedings of the 43rd Annual Meeting of ACL.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of the 1st Annual Meeting of NAACL, pages
132–139.

Michael Collins. 1997. Three generative, lexicalised models
for statistical parsing. InProceedings of the 35th Annual
Meeting of ACL, pages 16–23.

Michael Collins. 2000. Discriminative reranking for natural
language parsing. InProceedings of the 17th ICML Confer-
ence.

Michael Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with per-
ceptron algorithms. InProceedings of the Conference on
EMNLP, pages 1–8.

L. Gillick and S. Cox. 1989. Some statistical issues in the com-
parison of speech recognition algorithms. InProceedings of
ICASSP, pages 532–535.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with support
vector machines. InProceedings of the 2nd Annual Meeting
of NAACL.

Xin Li and Dan Roth. 2001. Exploring evidence for shallow
parsing. InProceedings of the 5th Conference on CoNLL.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: The Penn Treebank.Computational Linguistics,
19(2):313–330.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text chunk-
ing using transformation-based learning. InProceedings of
the 3rd Workshop on Very Large Corpora, pages 82–94.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduc-
tion to the CoNLL-2000 shared task: Chunking. InProceed-
ings of the 4th Conference on CoNLL.

Fei Sha and Fernando Pereira. 2003. Shallow parsing with con-
ditional random fields. InProceedings of the HLT-NAACL
Annual Meeting.

Tong Zhang, Fred Damerau, and David Johnson. 2002. Text
chunking based on a generalization of Winnow.Journal of
Machine Learning Research, 2:615–637.

794


