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Abstract

In this paper, we look at comparing high-

accuracy context-free parsers with high-
accuracy finite-state (shallow) parsers on
several shallow parsing tasks. We

show that previously reported compar-

isons greatly under-estimated the perfor-
mance of context-free parsers for these
tasks. We also demonstrate that context-
free parsers can train effectively on rel-

atively little training data, and are more

robust to domain shift for shallow pars-

ing tasks than has been previously re-
ported. Finally, we establish that combin-

ing the output of context-free and finite-

state parsers gives much higher results
than the previous-best published results,
on several common tasks. While the

efficiency benefit of finite-state models

is inarguable, the results presented here
show that the corresponding cost in accu-
racy is higher than previously thought.

Introduction

}@cslu.ogi.edu

claimed both an accuracy and a robustness benefit
versus context-free parsing. The output of a context-
free parser, such as that of Collins (1997) or Char-
niak (2000), can be transformed into a sequence of
shallow constituents for comparison with the output
of a shallow parser. Li and Roth demonstrated that
their shallow parser, trained to label shallow con-
stituents along the lines of the well-known CoNLL-
2000 task (Sang and Buchholz, 2000), outperformed
the Collins parser in correctly identifying these con-
stituents in the Penn Wall Street Journal (WSJ) Tree-
bank (Marcus et al., 1993). They argued that their
superior performance was due to optimizing directly
for the local sequence labeling objective, rather than
for obtaining a hierarchical analysis over the entire
string. They further showed that their shallow parser
trained on the Penn WSJ Treebank did a far better
job of annotating out-of-domain sentences (e.g. con-
versational speech) than the Collins parser.

This paper re-examines the comparison of shal-
low parsers with context-free parsers, beginning
with a critical examination of how their outputs
are compared. We demonstrate that changes to the
conversion routine, which take into account differ-

Finite-state parsing (also called chunking or shalloences between the original treebank trees and the
parsing) has typically been motivated as a fast firstrees output by context-free parsers, eliminate the
pass for — or approximation to — more expensivereviously-reported accuracy differences. Second,
context-free parsing (Abney, 1991; Ramshaw ande show that a convention that is widely accepted
Marcus, 1995; Abney, 1996). For many very-largefor evaluation of context-free parses — ignoring
scale natural language processing tasks (e.g. opgnunctuation when setting the span of a constituent —
domain question answering from the web), contextesults in improved shallow parsing performance by
free parsing may be too expensive, whereas finiteertain context-free parsers across a variety of shal-
state parsing is many orders of magnitude faster atholv parsing tasks. We also demonstrate that context-
can also provide very useful syntactic annotationsee parsers perform competitively when applied to
for large amounts of text. For this reason, finite-stateut-of-domain data. Finally, we show that large im-
parsing (hereafter referred to as shallow parsing) hasovements can be obtained in several shallow pars-
received increasing attention in recent years. ing tasks by using simple strategies to incorporate
In addition to the clear efficiency benefit ofcontext-free parser outputinto shallow parsing mod-
shallow parsing, Li and Roth (2001) have furtheels. Our results demonstrate that a rich context-free
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parsing model is, time permitting, worth applying,® S

even if only shallow parsing output is needed. In
" : ) NP-SBJ-1 VP

addltlon,_ our best resu_lts, which greatly improve on | P

the previous-best published results on several tasks, They ~— are VP

shed light on how much accuracy is sacrificed in N

) o -~ starting S
shallow parsing to get finite-state efficiency.

2 Evaluating Heterogeneous Parser Output NP"SBJ /VP\

Two commonly reported shallow parsing tasks are 'NO‘NE' to VP
Noun-Phrase (NP) Chunking (Ramshaw and Maip) S *1 buy/\NP
cus, 1995) and the CoNLL-2000 Chunking task Py
(Sang and Buchholz, 2000), which extends the NP-NP VP growth  stocks
Chunking task to recognition of 11 phrase types Tk‘ley /\

annotated in the Penn Treebank. Reference shal- ~ 2 VP

low parses for this latter task were derived from _

treebank trees via a conversion script known as starting ‘S

chunklink 2. We follow Li and Roth (2001) in VP
usingchunklink  to also convert trees output by a T
context-free parser into a flat representation of shal- 10 VP

low constituents. Figure 1(a) shows a Penn Tree- buy/\NP
bank tree and Figure 1(c) its corresponding shallow P
parse constituents, according to the CoNLL-2000 growth  stocks

guidelines. Note that consecutive verb phrase (VRY) [NP They] [VP are starting to buy] [NP growth stocks]
nodes result in a single VP shallow constituent. Figure 1:(a) Penn WSJ treebank tree, (b) modified treebank
Just as the original treebank trees are convertede, and (c) CoNLL-2000 style shallow bracketing, all of the
for training shallow parsers, they are also typSame string.
ically modified for training context-free parsers.fortunately, the script was built to be applied to the
This modification includes removal of empty node$riginal treebank trees, complete with empty nodes,
(nodes tagged with “-“NONE-” in the treebank), andvhich are not present in the output of the Collins
removal of function tags on non-terminals; e.g., NpParser, or any well-known context-free parser. The
SBJ (subject NP) and NP-TMP (temporal NP) aréhunklink  script searches for empty nodes in the
both mapped to NP. The output of the context-fre@arse tree to perform some of its operations. In par-
parser is, of course, in the same format as the traificular, any S node that contains an empty subject
ing input, so empty nodes and function tags are n&{P and a VP is reduced to just a VP node, and
present. This type of modified tree is what is show#hen combined with any immediately-preceding VP
in Figure 1(b); note that the original treebank treefodes to create a single VP constituent. If the S
shown in Figure 1(a), had an empty subject NP if#ode does not contain an empty subject NP, as in
the embedded clause which has been removed folgure 1(b), thehunklink  script creates two VP
the modified tree. constituents: [VP are starting] [VP to buy], which
To compare the output of their shallow parserwitﬂ” this case results in a bracketing error. However,
the output of the well-known Collins (1997) parserit is @ simple matter to insert an empty subject NP
Li and Roth applied thechunklink  conversion into unary S-VP productions so that these nodes
script to extract the shallow constituents from thére processed correctly by the script.
output of the Collins parser on WSJ section 00. Un- Various conventions have become standard in
T e ADIP. ADVP. CONIP. INTJ. LST. NP F)pevaluating parser_output over the past de_cad_e. Per-
PRT, SBAR, UCP and VP. Anything not in one of these base aPS 1€ most widely accepted convention is that
phrases is designated as “outside”. of ignoring punctuation for the purposes of assign-
2Downloaded from http://ilk.kub.m{sabine/chunklink/. ing constituent span, under the perspective that, fun-
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Phrase | Evaluation Scenario | above (by removing empty nodes and function
System Type (@) (b) (© tags). Evaluation scenario (a) in Table 1 corre-
“Modified” All 98.37| 99.72| 99.72| sponds to what was used in Li and Roth (2001) fol-
Truth VP 92.14| 98.70| 98.70| lowing CoNLL-2000 guidelines, with the original
Li and Roth All 94.64| - - chunklink  script used to transform the context-
(2001) VP 95.28| - - free parser output into shallow constituents. We
Collins (1997)| All 92.16| 93.42| 94.28| can see from the performance of the modified truth

VP 88.15| 94.31| 94.42| in this scenario that there are serious problems
Charniak All 93.88] 95.15| 95.32| with this conversion, due to the way in which
(2000) VP 88.92| 95.11| 95.19| it handles unary S:VP productions. If we de-

terministically insert empty subject NP nodes for
Table 1:F-measure shallow bracketing accuracy under thre@ll SUCh unary productions prior to the use of the
different evaluation scenarios: (a) baseline, used in Li and Rothunklink  script, which we do in evaluation sce-

(2001), with originalchunklink scrlpt converting treebank Hatrio (b) of Table 1, this repairs the bulk of the

trees and context-free parser output; (b) same as (a), except tha .

empty subject NPs are inserted into every unas\8 produc-  €rrors. Some small number of errors remain, due
tion; and (c) same as (b), '?Ceplt thfat rl)_unctgathior;]iS ignored f¢grgely to the fact that if the S node has been an-
setting constituent span. Results for Li and Roth are report : :

from their paper. The Collins parser is provided with part-of‘-arg'jo'[ated with a funf:tlon tag (e.g. S-PRP, S_'PRD’ S-
speech tags output by the Brill tagger (Brill, 1995). CLR), thenchunklink  will not perform its re-

. . duction operation on that node. However, for our
damentally, constituents are groupings of words

. ) ) ._purposes, this insertion repair sufficiently corrects
Interestingly, this convention was not followed mp P P y

the error to perform meaningful comparisons. Fi-
the CoNLL-2000 task (Sang and Buchholz, 2000) P aning P
?ally, evaluation scenario (c) follows the context-
) ree parsing evaluation convention of ignoring punc-
free parsers, presumably depending on the degree tg P g o . 9 gp
. o i L tuation when assigning constituent span. This af-
which punctuation is moved in training. .
fects some parsers more than others, depending on

2.1 Evaluation Analysis how the parser treats punctuation internally; for

To determine the effects of the conversion routin€x@mple, Bikel (2004) documents that the Collins
and different evaluation conventions, we comparBarSer raises punctuation nodes within the parse
the performance of several different models on on€€: Since ignoring punctuation cannot hurt perfor-
of the tasks presented in Li and Roth (2001). Fofance, only improve it, even the smallest of these
this task, which we label thei & Roth task sec- differences are statistically significant.
tions 2-21 of the Penn WSJ Treebank are used asNote that after inserting empty nodes and ignor-
training data, section 24 is held out, and section 09 punctuation, the accuracy advantage of Li and
is for evaluation. Roth over Collins is reduced to a dead heat. Of
For all trials in this paper, we report F-measurdn€ two parsers we evaluated, the Charniak (2000)

labeled bracketing accuracy, which is the harmonigarser gave the best performance, which is consis-
mean of the labeled precisio®) and labeled recall €Nt With its higher reported performance on the
(R), as they are defined in the widely used PARSECONtext-free parsing task versus other context-free
’ - : . Collins (2 t ki |
VAL metrics; i.e. the F-measure accuracy4st. ~ Parsers Collins (2000) reported a reranking mode
&hat improved his parser output to roughly the same

Table 1 shows baseline results for the Li anI | of harmiak 4 Charniak
Rott? shallow parser, two well-known, high- evel of accuracy as Charniak (2000), and Charnia

accuracy context-free parsers, and the referen@@d thnson (2005) 'report an improvement using
rderankmg over Charniak (2000). For the purposes

(true) parses after being modified as describe . .
of this paper, we needed an available parser that

3We were unable to obtain the exact model used in Li antvas (a) trainable on different subsets of the data to
Roth (2001), and so we use their reported results here. NOE% app“ed to various tasks; and (b) Capable of pro-

that they used reference part-of-speech (POS) tags for their rg- . . . S
sults on this task. All other results reported in this paper, unles,‘iuc'm-:ln'beSt candidates, for potential combination

otherwise noted, were obtained using Brill-tagger POS tags. with a shallow parser. Both the Bikel (2004) imple-
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System NP-Chunking | CoNLL-2000 | Li & Roth task
SPRep averaged perceptron 94.21 93.54 95.12
Kudo and Matsumoto (2001) 94.22 93.91 -
Sha and Pereira (2003) CRF 94.38 - -

Voted perceptror 94.09 - -
Zhang et al. (2002) - 94.17 -
Li and Roth (2001) - 93.02 94.64

Table 2:Baseline results on three shallow parsing tasks: the NP-Chunking task (Ramshaw and Marcus, 1995); the CoNLL-2000
Chunking task (Sang and Buchholz, 2000); and the Li & Roth task (Li and Roth, 2001), which is the same as CoNLL-2000 but
with more training data and a different test section. The results reported in this table include the best published results on each of
these tasks.

mentation of the Collins parser and thebest ver- task, originally introduced in Ramshaw and Marcus
sion of the Charniak (2000) parser, documented i(1995) and also described in (Collins, 2002; Sha and
Charniak and Johnson (2005), fit the requirement®ereira, 2003), brackets just base NP constitdents
Since we observed higher accuracy from the Chai-he CoNLL-2000 task, introduced as a shared task
niak parser, from this point forward we report justat the CoNLL workshop in 2000 (Sang and Buch-
Charniak parser resufts holz, 2000), extends the NP-Chunking task to label
22 Shallow Parser 11 different base phrase constituents. For both of
' " _ these tasks, the training set was sections 15-18 of
In addition tp the trainable-best context-fr_ee Parser ha penn WSJ Treebank and the test set was section
from Charniak (2000), we needed a trainable Shabo. We follow Collins (2002) and Sha and Pereira

low parser to apply to the variety of tasks we were,q3) in ysing section 21 as a heldout set. The third

interested in investigating. To this end, we repl"task, introduced by Li and Roth (2001), performs the

cated the NP-_chun.ker d(_ascribed in Sha and Per%ﬁme labeling as in the CoNLL-2000 task, but with
(2003) and trained it as either an NP-chunker or with, e training data and different testing sets: training

the tagset extended to classify all 11 phrase typgs,s \wsJ sections 2-21 and test was section 00. We

included in the CoNLL-2000 task (Sang and Buchyse section 24 as a heldout set: this section is often

holz, 2000). Our shallow parser uses exactly the fegse a5 heldout for training context-free parsers.

ture set delineated by Sha and Pereira, and |oerformsTraining and testing data for the CoNLL-2000

the decoding process using a Viterbi search with a . . .
gp ga . task is available onliffe For the heldout sets for
second-order Markov assumption as they described.
; . . ach of these tasks, as well as for all data sets
These features include unigram and bigram words )
g ) . needed for the Li & Roth task, reference shallow
up to two positions to either side of the current word . . .
arses were generated using thenklink  script

unigram, bigram, and trigram part-of-speech (Porggn the original treebank trees. All data was tagged

tags up to two positions to either side of the current . . .
9 fjp WO POSIONS ! 1ae Y with the Brill POS tagger (Brill, 1995) after the
word; and unigram, bigram, and trigram shallow ) " )
conversion. We verified that using

constituent tags. We use the averaged perceptron glunklink
' ﬁ]is method on the original treebank trees in sections
5-18 and 20 generated data that is identical to the

gorithm, as presented in Collins (2002), to train tha
parser. See (Sha and Pereira, 2003) for more detd %NLL—ZOOO data sets online. Replacing the POS

on this approach. : : : :
To demonstrate the competitiveness of our baséa_\gs in the input text with Brill POS tags before the

line shallow parser, which we label tt&%PRep av- —— _ ) o
SWe follow Sha and Pereira (2003) in deriving the NP con-

eraged perceptranapIe 2 shows results on thr.eestituents from the CoNLL-2000 data sets, by replacing all non-

different shallow parsing tasks. The NP-ChunkingupP shallow tags with the “outside” (“O”) tag. They mention

- that the resulting shallow parse tags are somewhat different than
“The parser is available for research purposes dhose used by Ramshaw and Marcus (1995), but that they found

ftp://ftp.cs.brown.edu/pub/niparser/ and can be runnin  no significant accuracy differences in training on either set.

best mode. The one-best performance of the parser is the same®Downloaded from the CoNLL-2000 Shared Task website

as what was presented in Charniak (2000). http://www.cnts.ua.ac.be/conll2000/chunking/.
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chunklink  conversion results in slightly different a shallow parser. However, it is also likely true
shallow parses. that these longer distance constraints will on occa-
From Table 2 we can see that our shallow parseion enable the context-free parser to better identify
is competitive on all three tasks Sha and Pereira the shallow constituent structure. In other words,
(2003) noted that the difference between their pedespite having very similar performance, our shal-
ceptron and CRF results was not significant, anlbw parser and the Charniak context-free parser are
our performance falls between the two, thus replilikely making complementary predictions about the
cating their result within noise. Our performanceshallow structure that can be exploited for further
falls 0.6 percentage points below the best publishdéthprovements. In this section, we explore two sim-
result on the CoNLL-2000 task, and 0.5 percentagale methods for combining the system outputs.
points above the performance by Li and Roth (2001) The first combination of the system outputs,
on their task. Overall, ours is a competitive approactvhich we callunweighted intersectigris the sim-
for shallow parsing. plest kind of ‘rovered’ system, which restricts the
set of shallow parse candidates to the intersection
of the sets output by each system, but does not
3.1 Comparing Finite-State and combine the scores. Since the Viterbi search of
Context-Free Parsers the SPRep model provides a score for all possi-
The first two rows of Table 3 present a comparisoRje shallow parses, the intersection of the two sets
between the SPRep shallow parser and the Charni@ksimmy the set of shallow-parse sequences in the
(2000) context-free parser detailed in Charniak angg_pest candidates output by the Charniak parser.
Johnson (2005). We can see that the performangge then use the SPRep perceptron-model scores to
of the two models is virtually indistinguishable for ho0se from among just these candidates. We con-
all three of these tasks, with or without ignoring ofyerted the 50-best lists returned by the Charniak
punctuation. As mentioned earlier, we used the VeFrarser intok-best lists of shallow parses by using
sion of this parser with improved-best extraction, chunkiink  to convert each candidate context-free
as documented in Charniak and Johnson (2005), 8farse into a shallow parse. Many of the context-free
though without the reranking of the candidates thaéarses map to the same shallow parse, so the size of
they also report in that paper. For these trials, Wgjs Jist is typically much less than 50, with an aver-
used just the one-best output of that model, which iége of around 7. Each of the unique shallow-parse
the same as in Charniak (2000). candidates is given a score by the SPRep percep-
Note that the standard training set for context-freﬁon, and the best-scoring candidate is selected. Ef-
parsing (sections 2-21) is only used for the Li &fectively, we used the Charniak parsedebest shal-

Roth task; for the other two tasks, both the SPReyy parses to limit the search space for our shallow
and the Charniak parsers were trained on sectiopgyser.

that the context-free parser, even when trained onghich we callweighted intersectigrextends the un-

small fraction of the total treebank, is able to learn gejghted intersection by including the scores from
competitive model for this task. the Charniak parser, which are log probabilities.
The score for a shallow parse output by the Char-
Context-Free Parsers niak parser is the log of the sum of the probabili-

It is likely true that a context-free parser which ha les of all context-free parses mapping to Fhat shal-
been optimized for global parse accuracy will, o ow parse. We normalize across all candidates for
given string, hence these are conditional log prob-

occasion, lose some shallow parse accuracy to Sgtb'l't' Wi itinly th ditional | b
isfy global structure constraints that do not constraiffoes. Ve multiply these conditional log proba-

bilities by a scaling factorr before adding them to

’Sha and Pereira (2003) reported the Kudo and Matsumo’me SPRep perceptron score for a particular candi-
(2001) performance on the NP-Chunking task to be 94.39 a

n . . . . .
to be the best reported result on this task. In the cited papéﬁi,ate' A_galn, the_ best-scoring candidate using this
however, the result is as reported in our table. composite score is selected from among the shallow

3 Experimental Results

3.2 Combining Finite-State and
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NP-Chunking CONLL-2000 | Li & Roth task

Punctuation Punctuation Punctuation
System Leave | Ignore || Leave | Ignore | Leave | Ignore
SPRep averaged perceptrord4.21 | 94.25 || 93.54 | 93.70 || 95.12 | 95.27
Charniak (2000) 94.17 | 94.20 || 93.77 | 93.92 | 95.15| 95.32
Unweighted intersection | 95.13 | 95.16 || 94.52 | 94.64 | 95.77 | 95.92
Weighted intersection 95.57 | 95.58 || 95.03 | 95.16 | 96.20 | 96.33

Table 3: F-measure shallow bracketing accuracy on three shallow parsing tasks, for the SPRep perceptron shallow parser, the
Charniak (2000) context-free parser, and for systems combining the SPRep and Charniak system outputs.

parse candidates output by the Charniak parser. We Punctuation
used the heldout data to empirically estimate an op-| System Leave | Ignore
timal scaling factor for the Charniak scores, which | Li & Roth (reference tags) 88.47 -

is 15 for all trials reported here. This factor com- | SPRep avg perceptron

pensates for differences in the dynamic range of the| Reference tags 91.37 | 91.86
scores of the two parsers. Brill tags 87.94 | 88.42

Both of these intersections are done at test-time,| Charniak (2000) 87.94 | 88.44
i.e. the models are trained independently. To remain| Unweighted intersection | 88.66 | 89.16
consistent with task-specific training and testing sec-| Weighted intersection 89.22 | 89.69

tion conventions, the individual models were always ble 4

; ; ; ; able 4:Shallow bracketing accuracy of several different sys-
_tramed onthe _approprlate sections for th_e given tas €ms, trained on sections 2-21 of WSJ Treebank and applied
i.e. WSJ sections 15-18 for NP-Chunking and the, section 4 of the Switchboard Treebank. Li and Roth (2001)

CoNLL-2000 tasks, and sections 2-21 for the Li &results are as reported in their paper, with reference POS tags
Roth task rather than Brill-tagger POS tags.

Results from these methods of combination aréons 3.1 and 3.2; only the test set has changed, train-
shown in the bottom two rows of Table 3. Evening and heldout sets remain exactly the same, as do
the simple unweighted intersection gives quite largthe mixing parameters for the weighted intersection.
improvements over each of the independent systeristhe trials reported in Li and Roth (2001), both of
for all three tasks. All of these improvements areéhe evaluated systems were provided with reference
significant atp < 0.001 using the Matched Pair POS tags from the Switchboard Treebank. In the
Sentence Segment test (Gillick and Cox, 1989). Theurrent results, we show our SPRep averaged per-
weighted intersection gives further improvementgeptron system provided both with reference POS
over the unweighted intersection for all tasks, anthgs for comparison with the Li and Roth results,
this improvement is also significantat < 0.001, and provided with Brill-tagger POS tags for com-
using the same test. parison with other systems. Table 4 shows our re-
sults for this task. Whereas Li and Roth reported
a more marked degradation in performance when
Our final shallow parsing task was also proposed igising a context-free parser as compared to a shal-
Li and Roth (2001). The purpose of this task wasow parser, we again show virtually indistinguish-
to examine the degradation in performance whegble performance between our SPRep shallow parser
parsers, trained on one relatively clean domain sughd the Charniak context-free parser. Again, using a
as WSJ, are tested on another, mismatched domaiighted combined model gave us large improve-

such as Switchboard. The systems that are reportafents over each independent model, even in this
in this section are trained on sections 2-21 of thehismatched domain.

WSJ Treebank, with section 24 as heldout, and

tested on section 4 of the Switchboard Treebani-4 Rerankedn-best List

Note that the systems used here are exactly the onsst prior to the publication of this paper, we were
presented for the original Li & Roth task, in Sec-able to obtain the trained reranker from Charniak

3.3 Robustness to Domain Shift
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WSJ Sect. 00 || SWBD Sect. 4 | e feel that these results are very interesting for

Punctuation Punctuation | E First. th i
System Leave | Ignore || Leave | Ignore | & Couple of reasons. First, they go some way to-
SPRep 9512 9527 || 8794 | 8343 | Ward correcting the misperception that context-free
C&J one-best 95.15 | 95.32 || 87.94 | 88.44 | parsers are less applicable in real-world scenarios
(2005) __ reranked 95.81 | 96.04 || 88.64 | 89.17 | than finjte-state sequence models. Finite-state mod-

[Weighted intersection 96.32 | 96.47 [ 89.32 [ 89.80 |

els are undeniably more efficient; however, it is
Table 5:F-measure shallow bracketing accuracy when trainetimportant to have a clear idea of how much ac-

on WSJ sections 2-21 and applied to either WSJ section 00 Ruracy is being sacrificed to reach that efficiency.
SWBD section 4. Systems include our shallow parser (SPRe

pX; . L. . .
the Charniak and Johnson (2005) system (C & J), both initi:}‘in_y given application will ne_ed tQ examme_ the_ ef-
one-best and reranked-best; and the weighted intersection Hegiency/accuracy trade-off with different objectives

tween the reranked 50-best list and the SPRep system. for optimality. For those willing to trade efficiency

and Johnson (2005), which allows a comparison dPr accuracy, itis worthwhile knowing that it is pos-
the shallow parsing gains that they obtain from thagible to do much better on these tasks than what has
system with those documented here. The rerankerlpg€en reported in the past.

a discriminatively trained Maximum Entropy model4

with an F-measure parsing accuracy objective. It o
uses a large number of features, and is applied to tHeSummary, we have demonstrated in this paper that

50-best output from the generative Charniak parsingf€re iS no accuracy or robustness benefit to shal-
model. The reranking model was trained on sectiorl§ Parsing with finite-state models over using high-
2-21, with section 24 used as heldout. This allows ©&CCuracy context-free models. Even more, there is a
to compare its shallow parsing accuracy with othelprge benefit to be had in combining the output of
systems on the tasks that use this training setup: thigh-accuracy context-free parsers with the output
Li & Roth task (testing on WSJ section 00) and thé_’f shallow parsers. We hav<_e demonstrated a large
domain shift task (testing on Switchboard sectioffnProvement over the previous-best reported re-
4). Table 5 shows two new trials making use of thisults on several tasks, including the well-known NP-
reranking model. Chunking and CoNLL-2000 shallow parsing tasks.
The Charniak and Johnson (2005) system out- Part of the misperception of the relative benefits
put (denotedC & J in the table) before rerank- of finite-state and context-free models is due to dif-
ing (denotedone-bestis identical to the Charniak ficulty evaluating across these differing annotation
(2000) results that have been reported in the oth&Y/€S. Mapping from context-free parser output
tables. After reranking (denotedranked, the per- to the shallow constituents defined in the CoNLL-
formance improves by roughly 0.7 percentage poing200 task depends on many construction-specific
for both tasks, nearly reaching the performanc8Perations that_ have unfalrliy penalized context-free
that we obtained with weighted intersection of thd?@'SErS IN Previous comparisons.
SPRep model and the-best list before reranking.  While the results of combining system outputs
Weighted intersection between the reranked list argl'oW one benefit of combining systems, as presented
the shallow parser as described earlier, with a newlj} this paper, they hardly exhaust the possibilities
estimated scaling factor&30), provides a roughly of e>_<pI0|t|ng the differences between these models.
0.5 percentage point increase over the result oplaking use of the_scores for the shallow parses out-
tained by the reranker. The difference between tHHt by the Chamiak parser is a demonstrably ef-
Charniak output before and after reranking is statideCtive way to improve performance. Yet there are
tically significant atp < 0.001, as is the difference other possible features explicit in the context-free
between the reranked output and the weighted intdparse candidates, such as head-to-head dependen-

Conclusion and Future Work

section, using the same test reported earlier. cies, which might be exploited to further improve
performance. We intend to explore including fea-
3.5 Discussion tures from the context-free parser output in our per-

While it may be seen to be overkill to apply aceptron model to improve shallow parsing accuracy.
context-free parser for these shallow parsing tasks, Another possibility is to look at improving
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context-free parsing accuracy. Within a multi-pasfkeferences
parsing strategy, the high-accuracy shallow parsgeven Abney. 1991. Parsing by chunks. In Robert Berwick,
that result from system combination could be used Steven Abney, and Carol Tenny, editoRinciple-Based
to restrict the search within yet another pass of a Parsing Kluwer Academic Publishers, Dordrecht.
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