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Abstract

We introduce BANC, a family of dy-
namic, trainable evaluation metrics for ma-
chine translation. Flexible, parametrized
models can be learned from past data and
automatically optimized to correlate well
with human judgments for different cri-
teria (e.g. adequacy, fluency) using dif-
ferent correlation measures. Towards this
end, we discuss &s (all common skip-
ngrams), a practical algorithm with train-
able parameters that estimates reference-
candidate translation overlap by comput-
ing a weighted sum of all common skip-
ngrams in polynomial time. We show that
the BLEU and ROUGE metric families are
special cases of B\NC, and we compare
correlations with human judgments across
these three metric families. We analyze the
algorithmic complexity of &s and argue
that it is more powerful in modeling both
local meaning and sentence-level structure,
while offering the same practicality as the
established algorithms it generalizes.

Introduction
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the emphasis on adequacy vs. fluency is application-
dependent, automatic evaluation metrics do not dis-
tinguish between the need to optimize correlation
with regard to one or the other.

Machine translation automatic evaluation metrics
face two important challenges: the lack of powerful
features to capture both sentence level structure and
local meaning, and the difficulty of designing good
functions for combining these features into meaning-
ful quality estimation algorithms.

In this paper, we introduce IBNc?, an automatic
MT evaluation metric family that is a generaliza-
tion of popular and successful metric families cur-
rently used in the MT community (B=U, ROUGE, F-
measure etc.). We describe an efficient, polynomial-
time algorithm for B ANC, and show how it can be
optimized to target adequacy, fluency or any other
criterion. We compare our metric’s performance
with traditional and recent automatic evaluation met-
rics. We also describe the parameter conditions under
which BLANC can emulate them.

Throughout the remainder of this paper, we dis-
tinguish between two components of automatic MT
evaluation: thestatistics computed on candidate
and reference translations and thection used in
defining evaluation metrics and generating transla-
tion scores. Commonly used statistics include bag-
of-words overlap, edit distance, longest common sub-

Although recent MT evaluation methods showsequence, ngram overlap, and skip-bigram overlap.
promising correlations to human judgments in termsreferred functions are various combinations of pre-

of adequacy and fluency, there is still considerablgsjon and recall (Soricut and Brill, 2004), including
room for improvement (Culy and Riehemann, 2003).

Most of these studies have been performed at a Sys_lSiﬂce existing evaluation metrics (e.gLBJ, ROUGE) are
tem level and have not investigated metric robus
ness at a lower granularity. Moreover, even thoughnite light contains light of all frequencies

pecial cases of our metric family, it is only natural to naine
road Learning and Adaptation for Numeric CriteriaL@®c) —
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weighted precision and F-measures (Van-Rijsbergesamong translations with the same LCS but different
1979). number of shorter sized subsequences, also indica-
BLANC implements a practical algorithm withtive of overlap. ROUGE-S attempts to correct this
learnable parameters for automatic MT evaluatioproblem by combining the precision/recall of skip-
which estimates the reference-candidate translatibigramsof the reference and candidate translations.
overlap by computing a weighted sum of commohiowever, by using skip-ngrams with n¢,=2, we might
subsequences (also known as skip-ngrams). Cobe able to capture more information encoded in the
mon skip-ngrams are sequences of words in thdiigher level sentence structure. With.Bic, we
sentence order that are found both in the referenpgopose a way to exploit local contiguity in a man-
and candidate translations. By generalizing and sefper similar to BEU and also higher level structure
arating the overlap statistics from the function usegimilar to ROUGE type metrics.
to combine them, and by identifying the latter as a
learnable component, LBNC subsumes the ngram2 Approach

based evaluation metrics as special cases and gl have designed an algorithm that can perform a
better reflect the need of end applications for adg gyerlap search over variable-size, non-contiguous
quacy/fluency tradeoffs . word sequences (skip-ngrams) efficiently. At first
lance, in order to perform this search, one has to
1.1 Related Work grst exhaustively ger?erate all skip-ngrams in the can-
Initial work in evaluating translation quality focuseddidate and reference segments and then assess the
on edit distance-based metrics (Su et al., 1992; Akilmverlap. This approach is highly prohibitive since the
et al., 2001). In the MT context, edit distance (LevAumber of possible sequences is exponential in the
enshtein, 1965) represents the amount of word inseramber of words in the sentence. Our algorithm —
tions, deletions and substitutions necessary to tramses (all common skip-ngrams) — directly constructs
form a candidate translation into a reference tranthe set of overlapping skip-ngrams through incremen-
lation. Another evaluation metric based on edit digal composition of word-level matches. WithcA,
tance is theword Error Rate(Niessen et al., 2000) we can reduce computation complexity to a fifth de-
which computes the normalized edit distanceEB  gree polynomial in the number of words.
is a weighted precision evaluation metric introduced Through the A salgorithm, B.ANC is not limited
by IBM (Papineni et al., 2001). Bzu and its exten- only to counting skip-ngram overlap: the contribu-
sions/variants (e.g. ST (Doddington, 2002)) have tion of different skip-ngrams to the overall score is
become de-facto standards in the MT community arlthsed on a set of features.cAcomputes the over-
are consistently being used for system optimizatiolap between two segments of text and also allows
and tuning. These methods rely on local featurdscal and global features to be computed during the
and do not explicitly capture sentence-level featuresyerlap search. These local and global features are
although implicitly longer n-gram matches are resubsequently used to train evaluation models within
warded in BEU. The General Text Matcher (&) the BLANC family. We introduce below several sim-
(Turian et al., 2003) is another MT evaluation methogle skip-ngram-based features and show that special-
that rewards longer ngrams instead of assigning thezase parameter settings for these features emulate the
equal weight. computation of existing ngram-based metrics. In or-
(Lin and Och, 2004) recently proposed a set dafer to define the relative significance of a particular
metrics (RUGE) for MT evaluation. RUGE-L is a skip-ngram found by the és algorithm, we employ
longest common subsequence (LCS) based automatitexponential model for feature integration.
evaluation metric for MT. The intuition behind it is ) )
that long common subsequences reflect a large ovérl Weighted Skip-Ngrams
lap between a candidate translation and a referendé defineskip-ngramsas sequences afwords taken
translation. RUGEW is also based on LCS, butin sentence order allowing for arbitrary gaps. In algo-
assigns higher weights to sequences that have fewithms literature skip-ngrams are equivalenstipse-
gaps. However, these metrics still do not distinguisquences As special cases, skip-ngrams with n=2 are
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referred to as skip-bigrams and skip-ngrams with nioinctions can be explored and their corresponding pa-
gaps between the words are simplyrams. A sen- rameters learned. The parametedictates the be-
tenceS of size|S| hasC(|S|,n) = % skip- havior of the weighting function. Whea = 0 ¢
ngrams. equalse’ = 1, rendering gap sizes irrelevant. In this
For example, the sentenc&d‘ be or not to behas case, skip-ngrams are given the same weight as con-
C(6,2) = 15 corresponding skip-bigrams includingtiguous ngrams. When is very large approaches
“be of, “to to’, and three occurrences ofd' be. 0 if there are any gaps in the skip-ngram and i$
It also hasC(6,4) = 15 corresponding skip-4gramsthere are no gaps. This setting has the effect of con-

(n = 4) including “to be to be” and “to or not to”.  sidering only contiguous ngrams and discarding all
Consider the following sample reference and caiskip-ngrams with gaps.
didate translations: In the above example, although the skip-ngram

o ated uated ! “machine translated automatically” has the same cu-

Ro:  machine translated text is evaluated automatically ; ; ; ) :

Ki: machine translated stories are chosen automatically mulat|vg gap In b(_)th _IrKl_ and K, the occurrence in

K>: machine and human together can forge a friendship théf1 has is a gap distribution that more closely reflects
cannot be translated into words automatically that of the reference skip-ngram Ry. To model gap

Ks: - machine code is being translated automatically distribution differences between two occurrences of a

skip-ngram, we define a piece-wise distance function

The skip-ngram thachine translated automati—(5 betw W A du. For t
cally” appears in both the referendg and all candi- °XY PEtWeen Wo sentencesandy. or two stcces-
sive words in the skip-ngram, the distance function is

date translations. Arguably, a skip-bigram that con- "
: - defined as:
tains few gaps is likely to capture local structure
or meaning. At the same time, skip-ngrams spread 5
across a sentence are also very useful since they may “*Y
capture part of the high level sentence structure.

We define aweighting feature function for skip-

(w1w2) — e*ﬁ'|GX(w1,wz)*GY(wl,wz)\ (4)

where > 0 is a decay parameter. Intuitively, the

ngrams that estimates how likely they are to captupe parameter is used to reward better aligned skip-

) . .ngrams. Similar to the function, the overalb xy
local meaning and sentence structure. The weightin :
. . . , _ stance between two occurrences of a skip-ngram
function ¢ for a skip-ngramw; ..w, is defined as:

withn > 1is:
o(wy..wy) = e G(wi.wn) )

n—1

dxy (wi.wy,) = H dxy (wiwit1) (5)

wherea > 0 is a decay parameter and «&(.w.,) L
1=

measures the overall gap of the skip-ngram.w,, in

a specific sentence. This overall skip-ngram weigiNote that equation 5 takes into account pairs of skip-
can be decomposed into the weights of its constituefgrams skip in different places by summing over

skip-bigrams: piecewise differences. Finally, using an exponen-
tial model, we assign an overall score to the matched

j— —a-G sy Wn
o(w.w,) = €@ (w_ll o) (2) skip-ngram. The skip-ngram scoring functisp, al-
= e @Xin Glwiwip) lows independent features to be incorporated into the
n—l overall score:

=[] e(wi wisr) ®3)
i=1 Say(Wi.wy) = p(w;..wg) - Oy (w;i..wE)

In equation 3,p(w; wi11) is the number of words M) o pAn (i) (6)

betweenw; andw;, 1 in the sentence. In the example

above, the skip-ngram “machine translated automatthere featured..f, can be functions based on the

ically” has weighte 3 for sentence(; and weight syntax, semantics, lexical or morphological aspects

e~ 12 = 1 for sentences. of the skip-ngram. Note that different models for
In our initial experiments the gaf has been ex- combining skip-ngram features can be used in con-

pressed as a linear function, but different families gtinction with ACS.
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2.2 Multiple References 231 Step 1. Identify All Matches

In BLANC we incorporate multiple references in a In this step we identify all word matchés, z, y)
manner similar to the 8UGE metric family. We in sentences{ andY'. Using the example above, the
compute the precision and recall of each size skipitermediate inputs and outputs of this step are:
ngrams for individual references. Based on these wénput  X. “to be or not to be”

combine the maximum precision and maximum re- Y. “to exist or not be”

call of the candidate translation obtained using allOutput (to,1,1); ¢o,5,1); (or,3,3); be2,5); ...
reference translations and use them to compute an &g €ach match we create a corresponding ndde
gregate F-measure. in a dependency graph. With each node we associate

The F-measure paramete?r is modeled by the actual word matched and its corresponding index
BLANC. In our experiments we optimizegl- indi- Positions in both sentences.
vidually for fluency and adequacy.

2.3.2 Step 2. Generate Dependencies
2.3 TheACSAlgorithm A dependencyN; — N, occurs when the two

We present a practical algorithm for extracting ~corresponding matcheso, 1, y1) and (ws, z2, yo)
Common Skip-ngram@cs) of any size that appear €an form a valid common skip-bigram: i.e. when
in the candidate and reference translations. For cldi+ < #2 andy: < y». Note that the matches can
ity purposes, we present thecA algorithm as it Cover identical words, but their indices cannot be the
relates to the MT problem: find all common skipSame {1 # x2 andy; # y») since a skip-bigram

ngrams (AS) of any size in two sentence§ andY:  requires two different word matches.
In order to facilitate the generation of all common
wSKIP «— Acs(6,p,X,Y) @)

subsequences, the graph is populated with the
= {wSKIP,.wSKIP x|y} (8) appropriate dependency edges:

wherewSkip, is the set of all skip-ngrams of size
and is defined as:

for each node N in DAG
for each node MEN in DAG

wSKIP, = {"w;.w,” |w; € X,w; € Y,Vi € [1..n] if N(X) <M(x) and N(y)<M(y)
andw; < w;,Vi < j € [1.n]} create edge E: NM
Given two sentenceX andY we observe anatch computexy (E)

(w, z,) if word w is found in sentencé&’ at indexz computep(E)
and in sentenc® at indexy:

This step incorporates the concepts of skip-ngram

(w,z,y) ={0<z < |X[,0<y <Y, weight and distance into the graph. With each edge
we Viand X |[z] = Y[y] = w} (9) FE: N; — N, we associate step-wise weight and dis-

whereV is the vocabulary with a finite set of words, {&nce information for the corresponding skip-bigram

In the following subsections, we present the folformed by matchegws, z1, y1) and(ws, x2, ).
lowing steps in the &s algorithm: Note that rather than counting all skip-ngrams,

1. identifv all matches. find match q twhich would be exponential in the worst case sce-
- identify a matches- find matches and generalg, g we only construct a structure of match depen-
corresponding nodes in the dependency graph

. dencies (i.e. skip-bigrams). As in dynamic program-
2. gende_rate depeqdenC|eshcgnstru3t ec_lges aC'ming, in order to avoid exponential complexity, we
cording to pairwise match dependencies compute individual skip-ngram scores only once.
3. propagate common subsequences count

all common skip-ngrams using corresponding.3.3 Step 3. Propagate Common Subsequences

weights and distances In this last step, the &s algorithmcountsall com-

In the following sections we use the following examMon skip-ngrams using corresponding weights and
ple to illustrate the intermediate steps af & distances. In the general case, this step is equiva-
X. “to be or not to be” lent measuring the overlap of the two sentendes

Y. “to exist or not be” andY. As a special case, if no features are used, the
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Acs algorithm is equivalent to counting the numbers the propagation of common subsequences (skip-
of common skip-ngrams regardless of gap sizes. ngram counts). Letbe the size of thé&.C'S. The up-

// depth first search (DFS) per bound on the size of the longest common subse-
for each node N in DAG quence isnin(|X|, |Y|) = min(m,n). In the worst

compute node N’s depth case scenario, for each node we propageteint val-

ues (the size of vectaor) to all other nodes in the

// initialize skip-ngram counts DAG. Therefore, the time complexity for Step 3 is
for each node N in DAG O(M? - 1) = O(m?n?l) (fifth degree polynomial).

VN[l] —1

for i=2 to LCS(X,Y) 3 BLANC asa Generalization of BLEU and

vn[i]=0 ROUGE

Due to its parametric nature, the All Common Sub-
sequences algorithm can emulate the ngram compu-
tation of several popular MT evaluation metrics. The
weighting functiony allows skip-ngrams with differ-

ent gap sizes to be assigned different weights. Param-
etera controls the shape of the weighting function.

In one extreme scenario, if we allow to take
very large values, the net effect is that all contiguous
ngrams of any size will have corresponding weights
of e = 1 while all other skip-ngrams will have
weights that are zero. In this case, the distance
function will only apply to contiguous ngrams which
have the same size and no gaps. Therefore, the dis-
tance function will also bd. The overall result is
that the Acs algorithm collects contiguous common
2.34 AcsComplexity and Feasibility ngram counts for all ngram sizes. This is equivalent

In the worst case scenario, both senten€endY” to computing the ngram overlap between two sen-
are composed of exactly the same repeated ward: tences, which is equivalent to the ngram computa-
=“wwww."andY ="wwww.”. Weletm = |X| tion performed BEU metric. In addition to comput-
andn = |Y|. In this case, the number of matches igng ngram overlap, BEu incorporates a thresholding
M = n-m. Therefore, Step 1 has worst case timéclipping) on ngram counts based on reference trans-
and space complexity aD(m - n). However, em- lations, as well as a brevity penalty which makes sure
pirical data suggest that there are far fewer matché® machine-produced translations are not too short.
than in the worst-case scenario and the actual spdoeBLANC, this is replaced by standard F-measure,
requirements are drastically reduced. Even in thehich research (Turian et al., 2003) has shown it can
worst-case scenario, if we assume the average sée-used successfully in MT evaluation.
tences is fewer thah00 words, the number of nodes Another scenario consists of setting theand 3
in the DAG would only bel0,000. Step 2 of the al- parameters t0. In this case, all skip-ngrams are as-
gorithm consists of creating edges in the dependensigned the same weight value dfand skip-ngram
graph. In the worst case scenario, the number of diratches are also assigned the same distance value of
rected edges i®)(M?) and furthermore if the sen- 1 regardless of gap sizes and differences in gap sizes.
tences are uniformly composed of the same repeat&tis renders all skip-ngrams equivalent and thesA
word as seen above, the worst-case time and spadgorithm is reduced to counting tekip-ngram over-
complexity ism(m+1)/2-n(n+1)/2 = O(m?n?). lap between two sentences. Using these counts, pre-
In Step 3 of the algorithm, the DFS complexity forcision and recall-based metrics such as the F-measure
computing of node depths (M) and the complex- can be computed. If we let theand s parameters to
ity of LCS(X,Y) is O(m - n). The dominant step be zero, disregard redundant matches, and compute

// compute ngram counts
for d=1 to MAXDEPTH
for each node N of depth d in DAG
for each edge E: N:M
fori=2tod

Var[i] += Say(O(E), p(E), v [i-1])

After algorithm Acs is run, the number of skip-
ngrams (weighted skip-ngram score) of sizis sim-
ply the sum of the number of skip-ngrams of size
ending in each nod&’s corresponding match:

wSKIP, = Y ww,[K] (10)
N;EDAG
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Figure 1:Empirical and theoretical behavior ofc& on 2003 machine translation evaluation data (semilog scale

the Acsonly for skip-ngrams of siz, the Acsalgo- the parametera to reward tighter skip-ngrams amd
rithm is equivalent to the ®UGE-S metric (Lin and to assign a very high score to similar size gaps. In-
Och, 2004). This case represents a specific parameigtively, « is used to reward skip-ngrams that have
setting in the A& s skip-ngram computation. smaller gaps, whil@ is used to reward better aligned
The longest common subsequence statistic has aap-ngram overlap.
been successfully used for automatic machine trans- . )
lation evaluation in the BUGE-L (Lin and Och, Scalability & Data Exploration
2004) algorithm. In BANC, if we set botha and |, Figure 1 we show theoretical and empirical prac-
[ parameters to zero, the net result is a set of skigzal pehavior for the ACS algorithm on the 2003
bigram (common subsequence) overlap counts for §llpgs machine translation evaluation data for Ara-
skip-bigram sizes. Although dynamic programmingic and Chinese. Sentence length distribution is
or suffix trees can be used to compute the LCS muelymewnhat similar for the two languages — only a very
faster, under this parameter setting thes®lgorithm 411 amount of text segments have more than 50
can also produce the longest common subsequencg;kens. We show the @s graph size in the worst
case scenario, and the empirical average number of
LOS(X,Y) « arg nax ACS(wSKIP;) >0 matches for both languages as a function of sentence
length. We also show (on a log scale) the upper bound
where Acs(wSKIP;) is the number of common on time/space complexity in terms of total number
skip-ngrams (common subsequences) produced bfy feature computations. Even though the worst-
the Acsalgorithm. case scenario is tractable (polynomial), the empirical
RouGE-W (Lin and Och, 2004) relies on aamount of computation is considerably smaller in the
weighted version of the longest common subsderm of polynomials of lower degree. In Figure 1,
guence, under which longer contiguous subsequeneaEtence length is the average between reference and
are assigned a higher weight than subsequences ttatdidate lengths.
incorporate gaps. ®RUGE-W uses the polynomial Finally, we also show the total number of fea-
function ¢ in the weighted LCS computation. Thisture computations involved in performing a full over-
setting can also be simulated by &\uc by adjusting lap search and computing a numeric score for the
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reference-candidate translation pair. We have exper-We compare (Table 1) the performance afaBiC
imented with the ACS algorithm using a worst-casen Arabic translation output with the performance
scenario where all words are exactly the same forad more established evaluation metricsLER® and
fifty words reference translation and candidate trandisT, and also with more recent metrics:ORGE-
lation. In practice when considering real sentencdsand ROUGE-S (using an unlimited size skip win-
the number of matches is very small. In this settingiow), which have been shown to correlate well with
the algorithm takes less than two seconds on a lolwuman judgments at system level — as confirmed by
end desktop system when working on the worst caseir results. We have performed experiments in which
scenario, and less then a second for all candidatease information is preserved as well as experiments
reference pairs in the TIDES 2003 dataset. This rédat ignore case information. Since the results are
sult renders the ACS algorithm very practical for auvery similar, we only show here experiments under

tomatic MT evaluation. the former condition. In order to maintain consis-
_ tency, when using any metric we apply the same pre-
5 Experiments & Results processing provided by the MTEval script. When

computing the correlation between metrics and hu-

In the dynamic metric BANC, we have implemented . : "
. i . man judgments, we only keep strictly positive scores.
the Acs algorithm using several parameters includ-, " > .
ing the aggregate gap sizethe displacement feature hile this is not fully equivalent to BEU smooth-
ing, it partially mitigates the same problem of zero

, @ parameter for regulating skip-ngram size contri-
gutiorr: and the F-megsu . %ararpne?er count ngrams for short sentences. In future work we

) ) lan to implement smoothing for all metrics, includ-
Until recently, most experiments that evaluate atlf;] g BLANCp g ’

tomatic metrics correlation to human judgments have .
juag We train BLANC separately for adequacy and flu-

been performed at a system level. In such experi-
. ency, as well as for system level and segment level
ments, human judgments are aggregated across sen-"" " . .
correlation with human judgments. Tha.BNC pa-
tences for each MT system and compared to aggre- ] A . .
. . L rameters are currently trained using a simple hill-
gate scores for automatic metrics. While high scor-

ing metrics in this setting are useful for understand:-“mIOIng procedure and using several starting points

) ) In order to decrease the chance of reaching a local
ing relative system performance, not all of them arren aximum

robust enough for evaluating the quality of machine .
g g . y BLANC proves to be robust across criteria and

translation output at a lower granularity. Sentence- . .
: : O pranularlty levels. As expected, different parameter
level translation quality estimation is very usefu

when MT is used as a component in a pipeline of tex}/_alues of BANC optimize different criteria (e.g. ad-

: - . . equacy and fluency). We have observed that train-
processing applications (e.g. question answermq

The fact that current automatic MT evaluation met\;vgr dBL/:NC ”for fgequ;cy rre;utltstrmin?;oriet fb Ira?I to-
rics including B.ANC do not correlate well with hu- ards recall »=3) compared to training it for flu

. ency (Br=2). This confirms our intuition that a dy-
man judgments at the sentence level, does not mean™. . N, .
. : namic, parametric metric is justified for automatic
we should ignore this need and focus only on system .
- evaluation.

level evaluation. On the contrary, further research I$

required to improve thes_e metrlgg. Due to its traify  conclusions & Future Work

able nature, and by allowing additional features to be

incorporated into its model, IB\NC has the potential In previous sections we have defined simple distance

to address this issue. functions. More complex functions can also be incor-
For comparison purposes with previous literaturggorated in ACS. Skip-ngrams in the candidate sen-

we have also performed experiments at system lewehce might be rewarded if they contain fewer gaps in

for Arabic. The datasets used consist of the MT tranfhie candidate sentence and penalized if they contain

lation outputs from all systems available through theore. Different distance functions could also be used

Tides 2003 evaluation (663 sentences) for training Acs, including functions based on surface-form

and Tides 2004 evaluation (1353 sentences) for tefatures and part-of-speech features.

ing. Most of the established MT evaluation methods are
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Tides 2003 Arabic Tides 2004 Arabic

System Level Segment Level System Level Segment Level
Method Adequacy | Fluency | Adequacy | Fluency Method Adequacy | Fluency | Adequacy | Fluency
BLEU 0.950 | 0.934 | 0.382 | 0.286 BLEU 0.978 | 0.994 | 0.446 | 0.337
NIST 0.962 | 0.939 | 0.439 | 0.304 NIST 0.987 0.952 | 0.529 | 0.358
ROUGE-L 0.974 | 0.926 | 0.440 | 0.328 ROUGE-L 0.981 | 0.985| 0.538 | 0.412
ROUGE-S | 0.949 | 0.935| 0.360 | 0.328 RouGE-S | 0.937 | 0.980 | 0.367 | 0.408
BLANC 0.988 0.979 0.492 0.391 BLANC 0.982 | 0.994 0.565 0.438

Table 1:Pearson correlation of several metrics with human judgsmansystem level and segment level for fluency and adequacy.

static functions according to which automatic evaludal optimization criteria and correlation functions.
ation scores are computed. In this paper, we haveWe plan to make available an implementation of
laid the foundation for a more flexible, parametric apBLANC at http://www.cs.cmu.edu/ llita/blanc
proach that can be trained using existing MT data and
that can be optimized for highest agreement with hu-
man assessors, for different criteria.
We have introduceddC'S, a practical algorithm Y. Akiba, K. lamamurfa, and E. Sumita. 2001. Using
with learnable parameters for automatic MT evalu- multiple edit distances to automatically rank machine
. . translation outputMT Summit VI
ation and showed that ngram computation of popu-
lar evaluation methods can be emulated through di. Culy and S.Z. Riehemann. 2003. The limits of n-
ferent parameters byt C'S. We have computed time ~ gram translation evaluation metricklachine Transla-
and space bounds for th&”'S algorithm and argued tion Summit X
that while it is more powerful in modeling local andGeorge Doddington. 2002. Automatic evaluation of ma-
sentence structure, it offers the same practicality aschine translation quality using n-gram co-occurrence
established algorithms statistics. Human Language Technology Conference
. ' . HLT).
In our experiments, we trained and testedARC (HLT)
on data from consecutive years, and therefore tai-. Levenzhtleih- 1965. Binary nges CaD%NEl 0; cor-
: : : : recting deletions, insertions, and reversa®oklady
!ored the metric for two dlfferent_operatlng points Akademii Nauk SSSR
in MT system performance. In this paper we show
that BLANC correlates well with human performanceC.Y. Lin and F.J. Och. 2004. Automatic evaluation of
when trained on previous year data for both sentenceMachine transation quality using longest common sub-
and system level sequence and skip bigram statistié<L.
In the future, we plan to investigate the stabilityS. Niessen, F.J. Och, G. Leusch, and H. Ney. 2000. An
and performance of BsNC and also apply it to auto- evaluation tool for machine translation: Fast evaluation
. . . .. formt researchLREC
matic summarization evaluation. We plan to optimize
the BLANC parameters for different criteria in addi-K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2001.
tion to incorporating syntactic and semantic features Bleu: a method for automatic evaluation of machine
(e.g. ngrams, word classes, part-of-speech). translation.IlBM Research Repart
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