
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 620–627, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Accurate Function Parsing

Paola Merlo
Department of Linguistics

University of Geneva
1204 Geneva
Switzerland

merlo@lettres.unige.ch

Gabriele Musillo
Depts of Linguistics and Computer Science

University of Geneva
1204 Geneva
Switzerland

musillo4@etu.unige.ch

Abstract

In this paper, we extend an existing parser
to produce richer output annotated with
function labels. We obtain state-of-the-art
results both in function labelling and in
parsing, by automatically relabelling the
Penn Treebank trees. In particular, we ob-
tain the best published results on seman-
tic function labels. This suggests that cur-
rent statistical parsing methods are suffi-
ciently general to produce accurate shal-
low semantic annotation.

1 Introduction

With recent advances in speech recognition, parsing,
and information extraction, some domain-specific
interactive systems are now of practical use for
tasks such as question-answering, flight booking, or
restaurant reservation (Stallard, 2000). One of the
challenges ahead lies in moving from hand-crafted
programs of limited scope to robust systems inde-
pendent of a given domain. While this ambitious
goal will remain in the future for some time to come,
recent efforts to develop language processing sys-
tems producing richer semantic outputs will likely
be the cornerstone of many successful developments
in natural language understanding.

In this paper, we present a parser that outputs la-
bels indicating the syntactic or semantic function of
a constituent in the tree, such asNP-SBJ or PP-TMP

shown in bold face in the tree in Figure 1. These
labels indicate that the NP is the subject of the sen-
tence and that the PP conveys temporal information.
(Labels in parentheses will be explained later in the
paper.) Output annotated with such informative la-
bels underlies all domain-independent question an-

S

����
��

HHH
HHH

NP-SBJ
��� PPP
the authority

VP

���������

�
�

�

@
@

@

PPPPPPPPP

VBD

dropped

PP-TMP
�� HH

IN(TMP)

at

NP

NN

midnight

NP-TMP

NNP(TMP)

Tuesday

PP-DIR
�� HH

TO(DIR)

to

NP

QP
��� PPP
$ 2.8 trillion

Figure 1: A sample syntactic structure with function
labels.

swering (Jijkoun et al., 2004) or shallow semantic
interpretation systems (Collins and Miller, 1998; Ge
and Mooney, 2005). We test the hypothesis that a
current statistical parser can output such richer in-
formation without any degradation of the parser’s
accuracy on the original parsing task. Briefly, our
method consists in augmenting a state-of-the-art sta-
tistical parser (Henderson, 2003), whose architec-
ture and properties make it particularly adaptive to
new tasks. We achieve state-of-the-art results both
for parsing and function labelling.

Statistical parsers trained on the Penn Treebank
(PTB) (Marcus et al., 1993) produce trees annotated
with bare phrase structure labels (Collins, 1999;
Charniak, 2000). The trees of the Penn Treebank,
however, are also decorated with function labels.
Figure 1 shows the simplified tree representation
with function labels for a sample sentence from
the Penn Treebank corpus (section 00)The Gov-
ernment’s borrowing authority dropped at midnight
Tuesday to 2.8 trillion from 2.87 trillion. Table 1
illustrates the complete list of function labels in the
Penn Treebank. Unlike phrase structure labels, func-

620



Syntactic Labels Semantic Labels
DTV dative ADV adverbial
LGS logical subject BNF benefactive
PRD predicate DIR direction
PUT compl ofput EXT extent
SBJ surface subject LOC locative
VOC vocative MNR manner

Miscellaneous Labels NOM nominal
CLF it-cleft PRP purpose or reason
HLN headline TMP temporal
TTL title Topic Labels
CLR closely related TPC topicalized

Table 1: Complete set of function labels in the Penn
Treebank.

tion labels are context-dependent and encode a shal-
low level of phrasal and lexical semantics, as ob-
served first in (Blaheta and Charniak, 2000).1 To a
large extent, they overlap with semantic role labels
as defined in PropBank (Palmer et al., 2005).

Current statistical parsers do not use this richer
information because performance of the parser usu-
ally decreases considerably, since a more complex
task is being solved. (Klein and Manning, 2003),
for instance report a reduction in parsing accuracy
of an unlexicalised PCFG from 77.8% to 72.9% if
using function labels in training. (Blaheta, 2004)
also reports a decrease in performance when at-
tempting to integrate his function labelling system
with a full parser. Conversely, researchers interested
in producing richer semantic outputs have concen-
trated on two-stage systems, where the semantic la-
belling task is performed on the output of a parser,
in a pipeline architecture divided in several stages
(Gildea and Jurafsky, 2002). See also the common
task of (CoNLL, 2004 2005; Senseval, 2004).

Our approach maintains state-of-the-art results in
parsing, while also reaching state-of-the-art results
in function labelling, by suitably extending a Sim-
ple Synchrony Network (SSN) parser (Henderson,
2003) into a single integrated system. This is an
interesting result, as a task combining function la-
belling and parsing is more complex than simple
parsing. While the function of a constituent and its
structural position are often correlated, they some-

1(Blaheta and Charniak, 2000) talk of functiontags. We will
instead use the term functionlabel, to indicate function identi-
fiers, as they can decorate any node in the tree. We keep the
word tag to indicate only those labels that decorate preterminal
nodes in a tree – part-of-speech tags– as is standard use.

times diverge. For example, some nominal temporal
modifiers occupy an object position without being
objects, likeTuesdayin the tree above. Moreover,
given current limited availability of annotated tree
banks, this more complex task will have to be solved
with the same overall amount of data, aggravating
the difficulty of estimating the model’s parameters
due to sparse data.

2 Method

Successfully addressing function parsing requires
accurate parsing models and training data. Under-
standing the causes and the relevance of the ob-
served results requires appropriate evaluation mea-
sures. In this section, we describe the methodology
that will be used to assess our main hypothesis.

2.1 The Basic Parsing Architecture

Our main hypothesis says that function labels can
be successfully and automatically recovered while
parsing, without affecting negatively the perfor-
mance of the parser. It is possible that attempting
to solve the function labelling and the parsing prob-
lem at the same time would require modifying ex-
isting parsing models, since their underlying inde-
pendence assumptions might no longer hold. More-
over, many more parameters are to be estimated. It is
therefore important to choose a statistical parser that
can model our augmented labelling problem. We use
a family of statistical parsers, the Simple Synchrony
Network (SSN) parsers (Henderson, 2003), which
crucially do not make any explicit independence as-
sumptions, and learn to smooth across rare feature
combinations. They are therefore likely to adapt
without much modification to the current problem.
This architecture has shown state-of-the-art perfor-
mance and is very adaptive to properties of the in-
put.

The architecture of an SSN parser comprises two
components, one which estimates the parameters
of a stochastic model for syntactic trees, and one
which searches for the most probable syntactic tree
given the parameter estimates. As with many other
statistical parsers (Collins, 1999; Charniak, 2000),
the model of parsing is history-based. Its events
are derivation moves. The set of well-formed se-
quences of derivation moves in this parser is defined

621



by a Predictive LR pushdown automaton (Nederhof,
1994), which implements a form of left-corner pars-
ing strategy.2

The probability of a phrase-structure tree is
equated to the probability of a finite (but unbounded)
sequence of derivation moves. To bound the number
of parameters, standard history-based models par-
tition the set of prefixes of well-formed sequences
of transitions into equivalence classes. While such
a partition makes the problem of searching for the
most probable parse polynomial, it introduces hard
independence assumptions: a derivation move only
depends on the equivalence class to which its history
belongs. SSN parsers, on the other hand, do not state
any explicit independence assumptions: they induce
a finite history representation of an unbounded se-
quence of moves, so that the representation of a
movei− 1 is included in the inputs to the represen-
tion of the next movei, as explained in more detail
in (Henderson, 2003). SSN parsers only impose soft
inductive biases to capture relevant properties of the
derivation, thereby exhibiting adaptivity to the in-
put. The art of designing SSN parsers consists in
selecting and introducing such biases. To this end, it
is sufficient to specify features that extract some in-
formation relevant to the next derivation move from
previous ones, or some set of nodes that are struc-
turally local to the node on top of the stack. These
features and these nodes are input to the compu-
tation of a hidden history representation of the se-
quence of previous derivation moves. Given the hid-
den representation of a derivation, a log-linear distri-
bution over possible next moves is computed. Thus,
the setD of structurally local nodes and the setf of
predefined features determine the inductive bias of
an SSN system. Unless stated otherwise, for each
of the experiments reported here, the setD that is
input to the computation of the history representa-
tion of the derivation movesd1, . . . , di−1 includes
the following nodes:topi, the node on top of the
pushdown stack before theith move; the left-corner
ancestor oftopi; the leftmost child oftopi; and the
most recent child oftopi, if any. The set of fea-
turesf includes the last move in the derivation, the
label or tag oftopi, the tag-word pair of the most re-

2The derivation moves include: projecting a constituent with
a specified label, attaching one constituent to another, and shift-
ing a tag-word pair onto the pushdown stack.

cently shifted word, the leftmost tag-word pair that
topi dominates.

2.2 The Set of Function Labels

The bracketting guidelines for the Penn Treebank II
list 20 function labels, shown in Table 1 (Bies et al.,
1995). Based on their description in the Penn Tree-
bank guidelines, we partition the set of function la-
bels into four classes, as indicated in the table. Fol-
lowing (Blaheta and Charniak, 2000), we refer to the
first class as syntactic function labels, and to the sec-
ond class as semantic function labels. In the rest
of the paper, we will ignore the other two classes,
for they do not intersect with PropBank labels, and
they do not form natural classes. Like previous work
(Blaheta and Charniak, 2000), we complete the sets
of syntactic and semantic labels by labelling con-
stituents that do not bear any function label with a
NULL label.3

2.3 Evaluation

To evaluate the performance of our function pars-
ing experiments, we will use several measures. First
of all, we apply the standard Parseval measures of
labelled recall and precision to a parser whose train-
ing data contains the Penn Treebank function labels,
to assess how well we solve the standard phrase
structure parsing problem. We call these figures
FLABEL-less figures in the tables below and we will
call the task the (simple) parsing task in the rest of
the paper. Second, we measure the accuracy of this
parser with an extension of the Parseval measures
of labelled precision and recall applied to the set of
complex labels —the phrase structure non-terminals
augmented with function labels— to evaluate how
well the parser solves this complex parsing prob-
lem. These are the FLABEL figures in the tables be-
low. We call this task the function parsing task. Fi-
nally, we also assess function labelling performance
on its own. Note that the maximal precision or recall
score of function labelling is strictly smaller than
one-hundred percent if the precision or the recall of

3Strictly speaking, this label corresponds to twoNULL la-
bels: SYN-NULL and SEM-NULL . A node bearing theSYN-
NULL label is a node that does not bear any other syntactic label.
Analogously, theSEM-NULL label completes the set of semantic
labels. Note that both theSYN-NULL label and theSEM-NULL
are necessary, since both a syntactic and a semantic label can
label a given constituent.

622



ASSIGNEDLABELS

ADV BNF DIR EXT LOC MNR NOM PRP TMP SEM-NULL SUM

ADV 143 0 0 0 0 0 0 1 3 11 158
BNF 0 0 0 0 0 0 0 0 0 1 1
DIR 0 0 39 0 3 4 0 0 1 51 98
EXT 0 0 0 37 0 0 0 0 0 17 54

ACTUAL LOC 0 0 1 0 345 3 0 0 15 148 512
LABELS MNR 0 0 0 0 3 35 0 0 16 40 94

NOM 2 0 0 0 0 0 88 0 0 4 94
PRP 0 0 0 0 0 0 0 54 1 33 88
TMP 18 0 1 0 24 11 0 1 479 105 639
SEM-NULL 12 0 13 5 81 28 12 24 97 2029220564
SUM 175 0 54 42 456 81 100 80 612 2070222302

Table 2: Confusion matrix for simple baseline model, tested on the validation set (section 24 of PTB).

the parser is less than one-hundred percent. Follow-
ing (Blaheta and Charniak, 2000), incorrectly parsed
constituents will be ignored (roughly 11% of the to-
tal) in the evaluation of the precision and recall of
the function labels, but not in the evaluation of the
parser. Of the correctly parsed constituents, some
bear function labels, but the overwhelming majority
do not bear any label, or rather, in our notation, they
bear aNULL label. To avoid calculating excessively
optimistic scores, constituents bearing theNULL la-
bel are not taken into consideration for computing
overall recall and precision figures.NULL -labelled
constituents are only needed to calculate the preci-
sion and recall of other function labels. (In other
words,NULL -labelled constituents never contribute
to the numerators of our calculations.) For exam-
ple, consider the confusion matrixM in Table 2,
which reports scores for the semantic labels recov-
ered by the baseline model described below. Preci-

sion is computed as

∑
i∈{ADV ···TMP} M [i,i]∑

j∈{ADV ···TMP} M [SUM,j]
. Re-

call is computed analogously. Notice thatM [n, n],
that is the[SEM-NULL ,SEM-NULL ] cell in the matrix, is
never taken into account.

3 Learning Function Labels

In order to assess the complexity of the task of pre-
dicting function labels while parsing, we run first the
SSN on the function parsing task, without modifica-
tions to the parser. The confusion matrix for seman-
tic function labels of this simple baseline model is
illustrated in Table 2.

It is apparent that the baseline model’s largest
cause of error is confusion between the labels and

theNULL label. These misclassfications affect recall
in particular. Consider, for example, theMNR label,
where 40 out of 94 occurrences are not given a func-
tion label. We add two augmentations to the parser
to alleviate this problem.

The simple baseline parser treatsNULL labels like
other labels, and it does not distinguish subtypes of
NULL labels. Our first augmentation of the parser
is designed to discriminate among constituents with
theseNULL labels. We hypothesize that the label
NULL (ie. SYN-NULL andSEM-NULL ) is a mixture
of types, which will be more accurately learnt sepa-
rately. If the labelNULL is learnt more precisely, the
recall of the other labels will increase. TheNULL

label in the training set was automatically split into
the mutually exclusive labelsCLR, OBJ andOTHER.
Constituents were assigned theOBJ label according
to the conditions stated in (Collins, 1999).4

Another striking property of the simple baseline
function parser is that the SSN tends to projectNULL

labels more than any other label. Since SSNs de-
cide the label of a non-terminal at projection, this
behaviour indicates that the parser does not have
enough information at this point in the parse to
project the correct function label. We hypothesize
that finer-grained labelling will improve parsing per-
formance. This observation is consistent with results
reported in (Klein and Manning, 2003), who showed
that part-of-speech tags occurring in the Treebank
are not fine-grained enough to discriminate between

4Roughly, anOBJ non-terminal is an NP, SBAR or S whose
parent is an S, VP or SBAR. Any such non-terminal must not
bear either syntactic or semantic function labels, or theCLR la-
bel. In addition, the first child following the head of a PP is
marked with theOBJ label.

623



preterminals. For example, the tagTO labels both
the prepositionto and the infinitival marker. Extend-
ing (Klein and Manning, 2003)’s technique to func-
tion labelling, we split some part-of-speech tags into
tags marked with semantic function labels. More
precisely, we concentrate on the function labelsDIR,
LOC, MNR, PRPor TMP, which appear to cause the
most trouble to the parser, as illustrated in Table 2.

The label attached to a non-terminal was propa-
gated down to the pre-terminal tag of its head. The
labels in parentheses in Figure 1 illustrate the effect
of this lowering of the labels. The goal of this tag-
splitting is to indicate more clearly to the parser what
kind of label to project on reading a word-tag pair in
the input. To this end, re-labelling is applied only if
the non-terminal dominates the pre-terminal imme-
diately. This constraint guarantees that only those
non-terminals that are actual projections of the pre-
terminal are affected by this tag-splitting method.
Linguistically, we are trying to capture the notion
of maximal projection.5 This augmented model has
a total of 188 non-terminals to represent labels of
constituents, instead of the 33 of the original SSN
parser. As a result of lowering the five function la-
bels, 83 new part-of-speech tags were introduced to
partition the original tagset of the Treebank. There
are 819 tag-word pairs in this model, while the orig-
inal SSN parser has a vocabulary size of 508 tag-
word pairs. These augmented tags as well as the
155 new non-terminals are included in the setf of
features input to parsing decisions as described in
section 2.1.

SSN parsers do not tag their input sentences. To
provide the augmented model with tagged input sen-
tences, we trained an SVM tagger whose features
and parameters are described in detail in (Gimenez
and Marquez, 2004). Trained on section 2-21, the
tagger reaches a performance of 95.8% on the test
set (section 23) of the PTB using our new tag set.

4 Experiments

In this section, we report the results of the exper-
iments testing hypotheses concerning our function
parser. All SSN function parsers were trained on

5This condition was relaxed in a few cases to
capture constructs such as coordinatedPPs (e.g.
[PP-LOC[PP[INat] . . .][CCand][PP[IN in] . . .] . . .] or infini-
tival clauses (e.g.[S-PRP[VP[TOto][VP[VB . . .] . . .] . . .]).

FLABEL FLABEL-less
F R P F R P

Validation Set
Base 83.4 82.8 83.9 87.7 87.1 88.2
Aug 84.6 84.0 85.2 88.1 87.5 88.7

Test Set
Aug 86.1 85.8 86.5 88.9 88.6 89.3
H03 88.6 88.3 88.9

Table 3: Percentage F-measure (F), recall (R), and
precision (P) of the SSN baseline (Base) and aug-
mented (Aug) parsers. H03 indicates the model il-
lustrated in (Henderson, 2003).

sections 2-21 from the Penn Treebank, validated on
section 24, and tested on section 23. All models are
trained on parse trees whose labels include function
labels. Both results taking function labels into ac-
count (FLABEL) and results not taking them into
account (FLABEL-less) are reported. All our mod-
els, as well as the parser described in (Henderson,
2003), are run only once.6 These results are re-
ported in Table 3.

Our hypothesis states that we can perform func-
tion labelling and parsing at the same time, without
loss in parsing performance. For this to be an inter-
esting statement, we need to show that function la-
belling is not a straightforward extension of simple
parsing. If simple parsing could be easily applied to
function parsing, we should not have a degradation
of an SSN parser model evaluated on the complex
labels, compared to the same SSN parser evaluated
only on phrase structure labels. As the results on
the validation set indicate, our baseline model with
function labels (FLABEL) is indeed lower than the
performance of the parser when function labels are
not taken into account (FLABEL-less), indicating
that the function parsing task is more difficult than
the simple parsing task.

Since the function parsing problem is more dif-
ficult than simple parsing, it is then interesting to
observe that performance of the augmented parser
increases significantly (FLABEL column) (p <
.001) without losing accuracy on the parsing task

6This explains the little difference in performance between
our results for H03 and those cited in (Henderson, 2003), where
the best of three runs on the validation set is chosen.

624



(FLABEL-less column), compared to the initial
parsing performance (as indicated by the perfor-
mance of H03). Notice that, numerically, we do in
fact a little better than H03, but this difference is not
significant.7

Beside confirming that learning function labels
does not increase parsing errors, we can also confirm
that the nature of the errors remains the same. A sep-
arate comparison of labelled and unlabelled scores
of our complex function parser indicates that unla-
belled results are roughly 1% better than labelled re-
sults (F measure 89.8% on the validation set). The
original SSN parser exhibits the same differential.
This shows that, like other simple parsers, the func-
tion parser makes mostly node attachment mistakes
rather than labelling mistakes.

A separate experiment only discriminatingNULL

labels indicates that this modification is indeed use-
ful, but not as much as introducing new tags, on
which we concentrate to explain the results. There
is converging evidence indicating that the improve-
ment in performance is due to having introduced
new tag-word pairs, and not simply new words. First
of all, of the 311 new tag-word pairs only 122 in-
troduce truly new words. The remaining pairs are
constituted by words that were already in the orig-
inal vocabulary and have been retagged, or by tags
associated to unknown words.

Second, this interpretation of the results is con-
firmed by comparing different ways of enlarging the
vocabulary size input to the SSN. (Henderson, 2003)
tested the effect of larger input vocabulary on SSN
performance by changing the frequency cut-off that
selects the input tag-word pairs. A frequency cut-
off of 200 yields a vocabulary of 508 pairs, while a
cut-off of 20 yields 4242 pairs, 3734 of which com-
prise new words. This difference in input size does
not give rise to an appreciable difference in perfor-
mance. On the contrary, we observe that introduc-
ing 122 new words and 83 new tags improves results
considerably. This leads us to conclude that the per-
formance of the augmented model is not simply due
to a larger vocabulary.

We think that our tag-word pairs are effective be-
cause they are selected by a linguistically meaning-

7Significance was measured with the randomized signifi-
cance test described in (Yeh, 2000).

Syntactic Labels Semantic Labels
F R P F R P

Validation Set
Base 95.3 93.9 96.7 73.1 70.2 76.3
Aug 95.7 95.0 96.5 80.1 77.0 83.5

Test Set
Aug 96.4 95.3 97.4 86.3 82.4 90.5
BC00 95.7 95.8 95.5 79.0 77.6 80.4
B04 FT 95.9 95.3 96.4 83.4 80.3 86.7
B04 KP 98.7 98.4 99.0 78.0 73.2 83.5

Table 4: Percentage F-measure (F), recall (R), and
precision (P) function labelling, separated for syn-
tactic and semantic labels, for our models and Bla-
heta and Charniak’s (BC00) and Blaheta’s models
(B04 FT, B04 KP). The feature trees (FT) and ker-
nel perceptrons (KP) are optimised separately for the
two different sets of labels.

ful criterion and are more informative exemplars for
the parser. Instead, simply decreasing the frequency
cut-off adds mostly types of words for which the
parser already possesses enough evidence (in gen-
eral, nouns). Our method of lowering function la-
bels acts as a finer-grained classification that parti-
tions different kinds of complements based on their
lexical semantic characteristics, yielding classes that
are relevant to constituent structure. For instance,
it is well known that lexical semantic properties of
arguments of verbs are related to the verb’s argu-
ment structure, and consequently to the parse tree
that the verb occurs in. Partitioning a verb’s comple-
ments into function classes could influence attach-
ment decisions beneficially. We also think that the
parser we use is particularly able to take advantage
of these subclasses. One of the main properties of
SSN parsers is that they do not need large vocabu-
laries, because the SSN is good at generalising item-
specific properties into an internal hidden represen-
tation of word classes.

Finally, to provide a meaningful and complete
evaluation of the parser, it is necessary to examine
the level of performance on the function labels for
those constituents that are correctly parsed accord-
ing to the usual Parseval measure, i.e. for those con-
stituents for which the phrase structure labels and
the string covered by the label have been correctly

625



Baseline Augmented
P R P R

ADV 81.7 90.5 87.9 81.0
DIR 72.2 39.8 77.0 48.5
EXT 88.1 68.5 86.8 63.5
LOC 75.7 67.4 78.9 74.6
MNR 43.2 37.2 74.0 55.7
NOM 88.0 93.6 88.7 93.1
PRP 67.5 61.4 74.4 65.9
TMP 78.3 75.0 89.6 83.7

Table 5: Percentage F-measure (F), recall (R), and
precision (P) function labelling, separated for indi-
vidual semantic labels, for validation set.

recovered. Clearly, our parsing results would be un-
interesting if our recall on function labels were very
low. In that case, we would have failed to learn the
function parsing task, and that would trivially yield
a good performance on the simple parsing task. Ta-
ble 4 reports the aggregated numbers for the base-
line and the augmented model, while Table 5 re-
ports separate figures for each semantic function la-
bel. These tables show that we also perform well
on the labelling task alone.8 Comparison to other
researchers (last three lines of Table 4) shows that
we achieve state-of-the-art results with a single inte-
grated model that is jointly optimised for all the dif-
ferent types of function labels and for parsing, while
previous attempts are optimised separately for the
two different sets of labels. In particular, our method
performs better on semantic labels.

5 Related Work

As far as we are aware, there is no directly compa-
rable work, as nobody has so far attempted to fully
merge function labelling or semantic role labelling
into parsing. We will therefore discuss separately
those pieces of work that have made limited use
of function labels for parsing (Klein and Manning,
2003), and those that have concentrated on recover-
ing function labels as a separate task (Blaheta and
Charniak, 2000; Blaheta, 2004). We cannot discuss
here the large recent literature on semantic role la-
belling for reasons of space, apart from work that

8See also (Musillo and Merlo, 2005) for more detail and
comparisons on the labelling task.

also recovers function labels (Jijkoun and de Rijke,
2004) and work that trains a parser on Propbank la-
bels as the first stage of a semantic role labelling
pipeline (Yi and Palmer, 2005).

(Klein and Manning, 2003) and, to a much more
limited extent, (Collins, 1999) are the only re-
searchers we are aware of who used function labels
for parsing. In both cases, the aim was actually
to improve parser performance, consequently only
few carefully chosen labels were used. (Klein and
Manning, 2003) suggest the technique of tag split-
ting for the constituent bearing the labelTMP. They
also speculate that locative labels could be fruitfully
percolated down the tree onto the preterminals. Re-
sults in Table 5 indicate more precisely that lower-
ing locative labels does indeed bring about some im-
provement, but not as much as theMNR and TMP

labels.
In work that predates the availability of Framenet

and Propbank, (Blaheta and Charniak, 2000) define
the task of function labelling for the first time and
highlight its relevance for NLP. Their method is in
two-steps. First, they parse the Penn Treebank us-
ing a state-of-the-art parser (Charniak, 2000). Then,
they assign function labels using features from the
local context, mostly limited to two levels up the
tree and only one next label. (Blaheta, 2004) ex-
tends on this method by developing specialised fea-
ture sets for the different subproblems of function la-
belling and slightly improves the results, as reported
in Table 4. (Jijkoun and de Rijke, 2004) approach
the problem of enriching the output of a parser in
several steps. The first step applies memory-based
learning to the output of a parser mapped to de-
pendency structures. This step learns function la-
bels. Only aggregated results for all function la-
bels, and not only for syntactic or semantic labels,
are provided. Although they cannot be compared di-
rectly to our results, it is interesting to notice that
they are slightly better in F-measure than Blaheta’s
(F=88.5%). (Yi and Palmer, 2005) share the moti-
vation of our work, although they apply it to a dif-
ferent task. Like the current work, they observe that
the distributions of semantic labels could potentially
interact with the distributions of syntactic labels and
redefine the boundaries of constituents, thus yield-
ing trees that reflect generalisations over both these
sources of information.

626



6 Conclusions

In this paper we have presented a technique to ex-
tend an existing parser to produce richer output, an-
notated with function labels. We show that both
state-of-the-art results in function labelling and in
parsing can be achieved. Application of these re-
sults are many-fold, such as information extraction
or question answering where shallow semantic an-
notation is necessary. The technique illustrated in
this paper is of wide applicability to all other se-
mantic annotation schemes available today, such as
Propbank and Framenet, and can be easily extended.
Work to extend this technique to Propbank annota-
tion is underway. Since function labels describe de-
pendence relations between the predicative head and
its complements, whether they be arguments or ad-
juncts, this paper suggests that a left-corner parser
and its probabilistic model, which are defined en-
tirely on configurational criteria, can be used to pro-
duce a dependency output. Consequences of this ob-
servation will be explored in future work.

Acknowledgments

We thank the Swiss National Science Foundation
for its support of this research under grant number
105286. We thank James Henderson for allowing us
to use his parser and for numerous helfpul discus-
sions.

References
Ann Bies, M. Ferguson, K.Katz, and Robert MacIntyre. 1995.

Bracketing guidelines for Treebank II style. Technical re-
port, University of Pennsylvania.

Don Blaheta and Eugene Charniak. 2000. Assigning function
tags to parsed text. InProcs of NAACL’00, pages 234–240,
Seattle, Washington.

Don Blaheta. 2004.Function Tagging. Ph.D. thesis, Depart-
ment of Computer Science, Brown University.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Procs of NAACL’00, pages 132–139, Seattle, Washington.

Michael Collins and Scott Miller. 1998. Semantic tagging us-
ing a probabilistic context-free grammar. InProcs of the
Sixth Workshop on Very Large Corpora, pages 38–48, Mon-
treal, CA.

Michael Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, Department of
Computer Science, University of Pennsylvania.

CoNLL. 2004, 2005. Conference on computational natural lan-
guage learning (conll-2004/05).

Ruifang Ge and Raymond J. Mooney. 2005. A statistical se-
mantic parser that integrates syntax and semantics. InProcs
of CONLL-05, Ann Arbor, Michigan.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling
of semantic roles.Computational Linguistics, 28(3):245–
288.

Jesus Gimenez and Lluis Marquez. 2004. Svmtool: A general
POS tagger generator based on Support Vector Machines. In
Procs of LREC’04, Lisbon, Portugal.

Jamie Henderson. 2003. Inducing history representations
for broad-coverage statistical parsing. InProcs of NAACL-
HLT’03, pages 103–110, Edmonton, Canada.

Valentin Jijkoun and Maarten de Rijke. 2004. Enriching the
output of a parser using memory-based learning. InProcs of
ACL’04, pages 311–318, Barcelona,Spain.

Valentin Jijkoun, Maarten de Rijke, and Jori Mur. 2004. In-
formation extraction for question answering: Improving re-
call through syntactic patterns. InProcs of COLING-2004,
Geneva, Switzerland.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. InProcs of ACL’03, pages 423–430, Sap-
poro, Japan.

Mitch Marcus, Beatrice Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of English: the
Penn Treebank.Computational Linguistics, 19:313–330.

Gabriele Musillo and Paola Merlo. 2005. Assigning function
labels to unparsed text. InProcs of RANLP’05, Korovets,
Bulgaria.

Mark Jan Nederhof. 1994.Linguistic Parsing and Program
Transformations. Ph.D. thesis, Department of Computer
Science, University of Nijmegen.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The
Proposition Bank: An annotated corpus of semantic roles.
Computational Linguistics, 31:71–105.

Senseval. 2004. Third international workshop on the evalua-
tion of systems for the semantic analysis of text (acl 2004).
http://www.senseval.org/senseval3.

David Stallard. 2000. Talk’n’travel: A conversational system
for air travel planning. InProcs of ANLP’00, pages 68–75,
Seattle, Washington.

Alexander Yeh. 2000. More accurate tests for the statistical
significance of the result differences. InProcs of COLING
2000, pages 947–953, Saarbrucken, Germany.

Szu-ting Yi and Martha Palmer. 2005. The integration of
semantic parsing and semantic role labelling. InProcs of
CoNLL’05, Ann Arbor, Michigan.

627


