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Abstract S

In this paper, we extend an existing parser

to produce richer output annotated with ~ NPSBJ vp
function labels. We obtain state-of-the-art e authority

results both in function labelling and in

parsing, by automatically relabelling the VE‘BD Pw NPTMP w
Penn Treebank trees. In particular, we ob- dropped IN(TMP) NP NNpP(TMP) TO(DIR) NP

- i - \ \ \ \ \
tgln the'best publlshgd results on seman at NN Tuesday 1 QP
tic function labels. This suggests that cur- s ~
rent statistical parsing methods are suffi- midnight $2.8 trilion
ciently general to produce accurate shal-  gigyre 1: A sample syntactic structure with function
low semantic annotation. labels.

1 Introduction swering (Jijkoun et al., 2004) or shallow semantic

With recent advances in speech recognition, parsintjiterpretation systems (Collins and Miller, 1998; Ge
and information extraction, some domain-specifiand Mooney, 2005). We test the hypothesis that a
interactive systems are now of practical use fogurrent statistical parser can output such richer in-
tasks such as question-answering, flight booking, dermation without any degradation of the parser’s
restaurant reservation (Stallard, 2000). One of thaccuracy on the original parsing task. Briefly, our
challenges ahead lies in moving from hand-craftethethod consists in augmenting a state-of-the-art sta-
programs of limited scope to robust systems inddistical parser (Henderson, 2003), whose architec-
pendent of a given domain. While this ambitiougure and properties make it particularly adaptive to
goal will remain in the future for some time to come new tasks. We achieve state-of-the-art results both
recent efforts to develop language processing syfor parsing and function labelling.
tems producing richer semantic outputs will likely Statistical parsers trained on the Penn Treebank
be the cornerstone of many successful developmer(TB) (Marcus et al., 1993) produce trees annotated
in natural language understanding. with bare phrase structure labels (Collins, 1999;
In this paper, we present a parser that outputs I&harniak, 2000). The trees of the Penn Treebank,
bels indicating the syntactic or semantic function ohowever, are also decorated with function labels.
a constituent in the tree, such ms-sejor PP-TMP  Figure 1 shows the simplified tree representation
shown in bold face in the tree in Figure 1. Thesevith function labels for a sample sentence from
labels indicate that the NP is the subject of the serthe Penn Treebank corpus (section 0bje Gov-
tence and that the PP conveys temporal informatioernment’s borrowing authority dropped at midnight
(Labels in parentheses will be explained later in th@uesday to 2.8 trillion from 2.87 trillion Table 1
paper.) Output annotated with such informative laillustrates the complete list of function labels in the
bels underlies all domain-independent question amfenn Treebank. Unlike phrase structure labels, func-
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Syntactic Labels Semantic Labels times diverge. For example, some nominal temporal

DTV  dative ADV  adverbial s ; . . .
Les  logical subject BNE benefactive qulflersl occupy an object position without being
PRD predicate DIR  direction objects, likeTuesdayin the tree above. Moreover,
PUT con?pl Ofplfjt_ . EXT lextetr_lt given current limited availability of annotated tree
SBJ surface supjec LOC ocative . .
voc  vocative MNR  manner bgnks, this more complex task will have to be solv_ed
Miscellaneous Labels ~ NOM  nominal with the same overall amount of data, aggravating
CLF  it-cleft PRP  purpose orreason  the difficulty of estimating the model's parameters
HLN  headline TMP  temporal d d
TTL  title Topic Labels ue to sparse data.
CLR closely related TPC topicalized
2 Method
Table 1: Complete set of function labels in the Penn ) ) ) )
Treebank Successfully addressing function parsing requires

accurate parsing models and training data. Under-
_ standing the causes and the relevance of the ob-
tion labels are context-dependent and encode a shaéryed results requires appropriate evaluation mea-

low level of phrasal and lexical semantics, as obsyres. In this section, we describe the methodology

served first in (Blaheta and Charniak, 208070 @  that will be used to assess our main hypothesis.
large extent, they overlap with semantic role labels

as defined in PropBank (Palmer et al., 2005). 2.1 The Basic Parsing Architecture

Current statistical parsers do not use this rIChed’)ur main hypothesis says that function labels can

information because performance of the parser usy . .
. . e successfully and automatically recovered while
ally decreases considerably, since a more complex

. ) ) . arsing, without affecting negatively the perfor-
task is being solved. (Klein and Manning, 2003)IO g g nege y perto
. L . mance of the parser. It is possible that attempting
for instance report a reduction in parsing aceuracy o e function labelling and the parsing prob-
of an unlexicalised PCFG from 77.8% to 72.9% i . 9 the parsing p
lem at the same time would require modifying ex-

using function labels in training. (Blaheta, 2004)I%ting parsing models, since their underlying inde-

also reports a decrease in performance when at- . .
. . . ) . endence assumptions might no longer hold. More-
tempting to integrate his function labelling systerr{3

: . oyer, many more parameters are to be estimated. Itis
with a full parser. Conversely, researchers mterest%g

. : . ; erefore important to choose a statistical parser that
in producing richer semantic outputs have CONCEN A n model our augmented labelling problem. We use
trat(_-:‘d on twq-stage systems, where the semantic If?\l'family of statistical parsers, the Simple Synchrony
pellmg ta?" 'S performed on Fhe ogtput of a Parseietwork (SSN) parsers (Henderson, 2003), which
n a pipeline architecture divided in several Stagegrucially do not make any explicit independence as-
t(e?s”l?sfa ég?\litreggg 228852').388::6350;85 4C0mmosnumptions, and learn to smooth across rare feature
( ' L ’ ) combinations. They are therefore likely to adapt
Our approach maintains state-of-the-art results

) hile al hi tate-of-the-art I\Pvithout much modification to the current problem.
parsing, while aiso reaching state-ol-the-art results, s o chitecture has shown state-of-the-art perfor-

in function labelling, by suitably extending a Sim- . . . .
mance and is very adaptive to properties of the in-
ple Synchrony Network (SSN) parser (Henderson y P brop

. . . . ut.

.2003) 'T“O a single integrated sys_tem. Th|s_ 'S aﬁ The architecture of an SSN parser comprises two
interesting result, as a task combining function la- . .

: C . components, one which estimates the parameters

belling and parsing is more complex than simple . .

. ' . ) . of a stochastic model for syntactic trees, and one

parsing. While the function of a constituent and its | . )

o which searches for the most probable syntactic tree

structural position are often correlated, they some-. . :

given the parameter estimates. As with many other

(Blaheta and Charniak, 2000) talk of functitags We will ~ Statistical parsers (Collins, 1999; Charniak, 2000),

instead use the term functidabel, to indicate function identi- the model of parsing is history-based. Its events
fiers, as they can decorate any node in the tree. We keep the

word tag to indicate only those Iabels that decorate pretermingf'© derivation _mO\_/eS' The ?‘et O_f We”'for_med lse'
nodes in a tree — part-of-speech tags— as is standard use.  quences of derivation moves in this parser is defined
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by a Predictive LR pushdown automaton (Nederhof;ently shifted word, the leftmost tag-word pair that
1994), which implements a form of left-corner parstop; dominates.
ing strategy? _

The probability of a phrase-structure tree i-2 1he SetofFunction Labels
equated to the probability of a finite (but unboundedThe bracketting guidelines for the Penn Treebank Il
sequence of derivation moves. To bound the numbést 20 function labels, shown in Table 1 (Bies et al.,
of parameters, standard history-based models pdr995). Based on their description in the Penn Tree-
tition the set of prefixes of well-formed sequencedank guidelines, we partition the set of function la-
of transitions into equivalence classes. While suchels into four classes, as indicated in the table. Fol-
a partition makes the problem of searching for théowing (Blaheta and Charniak, 2000), we refer to the
most probable parse polynomial, it introduces harfirst class as syntactic function labels, and to the sec-
independence assumptions: a derivation move ontynd class as semantic function labels. In the rest
depends on the equivalence class to which its histonf the paper, we will ignore the other two classes,
belongs. SSN parsers, on the other hand, do not stéte they do not intersect with PropBank labels, and
any explicit independence assumptions: they indugkey do not form natural classes. Like previous work
a finite history representation of an unbounded s¢Blaheta and Charniak, 2000), we complete the sets
qguence of moves, so that the representation ofaf syntactic and semantic labels by labelling con-
movei — 1 is included in the inputs to the represenstituents that do not bear any function label with a
tion of the next move, as explained in more detail NULL label
in (Henderson, 2003). SSN parsers only impose soft
inductive biases to capture relevant properties of te3 Evaluation
derivation, thereby exhibiting adaptivity to the in-To evaluate the performance of our function pars-
put. The art of designing SSN parsers consists iimng experiments, we will use several measures. First
selecting and introducing such biases. To this end, df all, we apply the standard Parseval measures of
is sufficient to specify features that extract some intabelled recall and precision to a parser whose train-
formation relevant to the next derivation move froning data contains the Penn Treebank function labels,
previous ones, or some set of nodes that are strue- assess how well we solve the standard phrase
turally local to the node on top of the stack. Thesetructure parsing problem. We call these figures
features and these nodes are input to the compBLABEL-less figures in the tables below and we will
tation of a hidden history representation of the seeall the task the (simple) parsing task in the rest of
quence of previous derivation moves. Given the hicthe paper. Second, we measure the accuracy of this
den representation of a derivation, a log-linear distriparser with an extension of the Parseval measures
bution over possible next moves is computed. Thusf labelled precision and recall applied to the set of
the setD of structurally local nodes and the sebf  complex labels —the phrase structure non-terminals
predefined features determine the inductive bias efugmented with function labels— to evaluate how
an SSN system. Unless stated otherwise, for eaglell the parser solves this complex parsing prob-
of the experiments reported here, the Bethat is  lem. These are the FLABEL figures in the tables be-
input to the computation of the history representaow. We call this task the function parsing task. Fi-
tion of the derivation movedy,...,d;_; includes nally, we also assess function labelling performance
the following nodes:top;, the node on top of the on its own. Note that the maximal precision or recall
pushdown stack before thith move; the left-corner score of function labelling is strictly smaller than
ancestor otop;; the leftmost child ofop;; and the one-hundred percent if the precision or the recall of
most recent child ofop;, if any.  The set of fea- ~ 3Strictly speaking, this label corresponds to twoLL la-
tures f includes the last move in the derivation, the,i” dux L. and SEmNuLL. A node bearing thisy

label or tag oftop;, the tag-word pair of the most re- nuLL labelis a node that does not bear any other syntactic label.

B Analogously, thesemM-NULL label completes the set of semantic
2The derivation moves include: projecting a constituent witHabels. Note that both theyN-NULL label and thesem-NULL

a specified label, attaching one constituent to another, and shiétre necessary, since both a syntactic and a semantic label can

ing a tag-word pair onto the pushdown stack. label a given constituent.

622



ASSIGNEDLABELS

ADV BNF DIR EXT LOC MNR NOM PRP TMP SEMNULL SUM

ADV 143 0 0 O 0 0 0 1 3 11 158

BNF 0O 0O O o o 0 0 O 0 1 1

DIR 0O 0 39 O 3 4 0 O 1 51 98

EXT 0O 0O 0 37 O 0 0 O 0 17 54

ACTUAL | LOC 0O O 1 0 345 3 0 0 15 148 512
LABELS | MNR 0 0O O 0 3 35 0 O 16 4( 94
NOM 2 0 0 0 o 0O 8 0 0 4 94

PRP 0O 0O O o0 o 0 0 54 1 33 88

TMP 18 0 1 0 24 11 0 1 479 106 639
SEM-NULL 12 0 13 5 81 28 12 24 97 2029220564

SUM 175 0 54 42 456 81 100 80 612 207022302

Table 2: Confusion matrix for simple baseline model, tested on the validation set (section 24 of PTB).

the parser is less than one-hundred percent. FollowleNULL label. These misclassfications affect recall
ing (Blaheta and Charniak, 2000), incorrectly parseth particular. Consider, for example, tivaRr label,
constituents will be ignored (roughly 11% of the to-where 40 out of 94 occurrences are not given a func-
tal) in the evaluation of the precision and recall otion label. We add two augmentations to the parser
the function labels, but not in the evaluation of thdo alleviate this problem.
parser. Of the correctly parsed constituents, some The simple baseline parser treatsLL labels like
bear function labels, but the overwhelming majorityother labels, and it does not distinguish subtypes of
do not bear any label, or rather, in our notation, thepuLL labels. Our first augmentation of the parser
bear aNULL label. To avoid calculating excessivelyis designed to discriminate among constituents with
optimistic scores, constituents bearing theLL la- theseNuLL labels. We hypothesize that the label
bel are not taken into consideration for computinguuLL (ie. SYN-NULL andSEM-NULL) is a mixture
overall recall and precision figureswuLL-labelled of types, which will be more accurately learnt sepa-
constituents are only needed to calculate the predately. If the labeNuLL is learnt more precisely, the
sion and recall of other function labels. (In otherecall of the other labels will increase. ThesLL
words, NULL-labelled constituents never contributelabel in the training set was automatically split into
to the numerators of our calculations.) For examthe mutually exclusive labelsLR, 0BJandOTHER.
ple, consider the confusion matrix/ in Table 2, Constituents were assigned theJlabel according
which reports scores for the semantic labels recove the conditions stated in (Collins, 1999).
ered by the baseline model described below. Preci- Another striking property of the simple baseline
sion is computed as Zie{ADVmTMPJ}WM[i’i] _Re. function parseris that the SSN tends to project L
je{Apv...Tmp} MISUM.J] labels more than any other label. Since SSNs de-
call is computed analogously. Notice that[n,n], cide the label of a non-terminal at projection, this
that is the[sem-nuLL sem-nuLL] cell in the matrix, is  behaviour indicates that the parser does not have
never taken into account. enough information at this point in the parse to
project the correct function label. We hypothesize
that finer-grained labelling will improve parsing per-
formance. This observation is consistent with results

In order to assess the complexity of the task of pre-

dicting function labels while parsing, we run first thereported in (Klein and Manning, 2003), who showed

SSN on the function parsing task, without modificaEhat part-of-speech tags occurring in the Treebank

tions to the parser. The confusion matrix for seman"j}re not fine-grained enough to discriminate between

tic function labels of this Simple baseline model is 4Rough|y’ anoBJnon-terminal is an NP, SBAR or S whose

illustrated in Table 2. parent is an S, VP or SBAR. Any such non-terminal must not

It i t that the b l del's | ear either syntactic or semantic function labels, ordbe la-
IS apparent that the baseline model's 1argeyle| | addition, the first child following the head of a PP is

cause of error is confusion between the labels antarked with theosalabel.

3 Learning Function Labels
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preterminals. For example, the tag labels both FLABEL FLABEL-less

the prepositiorto and the infinitival marker. Extend- F R P F R P

ing (Klein and Manning, 2003)’s technique to func- Validation Set

tion labelling, we split some part-of-speechtagsinto Base 834 828 839 87.7 87.1 88.2
tags marked with semantic function labels. More Aug 84.6 84.0 852 88.1 87.5 887

precisely, we concentrate on the function lalmals, Test Set
LOC, MNR, PRPOr TMP, which appear to cause the Aug 86.1 858 86.5 889 88.6 89.3
most trouble to the parser, as illustrated in Table 2. HQ3 88.6 88.3 88.9

The label attached to a non-terminal was propa-
gated down to the pre-terminal tag of its head. Thé&able 3: Percentage F-measure (F), recall (R), and
labels in parentheses in Figure 1 illustrate the effegtrecision (P) of the SSN baseline (Base) and aug-
of this lowering of the labels. The goal of this tag-mented (Aug) parsers. HO3 indicates the model il-
splitting is to indicate more clearly to the parser whalustrated in (Henderson, 2003).
kind of label to project on reading a word-tag pair in
the input. To this end, re-labelling is applied only if
the non-terminal dominates the pre-terminal immesections 2-21 from the Penn Treebank, validated on
diately. This constraint guarantees that only thosgection 24, and tested on section 23. All models are
non-terminals that are actual projections of the prdrained on parse trees whose labels include function
terminal are affected by this tag-splitting methodlabels. Both results taking function labels into ac-
Linguistically, we are trying to capture the notioncount (FLABEL) and results not taking them into
of maximal projection® This augmented model hasaccount (FLABEL-less) are reported. All our mod-
a total of 188 non-terminals to represent labels c#ls, as well as the parser described in (Henderson,
constituents, instead of the 33 of the original SSN003), are run only once® These results are re-
parser. As a result of lowering the five function laforted in Table 3.
bels, 83 new part-of-speech tags were introduced to Our hypothesis states that we can perform func-
partition the original tagset of the Treebank. Ther&on labelling and parsing at the same time, without
are 819 tag-word pairs in this model, while the origloss in parsing performance. For this to be an inter-
inal SSN parser has a vocabulary size of 508 tagsting statement, we need to show that function la-
word pairs. These augmented tags as well as tielling is not a straightforward extension of simple
155 new non-terminals are included in the gatf  parsing. If simple parsing could be easily applied to
features input to parsing decisions as described fanction parsing, we should not have a degradation
section 2.1. of an SSN parser model evaluated on the complex

SSN parsers do not tag their input sentences. Tabels, compared to the same SSN parser evaluated
provide the augmented model with tagged input sei®nly on phrase structure labels. As the results on
tences, we trained an SVM tagger whose featurdBe validation set indicate, our baseline model with
and parameters are described in detail in (Gimendnction labels (FLABEL) is indeed lower than the
and Marquez, 2004). Trained on section 2-21, theerformance of the parser when function labels are
tagger reaches a performance of 95.8% on the te¥t taken into account (FLABEL-less), indicating
set (section 23) of the PTB using our new tag set. that the function parsing task is more difficult than

the simple parsing task.
4 Experiments Since the function parsing problem is more dif-

In this section, we report the results of the experﬁcu” than simple parsing, it is then interesting to
iments testing hypotheses concerning our functioﬂbserve that performance of the augmented parser

parser. All SSN function parsers were trained officreases S|gn|f|f:antly (FLABEL column)j?( <
.001) without losing accuracy on the parsing task

SThis conditon was relaxed in a few cases to

capture constructs such as coordinatedrs (e.g. 5This explains the little difference in performance between
[Pe-LoclpPinat] - . J[ccand][pp[inin]...]...] or infini-  ourresults for HO3 and those cited in (Henderson, 2003), where
tival clauses (e.gis-preAlvp[TOtO]|[VPlVB--].-.]...]). the best of three runs on the validation set is chosen.
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(FLABEL-less column), compared to the initial Syntactic Labels Semantic Labels

parsing performance (as indicated by the perfor- F R P F R P

mance of H03). Notice that, numerically, we do in Validation Set

fact a little better than HO3, but this difference is not gase 053 939 967 73.1 702 763

significant’ Aug 95.7 950 965 80.1 77.0 835
Beside confirming that learning function labels Test Set

does notincrease parsing errors, we can also confirnug 064 953 974 863 824 905
that the nature of the errors remains the same. A sepBC00 957 958 955 790 77.6 804
arate comparison of labelled and unlabelled scoreB04 FT 959 953 964 834 803 86.7
of our complex function parser indicates that unla-Bo4 KP 98.7 984 990 78.0 732 835
belled results are roughly 1% better than labelled re=
sults (F measure 89.8% on the validation set). Th&able 4: Percentage F-measure (F), recall (R), and
original SSN parser exhibits the same differentialprecision (P) function labelling, separated for syn-
This shows that, like other simple parsers, the fundactic and semantic labels, for our models and Bla-
tion parser makes mostly node attachment mistakéeta and Charniak’s (BC00) and Blaheta’s models
rather than labelling mistakes. (BO4 FT, BO4 KP). The feature trees (FT) and ker-
A separate experiment only discriminatingLL  nel perceptrons (KP) are optimised separately for the
labels indicates that this modification is indeed usdwo different sets of labels.
ful, but not as much as introducing new tags, on
which we concentrate to explain the results. There , ]
is converging evidence indicating that the improve‘SUI criterion and are more mformatlv_e exemplars for
ment in performance is due to having introduced€ Parser. Instead, simply decreasing the frequency
new tag-word pairs, and not simply new words. FirsgUt-0ff adds mostly types of words for which the
of all, of the 311 new tag-word pairs only 122 in-Parser already possesses enough .eV|dence. (in gen-
troduce truly new words. The remaining pairs ar&"@l: nouns). Our method of lowering function la-
constituted by words that were already in the orig?els acts as a finer-grained classification that parti-

inal vocabulary and have been retagged, or by ta?gns different kinds of complements based on their
associated to unknown words. exical semantic characteristics, yielding classes that

Second, this interpretation of the results is cond'® relevant to constituent structure. For instance,

firmed by comparing different ways of enlarging thét is well kn0\]/¢vn th;t IeX|caI|sergantlchpropel;:ues of
vocabulary size input to the SSN. (Henderson, 200 fguments of verbs are related to the verb's argu-
tested the effect of larger input vocabulary on SS ent structure, and consequently to the parse tree

performance by changing the frequency cut-off tha at the verb occurs in. Partitioning a verb’s comple-
selects the input tag-word pairs. A frequency cytTents into function classes could influence attach-

off of 200 yields a vocabulary of 508 pairs, while ament decisions beneficially. We also think that the
cut-off of 20 yields 4242 pairs, 3734 of Whi,Ch com-Parser we use is particularly able to take advantage

prise new words. This difference in input size doeg‘.nc these subclasses. One of the main properties of

not give rise to an appreciable difference in perfor-SSN parsers is that they do not need large vocabu-

mance. On the contrary, we observe that introdué@ries’ because the SSN is good at generalising item-

ing 122 new words and 83 new tags improves resul%t;gmﬂcfprop(jert;es into an internal hidden represen-
considerably. This leads us to conclude that the pett@ lon ofword classes.

formance of the augmented model is not simply due Finally, to provide a meaningful and complete
to a larger vocabulary. evaluation of the parser, it is necessary to examine
We think that our tag-word pairs are effective pelhe level of performance on the function labels for
cause they are selected by a linguistically meaning?hose constituents that are correctly parsed accord-
ng to the usual Parseval measure, i.e. for those con-
’Significance was measured with the randomized signifirc‘muentS for which the phrase structure labels and

cance test described in (Yeh, 2000). the string covered by the label have been correctly
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Baseline | Augmented also recovers function labels (Jijkoun and de Rijke,

P R P R 2004) and work that trains a parser on Propbank la-
ADV | 81.7 90.5/87.9 81.0 bels as the first stage of a semantic role labelling
DIR | 72.2 39.8| 77.0 48.5 pipeline (Yi and Palmer, 2005).
EXT | 88.1 68.5| 86.8 63.5 (Klein and Manning, 2003) and, to a much more
LoCc | 75.7 67.4| 78.9 74.6 limited extent, (Collins, 1999) are the only re-
MNR | 43.2 37.2| 740 55.7 searchers we are aware of who used function labels
NOM | 88.0 93.6/ 88.7 93.1 for parsing. In both cases, the aim was actually
PRP | 67.5 61.4| 74.4 65.9 to improve parser performance, consequently only
T™MP | 78.3 75.0/ 89.6 83.7 few carefully chosen labels were used. (Klein and

Manning, 2003) suggest the technique of tag split-
Table 5: Percentage F-measure (F), recall (R), anithg for the constituent bearing the labahp. They
precision (P) function labelling, separated for indi-also speculate that locative labels could be fruitfully
vidual semantic labels, for validation set. percolated down the tree onto the preterminals. Re-
sults in Table 5 indicate more precisely that lower-

_ ing locative labels does indeed bring about some im-
recovered. Clearly, our parsing results would be urbrovement but not as much as thelr and TMP
interesting if our recall on function labels were VeNYiapels

low. In that case, we would have failed to learn the |\ that predates the availability of Framenet
function parsing task, and that would trlylally yield and Propbank, (Blaheta and Charniak, 2000) define
a good performance on the simple parsing task. Tfe task of function labelling for the first time and
*?'e 4 reports the aggregated numbe_rs for the basI%'ghlight its relevance for NLP. Their method is in
line and the augmented model, Wh'le_ Table _5 ret'wo-steps. First, they parse the Penn Treebank us-
ports separate figures for each semantic function lﬁig a state-of-the-art parser (Charniak, 2000). Then,
bel. These f[ables show that we als_o perform We{hey assign function labels using features from the
on the labelling task aloné® Comparison to other local context, mostly limited to two levels up the
researchers (last three lines of Table 4) shows thﬁ[?e and only one next label. (Blaheta, 2004) ex-
we achieve state-of-the-art results with a single imeténds on this method by developing specialised fea-
grated model that is_jointly optimised for aI_I the dh_c' ture sets for the different subproblems of function la-
ferent types of function labels and for parsing, whilg,q i ang slightly improves the results, as reported
previous attempts are optimised separately for tqﬁ Table 4. (Jijkoun and de Rijke, 2004) approach
two different sets of labels. In particular, ourmethoqhe problem of enriching the output of a parser in
performs better on semantic labels. several steps. The first step applies memory-based
5 Related Work learning to the output of.a parser mapped f[o de-

pendency structures. This step learns function la-
As far as we are aware, there is no directly compaels. Only aggregated results for all function la-
rable work, as nobody has so far attempted to fullpels, and not only for syntactic or semantic labels,
merge function labelling or semantic role labellingare provided. Although they cannot be compared di-
into parsing. We will therefore discuss separatelyectly to our results, it is interesting to notice that
those pieces of work that have made limited usghey are slightly better in F-measure than Blaheta’s
of function labels for parsing (Klein and Manning,(F=88.5%). (Yi and Palmer, 2005) share the moti-
2003), and those that have concentrated on recov&ation of our work, although they apply it to a dif-
ing function labels as a separate task (Blaheta angrent task. Like the current work, they observe that
Charniak, 2000; Blaheta, 2004). We cannot discusie distributions of semantic labels could potentially
here the large recent literature on semantic role lanteract with the distributions of syntactic labels and
belling for reasons of space, apart from work thatedefine the boundaries of constituents, thus yield-
" 8See also (Musillo and Merlo, 2005) for more detail andNd {rees that reflect generalisations over both these
comparisons on the labelling task. sources of information.
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6 Conclusions CoNLL. 2004, 2005. Conference on computational natural lan-
guage learning (conll-2004/05).

In this paper we have presented a technique to ex- o
tend an existin rser to prod richer outout rﬁe_uﬁang Ge and Raymond J. Mooney. 2005. A statistical se-
€nd an existing parser (o produce richer output, an- p, ic parser that integrates syntax and semanticBrdes

notated with function labels. We show that both of CONLL-05 Ann Arbor, Michigan.

State.-Of-the_art resu_lts n functpn "."‘be"'”g and Irbaniel Gildea and Daniel Jurafsky. 2002. Automatic labeling
parsing can be achieved. Application of these re- of semantic roles. Computational Linguistics28(3):245—

sults are many-fold, such as information extraction 288.
or qu_eSt'Pn answering where ShaI_IOW §emantlc aG"esus Gimenez and Lluis Marquez. 2004. Svmtool: A general
notation is necessary. The technique illustrated in POS tagger generator based on Support Vector Machines. In
this paper is of wide applicability to all other se- Procs of LREC'O4Lisbon, Portugal.
mantic annotation schemes available today, such gsmie Henderson. 2003. Inducing history representations
Propbank and Framenet, and can be easily extendedfor broad-coverage statistical parsing. Rrocs of NAACL-
Work to extend this technique to Propbank annota- HLT 03 pages 103-110, Edmonton, Canada.
tion is underway. Since function labels describe devalentin Jijkoun and Maarten de Rijke. 2004. Enriching the
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its complements, whether they be arguments or ad-
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