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Abstract

Question classification is an important
step in factual question answering (QA)
and other dialog systems. Several at-
tempts have been made to apply statistical
machine learning approaches, including
Support Vector Machines (SVMs) with
sophisticated features and kernels. Curi-
ously, the payoff beyond a simple bag-of-
words representation has been small. We
show that most questions reveal their class
through a short contiguous token subse-
guence, which we call ittiformer span
Perfect knowledge of informer spans can
enhance accuracy from 79.4% to 88%
using linear SVMs on standard bench-
marks. In contrast, standard heuristics
based on shallow pattern-matching give
only a 3% improvement, showing that the
notion of an informer is non-trivial. Us-
ing a novel multi-resolution encoding of
the question’s parse tree, we induce a Con-
ditional Random Field (CRF) to identify
informer spans with about 85% accuracy.
Then we build a meta-classifier using a
linear SVM on the CRF output, enhancing
accuracy to 86.2%, which is better than all
published numbers.

Introduction

systems can use the answer type to short-list answer
tokens from passages retrieved by an information re-
trieval (IR) subsystem, or use the type together with
other question words to inject IR queries.

Early successful QA systems used manually-
constructed sets of rules to map a question to a
type, exploiting clues such as the wh-word (who,
where, when, how many) and the head of noun
phrases associated with the main verb (whahes
tallestmountainin . . .).

With the increasing popularity of statistical NLP,
Li and Roth (2002), Hacioglu and Ward (2003) and
Zhang and Lee (2003) used supervised learning for
guestion classification on a data set from UIUC that
is now standartl It has 6 coarse and 50 fine answer
types in a two-level taxonomy, together with 5500
training and 500 test questions. Webclopedia (Hovy
et al., 2001) has also published its taxonomy with
over 140 types.

The promise of a machine learning approach is
that the QA system builder can now focus on de-
signing features and providing labeled data, rather
than coding and maintaining complex heuristic rule-
bases. The data sets and learning systems quoted
above have made question classification a well-
defined and non-trivial subtask of QA for which al-
gorithms can be evaluated precisely, isolating more
complex factors at work in a complete QA system.

Prior work: Compared to human performance,
the accuracy of question classifiers is not high. In all
studies, surprisingly slim gains have resulted from

An important step in factual question answering,,phisticated design of features and kernels.

(QA) and other dialog systems is to classify the | gnd Roth (2002) used a Sparse Network of
question (e.g., Who painted Olympia?) to the antiopinnows (SNoW) (Khardon et al., 1999). Their fea-
ipated type of the answer (e.g., person). This st&fres included tokens, parts of speech (POS), chunks

is called “question classification” or “answer type(non-overlapping phrases) and named entity (NE)
identification”.

tags. They achieved 78.8% accuracy for 50 classes,

The answer type is picked from a hand-built taxyhich improved to 84.2% on using an (unpublished,

onomy having dozens to hundreds of answer typ&g our knowledge) hand-built dictionary of “seman-
(Harabagiu et al., 2000; Hovy et al., 2001; Kwok etically related words”.
A~

al., 2001; Zheng, 2002; Dumais et al., 2002). Q
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Hacioglu and Ward (2003) used linear support Using a parse of the question sentence, we derive
vector machines (SVMs) with question word 2-a novel set of multi-resolution features suitable for
grams and error-correcting output codes (ECOC)-#aining a conditional random field (CRF) (Lafferty
but no NE tagger or related word dictionary—to gett al., 2001; Sha and Pereira, 2003). Our feature de-
80.2—-82% accuracy. sign paradigm may be of independent interggd.(

Zhang and Lee (2003) used linear SVMs withOur informer tagger is about 85—-87% accurate.
all possible question worg-grams, and obtained We use a meta-learning framework (Chan and
79.2% accuracy. They went on to design an ingeStolfo, 1993) in which a linear SVM predicts the an-
nious kernel on question parse trees, which yieldesiver type based on features derived from the origi-
visible gains for the 6 coarse labels, but only “slight’hal question as well as the output of the CRF. This
gains for the 50 fine classes, because “the syntactiteta-classifier beats all published numbers on stan-
tree does not normally contain the information reeard question classification benchmark4.4). Ta-
quired to distinguish between the various fine catesle 1 (last two rows) summarizes our main results.
gories within a coarse category”.

2 Informer overview

Algorithm 6-class| 50-class

Li and Roth, SNoW M 1 78.8@  Our key insight is that a human can classify a ques-
Hacioglu et al., SVM+ECOC — | 80.2—-82 tion based on very few tokens gleaned from skeletal
Zhang & Lee, LinearSVN 87.4 79.2 syntactic information. This is certainly true of the
Zhang & Lee, TreeSVM 90 — most trivial classesWho wrote Hamlet? omHHow
SVM, “perfect” informer 94.2 88 manydogs pull a sled at Iditarod?) but is also true of
SVM, CRF-informer 93.4 86.2 more subtle clues (How much does a rhineigt?).

In fact, informal experiments revealed the surpris-
;I;e;lble 1: Summary of % accuracy for UIUC datajnq nroperty thabnly onecontiguous span of tokens
SNoW accuracy without the related word dictio-ig 5qequate for a human to classify a question. E.g.,
nary was not reported. With the related-word dic;, the ahove question, a human does not even need
tionary, it achieved _91%@2) SNoW with a related-  he how muchclue once the wordveighis avail-
vyord dlc_tlonary achleved 84.2% but the other alg(_)éble. In fact, “How much does a rhimms®” has an
rithms did not use it. Our results are summarized ifyentical syntax but a completely different answer
the last two rows, see text for details. type, not revealed byiow muchalone. The only
exceptions to the single-span hypothesis are multi-
Our contributions: We introduce the notion of function questions like “What is theameandage
the answer type informer spanof the question (in of ...”, which should be assigned to multiple answer
§2): a short (typically 1-3 word) subsequence ofypes. In this paper we consider questions where one
question tokens that are adequate clues for questitfpe suffices.
classification; e.g.: How much does an adult ele- Consider another question with multiple clues:
phantweig? Whois the CEO of IBM? In isolation, the cluevho
We show (in§3.2) that a simple linear SVM us- merely tells us that the answer might be a person or
ing features derived from human-annotated informegountry or organization, whil€EOis perfectly pre-
spans beats all known learning approaches. Thisse, renderingvho unnecessary. All of the above
confirms our suspicion that the earlier approacheappliesa forteriori to whatandwhich clues, which
suffered from a feature localization problem. are essentially uninformative on their own, as in
Of course, informers are useful only if we can find'What is thedistancebetween Pisa and Rome?”
ways to automatically identify informer spans. Sur- Conventional QA systems use mild analysis on
prisingly, syntactic pattern-matching and heuristicthe wh-clues, and need much more sophistication on
widely used in QA systems are not very good at cagghe rest of the question (e.g. inferrimgithor from
turing informer spansg@.3). Therefore, the notion wrote, and even verb subcategorization). We submit
of an informer is non-trivial. that a single, minimal, suitably-chosen contiguous
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span of question token/s, defined as thfermer [ class | question || CRF Informer
. . . t
spanof the question, is adequate for question clas- SPall-adaer

sification. 5 Word and ggram Informer
. . .. =8 c feature extractor feature extractor
The informer span is very sensitive to the struc- |z 2 & | |
ture of clauses, phrases and possessives in the ques- - Combined feature vector |

tion, as is clear from these examples (informers ital-
icized): “What is Bill Clinton’s wife's professiot,
and “Whatcountrys president was shot at Ford’s o

Theater”. The choice of informer spans also del_ater §4) we study how to predict informers.
pends on the target classification system. 'nitia”Ynformer g-grams: This comprises of all worg-
we wished to handle definition questions separa’te%,amS within the informer span, for all possibje

and marked no informer tokens in *What is digi-g o 5ych features enable effective exploitation of

talis”. However,what isis an excellent informer ¢ mers Jike length or height to classify to the
for the UIUC classDESC:def (description, defi- NUMBER:distance class in the UIUC data.
nition).

Figure 1: The meta-learning approach.

) Informer g-gram hypernyms: For each word or
3 The meta-learning approach compound within the informer span that is a Word-

We propose a meta-learning approadf3.{) in Net noun, we add all hypernyms of all senses. The

which the SVM can use features from the originaﬂtu't'gég t_hatf:he informer (;.g.authbor, C(SICk_
guestion as well as its informer span. We show ©" ) is often narrower than a broad ques-

(§3.2) that human-annotated informer spans lead {bon clasg HUMAN:mledgal ). Following hy-
large improvements in accuracy. However, we shoR€MyM !mks up tpersonvia WordNet produces a
(§3.3) that simple heuristic extraction rules com-mor_e rella.lbly correlated feature. i i
monly used in QA systems (e.g. head of noun phrase V€N informers, other question words might

following wh-word) cannot provide informers that SE€M useless to the classifier. However, .retaining
are nearly as useful. This naturally leads us to d&&9ular features from other question words is an ex-
signing an informer tagger g% cellent idea for the following reasons.

Figure 1 shows our meta-learning (Chan and First, we kept word sense disambiguation (WSD)

Stolfo, 1993) framework. The combiner is a lineaPutside the scope of this work because WSD en-
multi-class one-vs-one SVAas in the Zhang and tails computation costs, and is unlikely to be reliable
Lee (2003) baseline. We did not use ECOC (Ha2" short single-sentence questions. Questions like
cioglu and Ward, 2003) because the reported gain [&0W 10ng. .. or Which bank... can thus become
less than 1%. ambiguous and corrupt the informer hypernym fea-

The word feature extractor selects unigrams angy'res- Additional question words can often help nail
g-grams from the question. In our experienge- the correct class despite the feature corruption.

1 or g = 2 were best; if unspecified, all possible >€cond, while our CRF-based approach to in-

ggrams were used. Through tuning, we also founfprmer span tagging is better than obvious alterna-
that the SVM ‘C” parameter (used to trade betweerVes, it still has a 15% error rate. For the questions
training data fit and model complexity) must be seY/here the CRF prediction is wrong, features from

to 300 to achieve their published baseline numberdon-informer words give the SVM an opportunity to
still pick the correct question class.

3.1 Adding informer features _ _
Word features: Based on the above discussion,

We propose two very simple ways to derive featuregne poolean SVM feature is created for every word
from mforme_rs for use with SVMs. Initially, assume ,_qram over all question tokens. In experiments, we
that perfect informers are known for all questions;y g bigrams{ = 2) to be most effective, closely
 Zhtp:/iwww.csie.ntu.edu.tw/cjlin/ followed by unigrams{ = 1). As with informers,
libsvm/ we can also use hypernyms of regular words as SVM
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features (marked “Question bigrams + hypernymstify that such machinery is indeed required.

in Table 2). Some leading QA systems extract words very
similar in function to informers from the parse tree
of the question. Some (Singhal et al., 2000) pick
We first wished to test the hypothesis that identithe head of the first noun phrase detected by a shal-
fying informer spans to an SVM learner can im-ow parser, while others use the head of the noun
prove classification accuracy. Over and above thghrase adjoining the main verb (Ramakrishnan et al.,
class labels, we had two volunteers tag the 6002004). Yet others (Harabagiu et al., 2000; Hovy
UIUC questions with informer spans (which we callet al., 2001) use hundreds of (unpublished to our
“perfect’—agreement was near-perfect). knowledge) hand-built pattern-matching rules on the
output of a full-scale parser.

3.2 Benefits from “perfect” informers

Features Coarse| Fine A natural baseline is to use these extracted words,
Question trigrams 91.2 1 77.6  \hich we call “heuristic informers”, with an SVM
All questionggrams 872 | 718 st like we used “perfect” informers. All that re-
Al qu:?stlobr'\ unigrams gig ;gi mains is to make the heuristics precise.

uestion bigrams . .
?informer q?grams 94.0 g4 How: For questions starting withow, we use the
+informer hypernyms 94.2 88.0 plgram bstartlng witrhow unless the next word
Question unigrams + all informer93.4 88.0 Wh |Tf<’;1hver h di " h hi
Only informer 92.2 | 85.0 ' e wh-word is nohow, whator which use
Question bigrams + hypernyms| 91.6 794 Elrjlfewh-word in the question as a separate fea-

Table 2: Percent accuracy with linear SVMs, “perWhNP: For questions havingshatandwhich use
fect” informer spans, and various feature encodings. the WHNP if it encloses a noun. WHNP is the
Noun Phrase corresponding to the Wh-word,
given by a sentence parser ($€e2).
Observe in Table 2 that the unigram baseline igp1: Otherwise, fowhatandwhichquestions, the

already quite competitive with the best prior num-  first (leftmost) noun phrase is added to yet an-
bers, and exploiting perfect informer spans beats all  ther feature subspace.

known numbers. It is clear that bothformer g-

grams and informer hypernymsare very valuable Table 3 {(columns ¢ and ) shows that these

8Iready-messy heuristic informers do not capture the
same signal quality as “perfect” informers. Our find-
ings corroborate Li and Roth (2002), who report lit-
tle benefit from adding head chunk features for the
r}ine classification task.

Moreover, observe that using heuristic informer
Et]eatureswithout any word features leads to rather
poor performance (column c), unlike using perfect
. o informers (column b) or even CRF-predicted in-
biggest beneficiaries, and they also form by far th ormer (column d, se€4). These clearly establish

most frequent category. tth i tan inf . ivial
The remaining question, one that we address ﬁh‘a € notion ot an Informer1s nontrivial.

the rest of the paper, is whether we can effectivelxr Using CRFs to label informers
and accurately automate the process of providing in-

improvement was obtained with ov€uestion bi-
gramsusingQuestion hypernymsighlights the im-
portance of choosing a few relevant tokens as i
formers and designing suitable features on them.
Table 3 (columns b and e) shows the benefits fro
perfect informers broken down into broad questio
types. Questions witlivhat as the trigger are the

former spans to the question classifier. Given informers are useful but nontrivial to recog-
_ o nize, the next natural question is, how can we learn
3.3 Informers provided by heuristics to identify them automatically? From earlier sec-

In §4 we will propose a non-trivial solution to the tions, it is clear (and we give evidence later, see Ta-
informer-tagging problem. Before that, we must jusble 5) that sequence and syntax information will be
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6 coarse classes

B Only Informers B+ B+ B+
Type | #Quest.|| (Bigrams) || Perf.Inf | H.Inf | CRF.Inf || Perf.Inf | H.Inf | CRF.Inf
what 349 88.8 89.4| 69.6 79.3 91.7| 87.4 914
which 11 72.7 100.0| 454 81.8 100.0| 63.6 81.8
when 28 100.0 100.0| 100.0| 100.0 100.0| 100.0 100.0
where 27 100.0 96.3| 100.0 96.3 100.0| 100.0 100.0
who 47 100.0 100.0| 100.0| 100.0 100.0| 100.0 100.0
how_* 32 100.0 96.9| 100.0| 100.0 100.0| 100.0 100.0
rest 6 100.0 100.0| 100.0 66.7 100.0| 66.7 66.7
Total 500 91.6 92.2| 77.2 84.6 94.2| 90.0 93.4

50 fine classes

what 349 73.6 82.2| 61.9 78.0 85.1| 79.1 83.1
which 11 81.8 90.9| 454 73.1 90.9| 54.5 81.8
when 28 100.0 100.0| 100.0| 100.0 100.0| 100.0 100.0
where 27 92.6 85.2| 92.6 88.9 88.9| 925 88.9
who 47 97.9 93.6| 93.6 93.6 100.0| 100.0 97.9
how_* 32 87.5 84.3| 81.2 78.1 87.5| 90.6 90.6
rest 6 66.7 66.7| 66.7 66.7 100.0| 66.7 66.7
Total 500 79.4 85.0| 69.6 78.0 88.0| 82.6 86.2

a b c d e f g

Table 3: Summary of % accuracy broken down by question type (referred§8dn$3.3 andg4.4). a:
qguestion bigrams, b: perfect informers only, c: heuristic informers only, d: CRF informers only, e—g:
bigrams plus perfect, heuristic and CRF informers.

important. ducing a predicted state sequence.
We will model informer span identification as a
sequence tagging problem. An automaton makésl State transition models
probabilistic transitions between hidden staies \we started with the common 2-state “in/out” model

one of which is an “informer generating state”, and,se( in information extraction, shown in the left half
emits tokense. We observe the tokens and have tgy Figure 2. State “1” is the informer-generating

guess which were produced from the “informer gengiate  Either state can be initial and final (double

erating state”. circle) states.
Hidden Markov models are extremely popular for
such applications, but recent work has shown that What kind of an animal is Winnie the Pooh
conditional random fields (CRFs) (Lafferty et al.,
2001; Sha and Pereira, 2003) have a consistent ad-
vantage over traditional HMMs in the face of many @@{}@O 0—0O—Q
redundant features. We refer the reader to the above
references for a detailed treatment of CRFs. Here What, kind, What, kind, is, Winnie,
we will regard a CRF as largely a black ox Wiﬁ:{i:,n{hlz animal of, an the, Pooh
To train a CRF, we need a set of state nodes, a Pooh animal

transition graph on these nodes, and tokenized text _ . |
where each token is assigned a state. Once the CRF F19ure 2: 2- and 3-state transition models.

is trained, it can be applied to a token sequence, pro- , _
The 2-state model can be myopic. Consider the

3We usechttp://crf.sourceforge.net/ guestion pair
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A: What country is the largest producer of wheat?| ¢ é (ZJ (3; ‘11 i g ;
. Yi

B: Name the largest producer of wheat e What T s the Tcapiall city | of | Japan
Thei+ 1 context ofproduceris identicalin Aand ¢ Features for:;s

WP,1 |VBZ,1| DT,1 | NN,1 | NN,1 | IN,1 |NNP1

B. In B, for want ofabetterlnformer, we would Wanf[ ; WHNP VPL NP1 T NPI T NPL NGl T NP2

producerto be flagged as the informer, although itz g TNl TNulZ [NulZ [Nul 1| PP.1 | PP1

might refer to a country, person, animal, companyZ || NullLZ [NulL1| NP1 [ NP1 | NP1 | NP1 | NP1

etc. But in A,countryis far more precise. g S’\é‘ﬂ'élQSggthSggthSgg&ggg&qggg&qggg&
Any 2-state model that depends on positiossl

to define features will fail to distinguish between ATable 4: A multi-resolution tabular view of the ques-

and B, and might select bottountryandproducer tion parse showingag andnum attributes.capital

in A. As we have seen with heuristic informers, pol-<ity is the informer span witly = 1.

luting the informer pool can significantly hurt SVM

accuracy. late the parse tree into an equivalent multi-resolution
Therefore we also use the 3-state “begin/in/outt@bular format shown in Table 4.

(BIO) model. The initial state cannot be “2” in theCells and attributes: A labeled question com-

3-state model; all states can be final. The 3'Sta53rises the token sequeneg i — 1 and the label
model allows at most one informer span. Once thg .

3 4ol ch , he inf o equencey;,i = 1,... Eachx; leads to a column
-s_tate model choosesuntryas the informer, it Is vector of observations. Therefore we use matrix no-
unlikely to stretch state 1 up fwroducer

tation to write downz: A table cell is addressed as

There is no natural significance to using four or, i, f] wherei is the token position (column index)

more states. Besides, longer range syntax dependefy/ is the level or row index, 1-6 in this example.
cies are already largely captured by the parser.  ajthough the parse tree can be arbitrarily deep, we

found that using features from up to levek 2 was

What is the capital city of Japan O
| g —ﬁ— ‘|‘Y | | adequate.)

WP VBZ DT NN NN IN NNP Intuitively, much of the information required for
spotting an informer can be obtained from the part

=

- ~ - ~

WHNP VP ' NP ( NP, 2 of speech of the tokens and phrase/clause attachment
1 i information. Conversely, specific word information
PIP 3 is generally sparse and misleading; the same word
| may or may not be an informer depending on its po-
N|P = 2 sition. E.g., “What birds eat snakes?” and “What
I 3 snakes eat birds?” have the same words but different
SQ 7 > informers. Accordingly, we observe two properties

SBARQ 6 at each cell:

tag : The syntactic class assigned to the cell by
the parser, e.ge[4,2].tag = NP. Itis well-known

that POS and chunk information are major clues to
informer-tagging, specifically, informers are often

. _ nouns or noun phrases.
Sentences with similar parse trees are likely to have

the informer in similar positions. This was the in-num:  Many heuristics exploit the fact that the first
tuition behind Zhang et al.'s tree kernel, and is als®lP is known to have a higher chance of containing
our starting point. We used the Stanford Lexicalizeéthformers than subsequent NPs. To capture this po-
Parser (Klein and Manning, 2003) to parse the quesitional information, we defineum of a cell at[s, ¢]

tion. (We assume familiarity with parse tree notatioras one plus the number of distinct contiguous chunks
for lack of space.) Figure 3 shows a sample parde the left of[i, ¢] with tag s equal tox[4, 2].tag

tree organized in levels. Our first step was to trand=.g., at level 2 in the table abovéhe capital city

Figure 3: Stanford Parser output example.

4.2 Features from a parse of the question
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forms the first NP, whildapanforms the second NP. known setl; of informer tokens, and gets a set
Thereforex[7,2].num = 2. of tokens]I, flagged as informers by the CRF. For
In conditional models, it is notationally conve-each question, we can grant ourself a reward of 1 if
nient to express features as functionseny;). To 1. = I, and 0 otherwise. 1§3.1, informers were
one unfamiliar with CRFs, it may seem strange thategarded as a separate (high-value) bag of words.
y; is passed as an argument to features. At trainingherefore, overlap betweeh and [;, would be a
time, y; is indeed known, and at testing time, thereasonable predictor of question classification accu-
CRF algorithm efficiently finds the most probableracy. We use the Jaccard similarify.N1.|/|IxUI|.
sequence of;s using a Viterbi search. True labelsTable 5 shows the effect of using diverse feature sets.

are not revealed to the CRF at testing time. _
Fraction | Jaccard

Cell featuresIsTag and IsNum: E.g., the ob- Features used I. =1, | overlap
servation 4y, = 1 andz[4,2].tag = NP’ is cap- IsTag 0.368| 0.396
tured by the statement that “position 4 fires the fea- +IsNum 0.474| 0.542

ture IsTag ; Np2” (which has a boolean value).  +IsPrevTag+IsNextTag | 0.692| 0.751
There is anlsTag , ., feature for each(y,t,/) +IsEdge+IsBegin+IsEnd  0.848| 0.867
triplet. Similarly, for every possible statg, ev-

ery possiblenum value n (up to some maximum Table 5: Effect of feature choices.
horizon), and every level, we define boolean fea-

tureslsNum,, ,, .. E.g., position 7 fires the feature ® !STag features are not adequate.

ISNumy 2 5 in the 3-state model, capturing the state- ® IsNum features improve accuracy 10-20%.

ment “z[7, 2.num = 2 andy; = 2. e IsPrevTag and IsNextTag (“+Prev
+Next”) add over 20% of accuracy.

Adjacent cell features IsPrevTag  and e ISEdge transition features help exploit

IsNextTag : Context can be exploited by a Markovian dependencies and adds another

CRF by coupling the state at position with 10-15% accuracy, showing that sequential

observations at positions adjacent to positibn models are indeed required.

(extending to larger windows did not help). To
capture this, we use more boolean features: posiType | #Quest.| Heuristic| 2-state| 3-state

tion 4 fires the featurésPrevTag ; pT,; because Informers| CRF| CREF
z[3,1].tag = DTandy, = 1. Position 4 also fires “\what 349 57.3] 682| 834
IsPrevTag ; Npo becauser[3,2].tag = NPand  which 11 77.3| 833| 77.2
ya = 1. Similarly we define dsNextTag ., when 28 75.0 988! 100.0
feature for each possible, ¢, ¢) triple. where 27 84.3| 100.0/ 96.3

who 47 55.0 47.2 96.8

State transition features IsEdge : Position i
fires featurelsEdge ,, , if y;-1 = w andy; = v.
There is one such feature for each state-pain)
allowed by the transition graph. In addition we have

sentinel featuresBegin , andIsEnd , marking  Taple 6: Effect of number of CRF states, and com-
the beginning and end of the token sequence.  parison with the heuristic baseline (Jaccard accuracy
expressed as %).

how_* 32 90.6 88.5 93.8
rest 6 66.7 66.7 77.8
Total 500 62.4| 71.2 86.7

4.3 Informer-tagging accuracy

We study the accuracy of our CRF-based informer Table 6 shows that the 3-state CRF performs
tagger wrt human informer annotations. In the nexthuch better than the 2-state CRF, especially on diffi-
section we will see the effect of CRF tagging orcult questions withvhatandwhich It also compares
guestion classification. the Jaccard accuracy of informers found by the CRF
There are at least two useful measures ofs. informers found by the heuristics described in
informer-tagging accuracy. Each question has &3.3. Again we see a clear superiority of the CRF
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approach. tion class persor, we can exploit direct hyper-
Unlike the heuristic approach, the CRF approachymy connections likactor to Tom Hanksif avail-

is relatively robust to the parser emitting a somewhatble. Existing knowledge bases like WordNet and

incorrect parse tree, which is not uncommon. ThVikipedia, combined with intense recent work (Et-

heuristic approach picks the “easy” informarho, ~ zioni et al., 2004) on bootstrapping is-a hierarchies,

over the better oneCEQ, in “Who is the CEO of can thus lead to potentially large benefits.

IBM”. Its bias toward the NP-head can also be
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