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Abstract

We present a new word-alignment ap-
proach that learns errors made by ex-
isting word alignment systems and cor-
rects them. By adapting transformation-
based learning to the problem of word
alignment, we project new alignment links
from already existing links, using features
such as POS tags. We show that our align-
ment link projection approach yields a sig-
nificantly lower alignment error rate than
that of the best performing alignment sys-
tem (22.6% relative reduction on English-
Spanish data and 23.2% relative reduction
on English-Chinese data).

1 Introduction

Word-level alignment is a critical component of a
wide range of NLP applications, such as construc-
tion of bilingual lexicons (Melamed, 2000), word
sense disambiguation (Diab and Resnik, 2002), pro-
jection of language resources (Yarowsky et al.,
2001), and statistical machine translation. Although
word-level aligners tend to perform well when there
is enoughtraining data, the quality of word align-
ment decreases as the size of training data de-
creases. Moreover, word-alignment systems are of-
ten tripped up by many-to-many correspondences,
morphological language distinctions, paraphrased
and free translations, and a high percentage of func-
tion words (about 50% of the tokens in most texts).

At the heart of the matter is a set of assumptions
that word-alignment algorithms must make in order
to reduce the hypothesis space, since word align-
ment is an exponential problem. Because of these

assumptions, learning algorithms tend to make sim-
ilar errors throughout the entire data.

This paper presents a new approach—Alignment
Link Projection (ALP)—that learns common align-
ment errors made by an alignment system and at-
tempts to correct them. Our approach assumes the
initial alignment system adequately captures certain
kinds of word correspondences but fails to handle
others. ALP starts with an initial alignment and then
fills out (i.e.,projects) new word-level alignment re-
lations (i.e.,links) from existing alignment relations.
ALP then deletes certain alignment links associated
with common errors, thus improving precision and
recall.

In our approach, we adapt transformation-based
learning (TBL) (Brill, 1995; Brill, 1996) to the prob-
lem of word alignment. ALP attempts to find an
ordered list of transformation rules (within a pre-
specified search space) to improve a baseline anno-
tation. The rules decompose the search space into
a set of consecutive words (windows) within which
alignment links are added, to or deleted from, the
initial alignment. This window-based approach ex-
ploits the clustering tendency of alignment links,
i.e., when there is a link between two words, there
is frequently another link in close proximity.

TBL is an appropriate choice for this problem for
the following reasons:

1. It can be optimized directly with respect to an
evaluation metric.

2. It learns rules that improve the initial predic-
tion iteratively, so that it is capable of correct-
ing previous errors in subsequent iterations.

3. It provides a readable description (or classifi-
cation) of errors made by the initial system,
thereby enabling alignment refinements.
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The rest of the paper is organized as follows: In
the next section we describe previous work on im-
proving word alignments. Section 3 presents a brief
overview of TBL. Section 4 describes the adapta-
tion of TBL to the word alignment problem. Sec-
tion 5 compares ALP to various alignments and
presents results on English-Spanish and English-
Chinese. We show that ALP yields a significant re-
ductions in alignment error rate over that of the best
performing alignment system.

2 Related Work

One of the major problems with the IBM models
(Brown et al., 1993) and the HMM models (Vogel et
al., 1996) is that they are restricted to the alignment
of each source-language word to at most one target-
language word. The standard method to overcome
this problem to use the model in both directions
(interchanging the source and target languages) and
applying heuristic-based combination techniques to
produce arefined alignment(Och and Ney, 2000;
Koehn et al., 2003)—henceforth referred to as “RA.”

Several researchers have proposed algorithms for
improving word alignment systems by injecting ad-
ditional knowledge or combining different align-
ment models. These approaches include an en-
hanced HMM alignment model that uses part-of-
speech tags (Toutanova et al., 2002), a log-linear
combination of IBM translation models and HMM
models (Och and Ney, 2003), techniques that rely
on dependency relations (Cherry and Lin, 2003),
and a log-linear combination of IBM Model 3 align-
ment probabilities, POS tags, and bilingual dictio-
nary coverage (Liu et al., 2005). A common theme
for these methods is the use of additional features
for enriching the alignment process. These methods
perform better than the IBM models and their vari-
ants but still tend to make similar errors because of
the bias in their alignment modeling.

We adopt an approach that post-processes a given
alignment using linguistically-oriented rules. The
idea is similar to that of Ayan et al. (2004), where
manually-crafted rules are used to correct align-
ment links related to language divergences. Our
approach differs, however, in that the rules are ex-
tracted automatically—not manually—by examin-
ing an initial alignment and categorizing the errors
according to features of the words.

Initial Annotation

Corpus

Templates

Rule Instantiation

Best Rule Selection

Rule Application

Rules

Corpus
Annotated

Ground Truth

Figure 1: TBL Architecture

3 Transformation-based Learning

As shown in Figure 1, the input to TBL is an unanno-
tated corpus that is first passed to an initial annotator
and then iteratively updated through comparison to a
manually-annotated reference set (orground truth).
On each iteration, the output of the previous iteration
is compared against the ground truth, and an ordered
list of transformation rules is learned that make the
previous annotated data better resemble the ground
truth.

A set of rule templatesdetermines the space of
allowable transformation rules. A rule template has
two components: a triggering environment (condi-
tion of the rule) and a rewrite rule (action taken). On
each iteration, these templates are instantiated with
features of the constituents of the templates when
the condition of the rule is satisfied.

This process eventually identifies all possible in-
stantiated forms of the templates. Among all these
possible rules, the transformation whose application
results in the best score—according to some objec-
tive function—is identified. This transformation is
added to the ordered list of transformation rules.
The learning stops when there is no transformation
that improves the current state of the data or a pre-
specified threshold is reached.

When presented with new data, the transforma-
tion rules are applied in the order that they were
added to the list of transformations. The output of
the system is the annotated data after all transforma-
tions are applied to the initial annotation.

4 Alignment Link Projection (ALP)

ALP is a TBL implementation that projects align-
ment links from an initial input alignment. We in-
duce several variations of ALP by setting four pa-
rameters in different ways:
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Figure 2: Graphical Representation of a Template

1. Initial alignment
2. Set of templates
3. Simple or generalized instantiation
4. Best rule selection

We describe each of these below using the following
definitions and notation:

• E = e1, . . . , ei, . . . , et is a sentence in lan-
guageL1 andF = f1, . . . , fj , . . . , fs is a sen-
tence in languageL2.

• An alignment link(i, j) corresponds to a trans-
lational equivalence betweenei andfj .

• A neighborhoodof an alignment link (i, j)—
denoted byN(i, j)—consists of 8 possible
alignment links in a3 × 3 window with (i, j)
in the center of the window. Each element of
N(i, j) is called aneighboring linkof (i, j).

• nullEA(i) is true if and only if ei is not
aligned to any word inF in a given alignment
A. Similarly, nullFA(j) is true if and only if
fj is not aligned to any word inE in a given
alignmentA.

4.1 Initial Alignment

Any existing word-alignment system may be used
for the initial annotation step of the TBL algo-
rithm. For our experiments, we chose GIZA++ (Och
and Ney, 2000) and the RA approach (Koehn et
al., 2003)— the best known alignment combination
technique— as our initial aligners.1

4.2 TBL Templates

Our templates consider consecutive words (of size
1, 2 or 3) in both languages. The condition por-
tion of a TBL rule template tests for the existence
of an alignment link between two words. The ac-
tion portion involves the addition or deletion of an
alignment link. For example, the rule template in
Figure 2 is applicable only when a word (ei) in one
language is aligned to the second word (fj+1) of a
phrase (fj , fj+1) in the other language, and the first

1We treat these initial aligners as black boxes.

word (fj) of the phrase is unaligned in the initial
alignment. The action taken by this rule template is
to add a link betweenei andfj .2

ALP employs 3 different sets of templates to
project new alignment links or delete existing links
in a given alignment:

1. Expansion of the initial alignment according
to another alignment

2. Deletion of spurious alignment links
3. Correction of multi-word (one-to-many or

many-to-one) correspondences

Each of these is described below.

4.2.1 Expansion Templates

Expansion templates are used to extend an initial
alignment given another alignment as the validation
set. This approach is similar to the one used in the
RA method in that it adds links based on knowl-
edge about neighboring links, but it differs in that it
alsouses features of the words themselves to decide
which neighboring links to add.

Our expansion templates are presented in Table 1.
The first 8 templates add a new link to the initial
alignmentA if there is a neighboring link in the vali-
dation alignmentV . The final two templates enforce
the presence of at least two neighboring links in the
validation setV before adding a new link.

Condition Action
(i, j) ∈ A, (i− 1, j − 1) ∈ V add(i− 1, j − 1)
(i, j) ∈ A, (i− 1, j) ∈ V add(i− 1, j)
(i, j) ∈ A, (i− 1, j + 1) ∈ V add(i− 1, j + 1)
(i, j) ∈ A, (i, j − 1) ∈ V add(i, j − 1)
(i, j) ∈ A, (i, j + 1) ∈ V add(i, j + 1)
(i, j) ∈ A, (i+ 1, j − 1) ∈ V add(i+ 1, j − 1)
(i, j) ∈ A, (i+ 1, j) ∈ V add(i+ 1, j)
(i, j) ∈ A, (i+ 1, j + 1) ∈ V add(i+ 1, j + 1)
(i− 1, j − 1) ∈ A, (i+ 1, j + 1) ∈ A, add(i, j)
(i, j) ∈ V
(i+ 1, j − 1) ∈ A, (i− 1, j + 1) ∈ A, add(i, j)
(i, j) ∈ V

Table 1: Templates for Expanding the AlignmentA
According to a Validation AlignmentV

4.2.2 Deletion Templates

Existing alignment algorithms (e.g., GIZA++) are
biased toward aligning some words, especially in-
frequent ones, in one language to many words in the
other language in order to minimize the number of
unaligned words, even if many incorrect alignment

2A thick line indicates an added link.
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links are induced.3 Deletion templates are useful for
eliminating the resulting spurious links.

The basic idea is to remove alignment links
that do not have a neighboring link if the word
in question has already been aligned to another
word. Table 2 lists two simple templates to
clean up spurious links. We define the predicate
neighbor existsA(i, j) to denote whether there is
an alignment link in the neighborhood of the link
(i, j) in a given alignmentA. For example, the first
template deletes spurious links for a particular word
ei in E.

Condition Action
(i, j) ∈ A, (i, k) ∈ A,
neighbor existsA(i, j), del (i, k)
not(neighbor existsA(i, k))
(i, j) ∈ A, (k, j) ∈ A,
neighbor existsA(i, j), del (e, j)
not(neighbor existsA(k, j))

Table 2: Templates for Deleting Spurious Links in a
Given AlignmentA

4.2.3 Multi-Word Correction Templates

Current alignment algorithms produce one-to-one
word correspondences quite successfully. However,
accurate alignment of phrasal constructions (many-
to-many correspondences) is still problematic. On
the one hand, the ability to providefully correct
phrasal alignments is impaired by the occurrence of
high-frequency function words and/or words that are
not exact translations of the words in the other lan-
guage. On the other hand, we have observed that
most alignment systems are capable of providing
partially correct phrasal alignments.4

Our templates for handling multi-word correspon-
dences are grounded in the outcome of this finding.
That is, we make the (frequently correct) assumption
that at least one alignment link in a many-to-many
correspondence is correctly identified in the initial

3This is a well-known characteristic of statistical alignment
systems—motivated by the need to ensure a target-word trans-
lationei for each source wordfj while modelingp(F |E) —for
downstream MT.

4Specifically, we conducted a preliminary study using 40
manually-aligned English-Spanish sentences from a mixed cor-
pus (UN + Bible + FBIS) as our gold standard. We found that,
in most cases where the human annotator aligned one word to
two words, an existing alignment system identified at least one
of the two alignment links correctly.

Condition Action
nullFA(j), (i, j + 1) ∈ A add(i, j)
nullFA(j + 1), (i, j) ∈ A add(i, j + 1)
(i, j) ∈ A, (i, j + 1) ∈ A del (i, j)
(i, j) ∈ A, (i, j + 1) ∈ A del (i, j + 1)
nullFA(j), nullFA(j + 1) add(i, j),

add(i, j + 1)

nullEA(i), (i+ 1, j) ∈ A add(i, j)
nullEA(i+ 1), (i, j) ∈ A add(i+ 1, j)
(i, j) ∈ A, (i+ 1, j) ∈ A del (i, j)
(i, j) ∈ A, (i+ 1, j) ∈ A del (i+ 1, j)
nullEA(i), nullEA(i+ 1) add(i, j)

add(i+ 1, j)

(i+ 1, j + 1) ∈ A add(i, j)
nullEA(i), nullFA(j),
(i, j) ∈ A, nullEA(i+ 1), add(i+ 1, j + 1)
nullFA(j + 1)
(i, j) ∈ A, (i+ 1, j) ∈ A, add(i, j + 1)
(i+ 1, j + 1) ∈ A
(i, j) ∈ A, (i, j + 1) ∈ A, add(i+ 1, j)
(i+ 1, j + 1) ∈ A
(i− 1, j) ∈ A, (i+ 1, j) ∈ A add(i, j)
nullEA(i)
(i, j − 1) ∈ A, (i, j + 1) ∈ A add(i, j)
nullFA(j)

Table 3: Templates for Handling Multi-Word Corre-
spondences in a Given AlignmentA

Condition Action
(i, j) ∈ A del (i, j)
nullEA(i), nullFA(j) add(i, j)

Table 4: Templates for Correcting One-to-One Cor-
respondences in a Given AlignmentA

alignment. Table 3 lists the templates for correct-
ing alignment links in multi-word correspondences.
The first five templates handle (ei → fjfj+1) cor-
respondences, the next five handle (eiei+1 → fj)
correspondences, the next four handle (eiei+1 →
fjfj+1) correspondences, and the final two handle
(ei−1eiei+1 → fj) and (ei → fj−1fjfj+1) corre-
spondences.

The alignment rules given above may introduce
errors that require additional cleanup. Thus, we in-
troduce two simple templates (shown in Table 4) to
accommodate the deletion or addition of links be-
tween a single pair of words.

4.3 Instantiation of Templates

ALP starts with a set of templates and an initial
alignment and attempts to instantiate the templates
during the learning process. The templates can be
instantiated using two methods: Simple (a word is
instantiated with a specific feature) or Generalized (a
word is instantiated using a special keywordany-
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thing ).
ALP requires only a small amount of manually

aligned data for this process—a major strength of
the system. However, if we were to instantiate the
templates with the actual words of the manual align-
ment, the frequency counts (from such a small data
set) would not be high enough to derive reasonable
generalizations. Thus, ALP adds new links based on
linguistic features of words, rather than the words
themselves. Using these features is what sets ALP
apart from systems like the RA approach. Specifi-
cally, three features are used to instantiate the tem-
plates:

• POS tags on both sides: We assign POS
tags using the MXPOST tagger (Ratnaparkhi,
1996) for English and Chinese, and Connexor
for Spanish.

• Dependency relations: ALP utilizes depen-
dencies for a better generalization—if a depen-
dency parser is available in either language.
In our experiments, we used a dependency
parser only in English (a version of the Collins
parser (Collins, 1997) that has been adapted
for building dependencies) but not in the other
language.

• A set of closed-class words: We use 16 dif-
ferent classes, 9 of which are different seman-
tic verb classes while the other 7 are function
words, prepositions, and complementizers.5

If both POS tags and dependency relations are
available, they can be used together to instantiate
the templates. That is, a word can be instantiated
in a TBL template with: (1) a POS tag (e.g., Noun,
Adj); (2) a relation (e.g., Subj, Obj); (3) a parameter
class (e.g., Change of State); or (4) different subsets
of (1)–(3). We also employ a more generalized form
of instantiation, where words in the templates may
match the keywordanything .

4.4 Best Rule Selection

The rules are selected using two different metrics:
The accuracy of the rule or the overall impact of the
application of the rule on the entire data.

Two different mechanisms may be used for select-
ing the best rule after generating all possible instan-
tiations of templates:

5These are based on the parameter classes of (Dorr et al.,
2002).

1. Rule Accuracy: The goal is to minimize the
errors introduced by the application of a trans-
formation rule. To measure accuracy of a rule
r, we usegood(r)−2×bad(r), wheregood(r)
is the number of alignment links that are cor-
rected by the rule, andbad(r) is the number of
incorrect alignment links produced.

2. Overall impact on the training data: The ac-
curacy mechanism (above) is useful for bias-
ing the system toward higher precision. How-
ever, if the overall system is evaluated using a
metric other than precision (e.g., recall), the
accuracy mechanism may not guarantee that
the best rule is chosen at each step. Thus, we
choose the best rule according to the evalua-
tion metric to be used for the overall system.

5 Experiments and Results

This section describes our evaluation of ALP vari-
ants using different combinations of settings of the
four parameters described above. The two language
pairs examined are English-Spanish and English-
Chinese.

5.1 Evaluation Metrics

Let A be the set of alignment links for a set of sen-
tences. We takeS to be the set of sure alignment
links andP be the set of probable alignment links
(in the gold standard) for the same set of sentences.
Precision (Pr), recall (Rc) and alignment error rate
(AER) are defined as follows:

Pr =
|A ∩ P |
|A|

Rc =
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

A manually aligned corpus is used as our gold stan-
dard. For English-Spanish data, the manual an-
notation was done by a bilingual English-Spanish
speaker. Every link in the English-Spanish gold
standard is considered a sure alignment link.

For English-Chinese, we used 2002 NIST MT
evaluation test set, and each sentence pair was
aligned by two native Chinese speakers who are flu-
ent in English. Each alignment link appearing in
both annotations was considered a sure link, and
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links appearing in only one set were judged as prob-
able. The annotators were not aware of the specifics
of our approach.

5.2 Evaluation Data

We evaluated ALP using 5-fold cross validation on
two different data sets:

1. A set of 199 English-Spanish sentence pairs
(nearly 5K words on each side) from a mixed
corpus (UN + Bible + FBIS).

2. A set of 491 English-Chinese sentence pairs
(nearly 13K words on each side) from 2002
NIST MT evaluation test set.

We divided the pairs of sentences randomly into 5
groups. Then, for each fold, we used 4 groups as the
ground truth (for training), and used the other group
as our gold standard (for evaluation). This process
was repeated 5 times so that each sentence pair was
tested exactly once. We computed precision, recall
and error rate on the entire set for each data set.6

For an initial alignment, we used GIZA++ in both
directions (E-to-F andF -to-E, whereF is either
Chinese (C) or Spanish (S)), and also two different
combined alignments: intersection ofE-to-F and
F -to-E; and RA using a heuristic combination ap-
proach calledgrow-diag-final(Koehn et al., 2003).

For the English-Spanish experiments, GIZA++
was trained on 48K sentence pairs from a mixed
corpus (UN + Bible + FBIS), with nearly 1.2M of
words on each side, using 10 iterations of Model 1,
5 iterations of HMM and 5 iterations of Model 4.
For the English-Chinese experiments, we used 107K
sentence pairs from FBIS corpus (nearly 4.1M En-
glish and 3.3M Chinese words) to train GIZA++, us-
ing 5 iterations of Model 1, 5 iterations of HMM, 3
iterations of Model 3, and 3 iterations of Model 4.

5.3 Results for English-Spanish

For our initial alignments we used: (1) Intersec-
tion of GIZA++ English-to-Spanish and Spanish-
to-English; (2) GIZA++ English-to-Spanish; (3)
GIZA++ Spanish-to-English; and (4) RA. Of these,
RA is the best, with an error rate of 21.2%. For ease
of comparison, the RA score appears in all result ta-
bles below.

6The number of alignment links varies over each fold.
Therefore, we chose to evaluate all data at once instead of eval-
uating on each fold and then averaging.

Tables 5–7 compare ALP to each of these four
alignments using different settings of 4 parameters:
ALP[IA, T, I, BRS], where IA is the initial align-
ment,T is the set of templates,I is the instantia-
tion method, andBRSis the metric for the best rule
selection at each iteration.TE is the set of expan-
sion templates from Table 1,TD is the set of dele-
tion templates from Table 2, andTMW is the set of
multi-word templates from Table 3 (supplemented
with templates from Table 4).

As mentioned in Section 4.3, we use two instanti-
ation methods: (1) simple instantiation (sim), where
the words are instantiated using a specific POS tag,
relation, parameter class or combination of those;
and (2) generalized instantiation (gen), where the
words can be instantiated using the keywordany-
thing . Two different metrics are used to select the
best rule: The accuracy of the rule (acc) and the
AER on the entire training data after applying the
rule (aer).7

We performed statistical significance tests using
two-tailed paired t-tests. Unless otherwise indicated,
the differences between ALP and initial alignments
(for all ALP variations and all initial alignments)
were found to be statistically significant within the
95% confidence interval. Moreover, the differences
among ALP variations themselves were statistically
significant within 95% confidence interval.

Using Intersection as Initial Alignment We ran
ALP using the intersection of GIZA++ (E-to-S)
and GIZA++(S-to-E) alignments as the initial align-
ment in two different ways: (1) WithTE using the
union of the unidirectional GIZA++ alignments as
the validation set, and (2) withTD andTMW applied
one after another. Table 5 presents the precision, re-
call and AER results.

Alignments Pr Rc AER
Intersection (Int) 98.2 59.6 25.9
ALP[Int, TE , gen, aer] 90.9 69.9 21.0
ALP[Int, (TD, TMW ), gen, aer] 88.8 72.3 20.3
RA 83.8 74.4 21.2

Table 5: ALP Results Using GIZA++ Intersection as
Initial Alignment for English-Spanish

Using the expansion templates (TE) against a val-
7We use only sure alignment links as the ground truth to

learn rules inside ALP. Therefore, AER here refers to the AER
of sure alignment links.
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Alignments Pr Rc AER
E-to-S 87.0 67.0 24.3
ALP[E-to-S,(TD, TMW ), gen, aer] 85.6 76.4 19.3
S-to-E 88.0 67.5 23.6
ALP[S-to-E,(TD, TMW ), gen, aer] 87.1 76.7 18.4
RA 83.8 74.4 21.2

Table 6: ALP Results Using GIZA++ (Each Direc-
tion) as Initial Alignment for English-Spanish

idation set produced results comparable to the RA
method. The major difference is that ALP resulted
in a much higher precision but in a lower recall be-
cause ALP is more selective in adding a new link
during the expansion stage. This difference is due to
the additional constraints provided by word features.
The version of ALP that applies deletion (TD) and
multi-word (TMW ) templates sequentially achieves
lower recall but higher precision than RA. In the best
case, ALP achieves a statistically significant rela-
tive reduction of 21.6% in AER over the Intersection
alignment. When compared to RA, ALP achieves a
lower AER but the difference is not significant.

Using Unidirectional GIZA++ Alignments as Ini-
tial Alignment In a second set of experiments, we
applied ALP to the unidirectional GIZA++ align-
ments, using deletion (TD) and multi-word (TMW )
templates, generalized instantiation, and AER for
the best rule selection. Table 6 presents the preci-
sion, recall and AER results.

For both directions, ALP achieves a lower preci-
sion but much higher recall than that of the initial
unidirectional alignment. Overall, there was a rela-
tive reduction of 20.6–22.0% in AER. When com-
pared to RA, the version of ALP that uses unidirec-
tional GIZA++ alignments brings about significant
reductions in AER: 9.0% relative reduction in one
direction and 13.2% relative reduction in the other
direction.

Using RA as Initial Alignment In a third experi-
ment, we compared RA with variations of ALP us-
ing RA as the initial alignment. We used the tem-
plates in two different ways: (1) with a combination
of TD andTMW (i.e.,TD ∪TMW ), and (2) with two
consecutive runs of ALP, first withTD and then with
TMW using the output of the first run as the initial
annotation in the second run (i.e.,TD, TMW ). Ta-
ble 7 presents precision, recall and AER results, us-
ing different methods for template instantiation and

Alignments Pr Rc AER
ALP[RA, (TD, TMW ), sim, acc] 87.8 77.7 17.6
ALP[RA, (TD, TMW ), sim, aer] 87.9 79.0 16.8
ALP[RA, (TD ∪ TMW ), gen, aer] 86.2 80.0 17.0
ALP[RA, (TD, TMW ), gen, aer] 86.9 80.5 16.4
RA 83.8 74.4 21.2

Table 7: ALP Results Using RA as Initial Alignment
for English-Spanish

best rule selection.
The results indicate that using AER is better than

using accuracy for choosing the best rule. Using
generalized instantiation instead of simple instantia-
tion results in a better AER. Running ALP with dele-
tion (TD) templates followed by multi-word (TMW )
templates results in a lower AER than running ALP
only once with combined templates.

The highest performing variant of ALP, shown
in the fourth line of the table, uses RA as the ini-
tial alignment, template setsTD, TMW , general-
ized instantiation, and AER for best rule selection.
This variant is significantly better than RA, with a
22.6% relative reduction in AER. When compared
to the unidirectional alignments (E-to-S andS-to-
E) given in Table 6, this variant of ALP yields nearly
the same precision (around 87.0%) but a 19.2% rel-
ative improvement in recall. The overall relative re-
duction in AER is 30.5% in theS-to-E direction and
32.5% in theE-to-S direction.

5.4 Results for English-Chinese

Our experiments for English-Chinese were designed
with a similar structure to that of English-Spanish,
i.e., the same four initial alignments. Once again,
RA performs the best out of these initial alignments,
with an error rate of 29.7%. The results of the ini-
tial alignments, and variations of ALP based on dif-
ferent initial alignments are shown in Table 8. For
brevity, we include only the ALP parameter settings
resulting in the best configurations from the English-
Spanish experiments. For learning rules from the
templates, we used only the sure alignment links as
the ground truth while learning rules inside ALP.

On the English-Chinese data, ALP yields signif-
icantly lower error rates with respect to the initial
alignments. When ALP is run with the intersection
of two GIZA++ alignments, the relative reduction
is 5.4% in AER. When ALP is run withE-to-C as
initial alignment, the relative reduction in AER is
13.4%. For the other direction, ALP produces a rel-
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Alignments Pr Rc AER
Intersection (Int) 94.8 53.6 31.2
ALP[Int, (TD, TMW ), gen, aer] 91.7 56.8 29.5
E-to-C 70.4 68.3 30.7
ALP[E-to-C,(TD, TMW ), gen, aer] 79.1 68.1 26.6
C-to-E 66.0 69.8 32.2
ALP[C-to-E,(TD, TMW ), gen, aer] 83.3 66.0 26.2
RA 61.9 82.6 29.7
ALP[RA,(TD, TMW ), gen, aer] 82.1 72.7 22.8

Table 8: ALP Results Using Different Initial Align-
ments for English-Chinese

ative reduction of 18.6% in AER. Finally, when RA
is given to ALP as an initial alignment, ALP results
in a relative reduction of 23.2% in AER. When com-
pared to RA, all variations of ALP, except the one
starting with the intersection, yield statistically sig-
nificantly lower AER. Another important finding is
that ALP yields significantly higher precision than
the initial alignments but usually lower recall.

6 Conclusion

We have presented ALP, a new approach that re-
fines alignments by identifying the types of errors
made by existing alignment systems and correcting
them. Our approach adapts TBL to the problem of
word-level alignment by examining word features
as well as neighboring links. We use POS tags,
closed-class words in both languages, and depen-
dency relations in one language to classify the er-
rors made by the initial alignment system. We show
that ALP yields at least a 22.6% relative reduction
on English-Spanish data and 23.2% relative reduc-
tion on English-Chinese data in alignment error rate
over that of the best performing system.

We should note that ALP is not a stand-alone
word alignment system but a supervised learning ap-
proach to improve already existing alignment sys-
tems. ALP takes advantage of clustering of align-
ment links to project new links given a reasonable
initial alignment. We have shown that ALP is quite
successful in projecting alignment links for two dif-
ferent languages—Spanish and Chinese.

Statistical alignment systems are more successful
with increasing amount of training data. Whether
ALP improves the statistical alignment systems
when they are trained on more data is an interesting
research problem, which we plan to tackle in future.

Finally, we will evaluate the improved alignments
in the context of an end-to-end application, such as

machine translation.
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