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Abstract 

Browsing through large volumes of spoken 
audio is known to be a challenging task for 
end users. One way to alleviate this prob-
lem is to allow users to gist a spoken audio 
document by glancing over a transcript 
generated through Automatic Speech Rec-
ognition. Unfortunately, such transcripts 
typically contain many recognition errors 
which are highly distracting and make gist-
ing more difficult. In this paper we present 
an approach that detects recognition errors 
by identifying words which are semantic 
outliers with respect to other words in the 
transcript. We describe several variants of 
this approach. We investigate a wide range 
of evaluation measures and we show that 
we can significantly reduce the number of 
errors in content words, with the trade-off 
of losing some good content words.  

1 Introduction 

Spoken audio documents are becoming more and 
more common place due to the rising popularity of 
technologies such as: video and audio conferenc-
ing, video web-casting and digital cameras for the 
consumer market. Unfortunately, speech docu-
ments are inherently hard to browse because of 
their transient nature.  For example, imagine trying 
to locate the audio segment in the recording of a 
60-minute meeting, where John talked about pro-
ject X. Typically, this would require fast forward-
ing through the audio by some amount, then 
listening and trying to remember if the current seg-

ment was spoken before or after the desired seg-
ment, then fast-forwarding or backtracking by a 
small amount, and so on.  

One way to make audio browsing of audio docu-
ments more efficient is to allow the user to navi-
gate through a textual transcript that is cross-
referenced with corresponding time points into the 
original audio (Nakatani et al. 1998; Hirschberg et 
al. 1999). Such transcripts can easily be produced 
with Automatic Speech Recognition (ASR) sys-
tems today. Unfortunately, such transcripts typi-
cally contain recognition errors that make them 
hard to browse and understand. Although Word 
Error Rates (WER) of the order of 20% can be 
achieved for broadcast quality audio, the WER for 
more common situations (ex: less-than-broadcast 
quality recordings of meetings) is typically in the 
order of 50% or more.  

The work we present in this paper aims at auto-
matically identifying recognition errors and remov-
ing them from the transcript, in order to make 
gisting and browsing of the corresponding audio 
more efficient. For example, consider the follow-
ing portion of a transcript that was produced with 
the Dragon NaturallySpeaking speech recognition 
system from the audio of a meeting: 
“Weenie to decide quickly whether local for large 
expensive plasma screen aura for a bunch of 
smaller and cheaper ones and Holland together” 

Now consider the following filtered transcript 
where recognition errors were automatically blot-
ted out using our proposed algorithm:  
“ ... to decide quickly whether ... large expensive 
plasma screen ... for a bunch of smaller and 
cheaper ones and ... together” 

We believe that transcripts like this second one 
may be more efficient for gisting and browsing the 
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content of the original audio whose correct tran-
script is: 
“We need to decide quickly whether we will go for 
a large expensive plasma screen or for a bunch of 
smaller and cheaper ones and tile them together.” 

Our approach to filtering recognition errors is to 
identify semantic outliers. By this, we mean 
words that do not cohere well semantically with 
other words in the transcript. More often than not, 
such outliers turn out to be mistranscribed words. 
We present several variants of an algorithm for 
identifying semantic outliers, and evaluate them in 
terms of how well they are able to filter out recog-
nition errors. 

2 Related Work 

Hirschberg et al. (1999), and Nakatani et al. (1998) 
proposed the idea of using automatic transcripts for 
gisting and navigating audio documents. Text-
based summarization techniques on automatic 
speech transcription have also been used. For ex-
ample, the method of Désilets et al. (2001) was 
found to produce accurate keyphrases for transcrip-
tions with Word Error Rates (WER) in the order of  
25%, but performance was less than ideal for tran-
scripts with WER in the order of 60%. With such 
transcripts, a large proportion of the extracted key-
phrases included serious transcription errors. Ink-
pen and Désilets (2004) presented an experiment 
that filters out errors in keywords extracted from 
speech, by identifying the keywords that are not 
semantically close to the rest of the keywords.  

Semantic similarity measures were used for 
many tasks. Two examples are: real-word error 
correction (Budanitsky and Hirst, 2000) and an-
swering synonym questions (Turney, 2001), 
(Jarmasz and Szpakowicz, 2003).  

There is a lot of research on confidence meas-
ures for identifying errors in speech recognition 
output. Most papers on this topic use information 
that is internal to the ASR system, generated by the 
decoder during the recognition process. Examples 
are likelihood ratios derived by a Viterbi decoder 
(Gillick et al., 1997), measures of competing 
words at a word boundary (Cox and Rose, 1996), 
word score densities in N-best lists, and various 
acoustic and phonetic features. Machine learning 
techniques were used to identify the best combina-
tions of features for classification (Chase, 1997) 
(Schaaf and Kemp, 1997) (Ma et al., 2001) 

(Skantze and Edlund, 2004) (Zhou and Meng, 
2004) (Zhou et al., 2005). Some of these methods 
achieve good performance, although they use dif-
ferent test sets and report different evaluation 
measures from the set we enumerate in Section 6.  

In our work, we use information that is external 
to the ASR system, because new knowledge seems 
likely to help in the detection of semantic outliers.  
In this respect, the work of Cox and Dasmahapatra 
(2000) is closest to ours. They compared the accu-
racy of a measure based on Latent Semantic 
Analysis (LSA) (Landauer and Dumais, 1997) to 
an ASR-based confidence measure, and found that 
the ASR-based measure (using N-best lists) outper-
formed the LSA approach. While the N-best lists 
approach was better at the high-Recall end of the 
spectrum, the LSA was better at the high-Precision 
end. They also showed that a hybrid combination 
of the two approaches worked best. Our work is 
similar to the LSA-based part of Cox and Dasma-
hapatra, except that we use Point-wise Mutual 
Information (PMI) instead of LSA. Because PMI 
scales up to very large corpora, it has been shown 
to work better than LSA for assessing the semantic 
similarity of words (Turney, 2001). Another dis-
tinguishing feature is that Cox and Dasmahapatra 
only looked at transcripts with moderate WER, 
whereas we additionally evaluate the technique for 
the purpose of doing error filtering on transcripts 
with high WER, which are more typical of non-
broadcast conversational audio.   

3 The Data 

We evaluated our algorithms on a randomly se-
lected subset of 100 stories from the TDT2 English 
Audio corpus. We conducted experiments with two 
types of automatically-generated speech tran-
scripts. The first ones were generated by the 
NIST/BBN time-adaptive speech recognizer and 
have a moderate WER (27.6%), which is represen-
tative of what can be obtained with a speaker-
independent ASR system tuned for the Broadcast 
News domain. In the rest of this paper, we refer to 
these moderate accuracy transcripts as the BBN 
dataset. The second set of transcripts was obtained 
using the Dragon NaturallySpeaking speaker-
dependent recognizer. Their WER (62.3%) was 
much higher because the voice model was not 
trained for speaker-independent broadcast quality 
audio. These transcripts approximate the type of 
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high WER seen in more casual less-than-broadcast 
quality audio. We refer to these transcripts as the 
Dragon dataset. 

4 The method 

Our algorithm tries to detect recognition errors by 
identifying and filtering semantic outliers in the 
transcripts. In other words, it declares as recogni-
tion errors all the words with low semantic similar-
ity to other words in the transcript. The algorithm 
focuses on content words, i.e., words that do not 
appear in a list of 779 stopwords (including closed-
class words, such as prepositions, articles, etc.). 
The reason to ignore stopwords is that they tend to 
co-occur with most words, and are therefore se-
mantically coherent with most words. The basic 
algorithm for determining if a word w is a recogni-
tion error is as follows.  
 
1. Compute the neighborhood N(w) of w as the 
set of content words that occur before and after w 
in a context window (including w itself).  
 
2. Compute pair-wise semantic similarity scores 
S(wi, wj) between all pairs of words wi ≠ wj (in-
cluding w) in the neighborhood N(w), using a se-
mantic similarity measure. Scale up those S(wi, wj) 
by a constant so that they are all non-negative, and 
the smallest one is 0. 
 
3. For each wi in the neighborhood N(w) (includ-
ing w), compute its semantic coherence SC(wi). 
by “aggregating” the pair-wise semantic similari-
ties S(wi, wj) of wi with all its neighbors (wi ≠ wj) 
into a single number. 
 
4. Let SCavg be the average of SC(wi) over all wi in 
the neighborhood N(w). 
 
5. Label w as a recognition error if SC(w) < 
K·SCavg, where K is a parameter that allows us to 
control the amount of error filtering (K% of the 
average semantic coherence score). Low values of 
K mean little error filtering and high values of K 
mean a lot of error filtering.  
 

We tested a number of variants of Steps 1-3. For 
Step 1, we experimented with two ways of com-
puting the neighborhood N(w). The first approach 
was to set N(w) to be all the words in the transcript 
(the All variant). The second neighborhood ap-
proach was to set N(w) to be the set of 10 content 

words before and after w in the transcript (the 
Window variant).  

For Step 2 we experimented with two different 
measures for evaluating the pair-wise semantic 
similarities S(wi, wj). The first measure used a 
hand-crafted dictionary (the Roget variant) 
whereas the second one used a statistical measure 
based on a large corpus (the PMI variant).  

For Step 3 we experimented with different 
schemes for “aggregating” the pair-wise semantic 
similarities S(wi, wj) into a single semantic coher-
ence number SC(wi) for a given word wi. The first 
aggregation scheme was simply to average the 
SC(wi) values (the AVG variant). Note that with 
this scheme, we filter words that do not cohere 
well with all the words in the neighborhood N(w). 
This might be too aggressive in the case of the All 
variant, especially for longer or multi-topic audio 
documents. Therefore, we investigated other ag-
gregation schemes that only required words to co-
here well with a subset of the words in N(w). The 
second aggregation scheme was to set SC(wi) to 
the value of the most similar neighbor in N(w) (the 
MAX variant). The third aggregation scheme was 
to set SC(wi) to the average of the 3 most similar 
neighbors in N(w) (the 3MAX variant).  

Thus, there are altogether 2x2x3 = 12 possible 
configurations of the algorithm. In the rest of this 
paper, we will refer to specific configurations us-
ing the following naming scheme: Step1Variant-
Step2Variant-Step3Variant. For example, All-
PMI-AVG means the configuration that uses the 
All variant of Step 1, the PMI variant of Step 2, 
and the AVG variant of step 3. 

It is worth noting that all configurations of this 
algorithm are computationally intensive, mainly 
because of Step 2. However, since our aim is to 
provide transcripts for browsing audio recordings, 
we do not have to correct errors in real time.  

5 Choosing a semantic similarity measure 

Semantic similarity refers to the degree with which 
two words (two concepts) are related. For example, 
most human judges would agree that paper and 
pencil are more closely related than car and 
toothbrush. We use the term semantic similarity in 
this paper in a more general sense of semantic re-
latedness (two concepts can be related by their 
context of use without necessarily being similar).  
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There are three types of semantic similarity 
measures: dictionary-based (lexical taxonomy 
structure), corpus-based, and hybrid. Most of the 
dictionary-based measures use path length in 
WordNet – for example (Leacock and Chodorow, 
1998), (Hirst and St-Onge, 1998).  The corpus-
based measures use some form of vector similarity. 
The cosine measure uses frequency counts in its 
vectors and cosine to compute similarity; the sim-
pler methods use binary vectors and compute coef-
ficients such as: Matching, Dice, Jaccard, and 
Overlap. Examples of hybrid measures, based on 
WordNet and small corpora, are: Resnik (1995), 
Jiang and Conrath (1997), Lin (1998). All diction-
ary-based measures have the disadvantage of lim-
ited coverage: they cannot deal with many proper 
names and new words that are not in the diction-
ary. For WordNet-based approaches, there is the 
additional issue that they tend to work well only 
for nouns because the noun hierarchy in WordNet 
is the most developed. Also, most of the WordNet-
based measures do not work for words with differ-
ent part-of-speech, with small exceptions such as 
the extended Lesk measure (Banerjee and Peder-
sen, 2003).  

We did a pre-screening of the various semantic 
similarity measures in order to choose the one 
measure of each type (dictionary-based and cor-
pus-based) that seemed most promising for our 
task of detecting semantic outliers in automatic 
speech transcripts. The dictionary-based ap-
proaches that we evaluated were: the WordNet-
based measure by Leacock and Chodorow (1987), 
and one other dictionary-based measure that uses 
the Roget thesaurus. The Roget measure (Jarmasz 
and Szpakowicz, 2003) has the advantage that it 
works across part-of-speech. The corpus-based 
measures we evaluated were: (a) the cosine meas-
ure based on word co-occurrence vectors (Lesk, 
1969), (b) a new method that computes the Pearson 
correlation coefficient of the co-occurrence vectors 
instead of the cosine, and (c) a measure based on 
point-wise mutual information. We computed the 
first two measures on the 100-million-words Brit-
ish National Corpus (BNC)1, and the third one on a 
much larger-corpus of Web data (one terabyte) 
accessed through the Waterloo Multitext system 
(Clarke and Terra, 2003). The reason for using 
corpora of different sizes is that PMI is the only 

                                                           
1 http://www.natcorp.ox.ac.uk/index.html 

one of the three corpus-based approaches that 
scales up to a terabyte corpus. 

We describe here in detail the PMI corpus-based 
measure, because it is the most important for this 
paper. The semantic similarity score between two 
words w1 and w2 is defined as the probability of 
seeing the two words together divided by the prob-
ability of each word separately: PMI(w1,w2) = log 
[P(w1,w2) / (P(w1)·P(w2))] =  log [C(w1,w2)⋅N / 
(C(w1)⋅C(w2))], where C(w1,w2), C(w1), C(w2) are 
frequency counts, and N is the total number of 
words in the corpus. Such counts can easily and 
efficiently be retrieved for a terabyte corpus using 
the Waterloo Multitext system. 

In order to assess how well the semantic similar-
ity measures correlate with human perception, we 
use the set of 30 word pairs of Miller and Charles 
(1991), and the 65 pairs of Rubenstein and Goode-
nough (1965). Both used humans to judge the simi-
larity. The Miller and Charles pairs were a subset 
of the Rubenstein and Goodenough pairs. Note that 
both of those sets were limited to nouns that ap-
peared in the Roget thesaurus, and they are there-
fore favorably biased towards dictionary-based 
approaches. Table 1 shows the correlation of 5 
similarity measures for the Rubenstein and Goode-
nough (R&G) and Miller and Charles (M&C) data-
set. Note that although there are many WordNet-
based semantic similarity measures, we only show 
correlations for Leacock and Chodorow (L&C) 
because it was previously shown to be better corre-
lated (Jarmasz and Szpakowicz, 2003). We do not 
show figures for hybrid measures either because 
the same study showed L&C to be better. 
 
Table 1: Correlation between human assigned and various 
machine assigned semantic similarity scores. 
 Dictionary-based Corpus-based 
 L&C Roget Cos. Corr. PMI 
M&C 0.821 0.878 0.406 0.438 0.759 
R&G 0.852 0.818 0.472 0.517 0.746 
 

We see that the WordNet-based L&C measure 
based (Leacock and Chodorow, 1998 and the Ro-
get measure (Jarmasz and Szpakowicz, 2003) both 
achieve high correlations but the two vector cor-
pus-based measures (Cosine and Pearson Correla-
tion) achieve much lower correlation. The only 
corpus-based measure that does well is PMI, 
probably because of the much larger corpus.  

52



We decided to experiment with two of the meas-
ures (one corpus-based and one thesaurus based) 
for computing the semantic similarity of word 
pairs in Step 2 of the algorithm described in Sec-
tion 3. The two measures are: PMI computed on 
the Waterloo terabyte corpus and the Roget-based 
measure. These two seem the most promising 
given the nature of our task and the correlation fig-
ures reported above. 

6 Evaluation Measures 

We use several evaluation measures to determine 
how well our algorithm works for identifying se-
mantic outliers. As summarized in Table 2, the task 
of detecting recognition errors can be viewed as a 
classification task. For each word, the algorithm 
must predict whether or not that word was tran-
scribed correctly.  
 
Table 2: Recognition error detection can be seen as a classifi-
cation task. 

 
 

 Correctly 
transcribed 

(actual) 

NOT Correctly 
transcribed 

(actual) 
Correctly 

 transcribed 
 (predicted) 

True Positive 
(TP) 

False Positive 
(FP) 

NOT Correctly 
transcribed 
 (predicted) 

False Negative 
(FN) 

True Negative 
(TN) 

 
Note that we decide if a word is actually cor-

rectly transcribed or not by using the alignment of 
an automatic transcript with the manual transcript. 
A standard evaluation tool (sclite2) computes WER 
by counting the number of substitutions, deletions, 
and insertions needed to align a reference tran-
script with a hypothesis file. It also marks the 
words that are correct in automatic transcript (the 
hypothesis file). The rest of the words are the ac-
tual recognition errors (the insertions or substitu-
tions). The deletions – words that are absent from 
the automatic transcript – cannot be tagged by the 
confidence measure. 

We define the following performance measures 
in order to evaluate the improvement of the filtered 
transcripts compared to the initial transcripts:  
 
1. Word error rate in the initial transcript and in 
the filtered transcript. These measures can be com-
puted with and without stopwords (for which our 
                                                           
2 http://www.nist.gov/speech/tools/ 

algorithm does not apply). Note that WER without 
stopwords could be slightly lower than traditional 
WER mostly because content words tend to be rec-
ognized more accurately than stopwords (Désilets 
et al. 2001). When filtering out semantic outliers, 
there will be gaps in the filtered transcript, there-
fore the general WER might not improve because 
it penalizes heavily the deletions.  
 
2. Content word error rate (cWER). This is the 
error rate in an automatic transcript (initial or fil-
tered) from the point of view of the confidence 
measure, for the content words only. It penalizes 
the words in the automatic transcripts that should 
not be there, but not any missing words (no dele-
tions are penalized). In the case of a transcript fil-
tered by our algorithm, it excludes not only the 
stopwords, but also the filtered words. We com-
puted cWER with sclite without penalizing for the 
gaps created by the filtered words.  
 
3. The percentage of lost good content words 
(%Lost). This is the percentage of correctly rec-
ognized content words which are lost in the proc-
ess of filtering out recognition errors, defined as:  
%Lost = 100 * FN / (TP + FN). We could also 
compute the percent of discarded words, without 
regard if they should have been filtered out or not. 
D = (TN + FN) / (TP + FP + TN + FN). 
 
4. Precision (P), Recall (R) and F-measure. Pre-
cision is the proportion of truly correct words con-
tained in the list of content words which the 
algorithm labeled as correct. Recall is the propor-
tion of truly correct content words that the algo-
rithm was able to retain. F-measure is the 
geometric mean of P and R and expresses a trade-
off between those two measures.  P = TP / (TP + 
FP); R = TP / (TP + FN); F = 2PR / (P+R). 

7 Results 

We ran various configurations of the algorithm 
described in Section 4 on the 100 story sample 
from the TDT2 corpus. This section discusses the 
results of those experiments. We studied the Preci-
sion-Recall (P-R) curves for various configurations 
of our algorithm over the 100 stories, for the two 
types of transcripts: the BBN and Dragon datasets. 
Figures 1 and 2 show an example for each dataset. 
Each point on a P-R curve shows the Precision and 
Recall for one value of K in {0, 20, 40, 60, 80, 
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100, 120, 140, 160, 180, 200}. Points on the left 
correspond to aggressive filtering (high values of 
K), whereas points on the right correspond to leni-
ent filtering (low values of K).  

First, we looked at the relative merits of the two 
semantic similarity measures (PMI and Roget) for 
Step 2. Figures 1 and 2 plot the P-R curves for the 
All-PMI-AVG and All-Roget-AVG configurations. 
The graphs clearly indicate that PMI performs bet-
ter, especially for the high WER Dragon dataset. 
So PMI was used in the rest of the experiments.  

Next, we looked at the variants for setting up the 
neighborhood N(w) in Step 1 (All vs. Window). 
The three P-R curves for All-PMI-X and Window-
PMI-X for all aggregation approaches X in {AVG, 
MAX, 3MAX} are not shown here because they 
were similar to the P-PMI curves from Figures 1 
and 2, for the BBN dataset and for the Dragon 
dataset, respectively. The Window variant was 
marginally better for X=MAX on both datasets, as 
well as for X=3MAX on the BBN dataset. In all 
other cases, the Window and All variants per-
formed approximately the same.  

Next, we looked at the different schemes for ag-
gregating the pair-wise similarity scores in Step 3 
(AVG, MAX, 3MAX). By plotting the P-R curves 
for All-PMI-AVG, All-PMI-MAX, and All-PMI-
3MAX for both datasets we obtained again curves 
similar to the P-PMI curves from Figures 1 and 2. 
It seemed that AVG performs slightly better for 
high Recall, the difference being more marked 
when there is no windowing or when we are work-
ing on the Dragon dataset. The 3MAX and MAX 
variants seemed to be slightly better at high Preci-
sion with acceptable Recall values, with 3MAX 
being always equal or very slightly better than 
MAX. In an audio gisting and browsing context 
Precision is more important than Recall, therefore 
we can choose 3MAX. 

Having established Window-PMI-3MAX as one 
of the better configurations, we now look more 
closely at its performance.  

Figures 3 and 4 show how the content word er-
ror rate (cWER), the percentage of lost good words 
(%Lost), and the F-measure vary as we apply more 
and more aggressive error filtering (by increasing 
K) to both datasets. We see that our semantic out-
lier filtering approach is able to significantly re-
duce the number of transcription errors, while 
losing some correct words. For example, with the  
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Fig 1: P-R curves of PMI vs. Roget (with All and AVG) on 
the BBN dataset. Each P-R point corresponds to a different 
value of the threshold K (high Recall for low values of K, high 
Precision for high values of K). 
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Fig 2: P-R curves of PMI vs. Roget (with All and AVG) on 
the Dragon dataset 
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Fig.3. Content Words Error Rate (cWER), %Lost good key-
words (%Lost) and F-measure as a function of the filtering 
level K for the Window-PMI-3MAXconfiguration on the BBN 
dataset. 
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Fig.4. Content Words Error Rate (cWER), %Lost good key-
words (%Lost) and F-measure as a function of the filtering 
level K for the Window-PMI-3MAX configuration on the 
Dragon dataset. 
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moderately accurate BBN dataset, we can reduce 
cWER by 50%, while losing 45% of the good con-
tent words (K=100).  For the low accuracy Dragon 
dataset, we can reduce cWER by 50%, while los-
ing 50% of the good content words (K=120). We 
can choose lower thresholds, for smaller reduction 
in cWER but smaller percent of lost good content 
words. Even small reductions in cWER are impor-
tant, especially for less-than-broadcast conditions 
where WER is initially very high.  

In general, we were not able to show an im-
provement in WER computed in a standard way 
(item 1 in Section 6), because of the high penalty 
due to deletions for both filtered semantic outliers 
and lost good content words. The percent of lost 
good words is admittedly too high, but this seems 
to be the case for speech error confidence measures 
(which do not remove the words tagged as incor-
rect). Also, for the purpose of audio browsing and 
gisting, we believe that fewer errors even with loss 
of content are preferable for intelligibility.  

Comparing our results to those reported by Cox 
and Dasmahapatra (2000) our PMI-based measure 
seems to performs better than their LSA-based 
measure, judging by the shape of the Precision-
Recall curves. (For example, at Precision=90%, 
they obtained Recall=12%, whereas we obtain 
20%. At Precision=80%, they obtain Recall=50%, 
whereas we get Recall=100%.) Note however that 
their results and ours are not completely compara-
ble since the experiments used different audio cor-
pora (WSJCAM0 vs. TDT2), but those two 
corpora seem to exhibit similar initial WERs (the 
WER appears to be around 30% for WSJCAM0; 
the WER is 27.6% for our BBN dataset). Also, it is 
worth noting the LSA measure was computed 
based on a corpus that was very similar to the au-
dio corpus used to evaluate the performance of the 
measure (both were Wall Street Journal corpora). 
If one was to evaluate this measure on audio from 
a completely different domain (ex: news in the sci-
entific or technical domain), one would expect the 
performance to drop significantly. In contrast, our 
PMI measure was computed based on a general 
sample of the World Wide Web, which was not 
tailored to the audio corpus used to evaluate its 
performance. Therefore, our numbers are probably 
more representative of what would be experienced 
with audio corpora outside of the Wall Street Jour-
nal domain.  

8 Conclusion and Future Work 

We presented a basic method for filtering recogni-
tion errors of content words from automatic speech 
transcripts, by identifying semantic outliers. We 
described and evaluated several variants of the ba-
sic algorithm.  

In future work, we plan to run our experiments 
on other datasets when they become available to 
us. In particular, we want to experiment with 
multi-topic audio documents where we expect 
more marked advantages for windowing and alter-
native aggregation schemes like MAX and 3MAX. 
We plan to explore ways to scale up other corpus-
based semantic similarity measures to large tera-
byte corpora. We plan to explore more approaches 
to detecting semantic outliers, for example cluster-
ing or lexical chains (Hirst and St-Onge, 1997).  

The most promising direction is to combine our 
method with confidence measures that use internal 
information from the ASR system (although the 
internal information is hard to obtain when using 
an ASR as a black box, and it could be recognizer-
specific). A combination is likely to improve the 
performance, with the PMI-based measure contrib-
uting at the high-Precision end and the internal 
ASR measure contributing to the high-Recall end 
of the spectrum. To increase Recall we can also 
identify named entities and not filter them out. 
Some named entities could have high semantic 
similarity with the text if they are frequently men-
tioned in the same contexts in the Web corpus, but 
some names could be common to many contexts. 

Another future direction will be to actually cor-
rect the errors instead of just filtering them out. For 
example, we might look at the top N speech recog-
nizer hypotheses (for a fairly large N like 1000) 
and choose the one that maximizes semantic cohe-
sion. A final direction for research is to conduct 
experiments with human subjects, to evaluate the 
degree to which filtered transcripts are better than 
unfiltered ones for tasks like browsing, gisting and 
searching audio clips. 
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