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ABSTRACT 
This paper presents recent improvements in the development of 
the University of Colorado “CU Communicator” and “CU-
Move” spoken dialog systems. First, we describe the CU 
Communicator system that integrates speech recognition, 
synthesis and natural language understanding technologies using 
the DARPA Hub Architecture. Users are able to converse with an 
automated travel agent over the phone to retrieve up-to-date 
travel information such as flight schedules, pricing, along with 
hotel and rental car availability.  The CU Communicator has 
been under development since April of 1999 and represents our 
test-bed system for developing robust human-computer 
interactions where reusability and dialogue system portability 
serve as two main goals of our work.  Next, we describe our more 
recent work on the CU Move dialog system for in-vehicle route 
planning and guidance.  This work is in joint collaboration with 
HRL and is sponsored as part of the DARPA Communicator 
program.  Specifically, we will provide an overview of the task, 
describe the data collection environment for in-vehicle systems 
development, and describe our initial dialog system constructed 
for route planning. 

1. CU COMMUNICATOR 

1.1 Overview  

The Travel Planning Task 

The CU Communicator system [1,2] is a Hub compliant 
implementation of the DARPA Communicator task [3].  The 
system combines continuous speech recognition, natural 
language understanding and flexible dialogue control to enable 
natural conversational interaction by telephone callers to access 
information from the Internet pertaining to airline flights, hotels 
and rental cars.  Specifically, users can describe a desired airline 
flight itinerary to the Communicator and use natural dialog to 
negotiate a flight plan.  Users can also inquire about hotel 
availability and pricing as well as obtain rental car reservation 

information.   

System Overview 

The dialog system is composed of a Hub and several servers as 
shown in Fig. 1.  The Hub is used as a centralized message router 
through which servers can communicate with one another [4].  
Frames containing keys and values are emitted by each server, 
routed by the hub, and received by a secondary server based on 
rules defined in a “Hub script”.   
 
 

 

 

 

 

 

 

 

Figure 1.  Block diagram of the functional components that 
comprise the CU Communicator system1. 

1.2 Audio Server 
The audio server is responsible for answering the incoming call, 
playing prompts and recording user input.  Currently, our system 
uses the MIT/MITRE audio server that was provided to DARPA 
Communicator program participants.  The telephony hardware 
consists of an external serial modem device that connects to the 
microphone input and speaker output terminals on the host 
computer.  The record process is pipelined to the speech 
recognition server and the play process is pipelined the text-to-
speech server.  This audio server does not support barge-in. 

Recently we have developed a new audio server that supports 
barge-in using the Dialogic hardware platform.  The new audio 
server implements a Fast Normalized Least-Mean-Square (LMS) 
algorithm for software-based echo cancellation.  During 
operation, the echo from the system speech is actively cancelled 
from the recorded audio to allow the user to cut through while 

                                                           
1 This work was supported by DARPA through SPAWAR under 
Grant No. N66001-002-8906.  The “CU Move” system is 
supported in part through a joint collaboration with HRL 
Laboratories. 
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the system is speaking.  The new audio server operates in the 
Linux environment and is currently being field-tested at CSLR.  
Because the server implements software-based echo cancellation, 
it can work on virtually any low-cost Dialogic hardware 
platform.  This server will be made available to the research 
community as a resource in the near future. 

1.3 Speech Recognizer 
We are currently using the Carnegie Mellon University Sphinx-II 
system [5] in our speech recognition server. This is a semi-
continuous Hidden Markov Model recognizer with a class 
trigram language model. The recognition server receives the 
input vectors from the audio server. The recognition server 
produces a word lattice from which a single best hypothesis is 
picked and sent to the hub for processing by the dialog manager. 

Acoustic Modeling 

During dialog interaction with the user, the audio server sends 
the acoustic samples to three Sphinx-II speech recognizers.  
While the language model is the same for each decoder, the 
acoustic models consist of (i) speaker independent analog 
telephone, (ii) female adapted analog telephone, and (iii) cellular 
telephone adapted acoustic model sets.   Each decoder outputs a 
word string hypothesis along with a word-sequence probability 
for the best path.  An intermediate server is used to examine each 
hypothesis and pass the most likely word string onto the natural 
language understanding module.   

Language Modeling 

The Communicator system is designed for end users to get up-to-
date worldwide air travel, hotel and rental car information via the 
telephone. In the task there are word lists for countries, cities, 
states, airlines, etc.  To train a robust language model, names are 
clustered into different classes. An utterance with class tagging is 
shown in Fig.2.  In this example, city, hour_number, and am_pm 
are class names. 

Figure 2.  Examples of class-based and grammar-based 
language modeling  

Each commonly used word takes one class. The probability of 
word Wi given class Ci is estimated from training corpora. After 
the corpora are correctly tagged, a back-off class-based trigram 
language model can be computed from the tagged corpora.  We 
use the CMU-Cambridge Statistical Language Modeling Toolkit 
to compute our language models. 

More recently, we have developed a dialog context dependent 
language model (LM) combining stochastic context free 
grammars (SCFGs) and n-grams [6,7].  Based on a spoken 
language production model in which a user picks a set of 
concepts with respective values and constructs word sequences 
using phrase generators associated with each concept in 
accordance with the dialog context, this LM computes the 
probability of a word, P(W), as 

 
         P(W) = P(W/C) P(C/S)          (1) 
 
where W is the sequence of words, C is the sequence of concepts 
and S is the dialog context. Here, the assumptions are (i) S is 
given, (ii) W is independent of S but C, and (iii) W and C 
associations are unambiguous. This formulation can be 
considered as a general extension of the standard class word 
based statistical language model as seen in Fig. 2. 
 
The first term in (1) is modeled by SCFGs, one for each concept. 
The concepts are classes of phrases with the same meaning. Each 
SCFG is compiled into a stochastic recursive transition network 
(STRN). Our grammar is a semantic grammar since the 
nonterminals correspond to semantic concepts instead of 
syntactic constituents. The set of task specific concepts is 
augmented with a single word, multiple word and a small number 
of broad but unambigious part of speech (POS) classes to 
account for the phrases that are not covered by the grammar. 
These classes are considered as "filler" concepts within a unified 
framework. The second term in (1) is modeled as a pool of 
concept n-gram LMs. That is, we have a separate LM for each 
dialog context. At the moment, the dialog context is selected as 
the last question prompted by the system, as it is very simple and 
yet strongly predictive and constraining. SCFG and n-gram 
probabilities are learned by simple counting and smoothing. Our 
semantic grammars have a low degree of ambiguity and therefore 
do not require computationally intensive stochastic training and 
parsing techniques. 
 
Experimental results with N-best list rescoring were found 
promising (5-6% relative improvement in WER).  In addition, we 
have shown that a dynamic combining of our new LM and the 
standard class word n-gram (the LM currently in use in our 
system) should result in further improvements. At the present, we 
are interfacing the grammar LM to the speech recognizer using a 
word graph. 

1.4 Confidence Server 
Our prior work on confidence assessment has considered 
detection and rejection of word-level speech recognition errors 
and out-of-domain phrases using language model features [8].  
More recently [9], we have considered detection and rejection of 
misrecognized units at the concept level.  Because concepts are 
used to update the state of the dialog system, we believe that 
concept level confidence is vitally important to ensuring a 
graceful human-computer interaction.  Our current work on 
concept error detection has considered language model features 
(e.g., LM back-off behavior, language model score) as well as 
acoustic features from the speech recognizer (e.g., normalized 
acoustic score, lattice density, phone perplexity).  Confidence 

Original Utterance 

I want to go from Boston to Portland around nine a_m 

Class-Tagged Utterance 

I want to go from [city:Boston] to [city:Portland] 
around [hour_number:nine] [am_pm:a_m] 

Concept-Tagged Utterance 

[I_want: I want to go] [depart_loc: from Boston] 
[arrive_loc: to Portland] [time:around nine a_m] 



features are combined to compute word-level, concept-level, and 
utterance-level confidence scores.  

1.5 Language Understanding 
We use a modified version of the Phoenix [10] parser to map the 
speech recognizer output onto a sequence of semantic frames. A 
Phoenix frame is a named set of slots, where the slots represent 
related pieces of information. Each slot has an associated 
context-free semantic grammar that specifies word string patterns 
that can fill the slot. The grammars are compiled into Recursive 
Transition Networks, which are matched against the recognizer 
output to fill slots. Each filled slot contains a semantic parse tree 
with the slot name as root.  

Phoenix has been modified to also produce an extracted 
representation of the parse that maps directly onto the task 
concept structures. For example, the utterance  

“I want to go from Boston to Denver Tuesday morning”  

would produce the extracted parse: 

Flight_Constraint: Depart_Location.City.Boston 
Flight_Constraint: Arrive_Location.City.Denver 
Flight Constraints:[Date_Time].[Date].[Day_Name].tuesday 
                             [Time_Range].[Period_Of_Day].morning 

1.6 Dialog Management 
The Dialogue Manager controls the system’s interaction with the 
user and the application server. It is responsible for deciding 
what action the system will take at each step in the interaction. 
The Dialogue Manager has several functions. It resolves 
ambiguities in the current interpretation; Estimates confidence in 
the extracted information; Clarifies the interpretation with the 
user if required; Integrates new input with the dialogue context; 
Builds database queries (SQL); Sends information to NL 
generation for presentation to user; and prompts the user for 
missing information. 

We have developed a flexible, event driven dialogue manager in 
which the current context of the system is used to decide what to 
do next. The system does not use a dialogue network or a 
dialogue script, rather a general engine operates on the semantic 
representations and the current context to control the interaction 
flow.  The Dialogue Manager receives the extracted parse. It then 
integrates the parse into the current context. Context consists of a 
set of frames and a set of global variables. As new extracted 
information arrives, it is put into the context frames and 
sometimes used to set global variables. The system provides a 
general-purpose library of routines for manipulating frames. 

This “event driven” architecture functions similar to a production 
system. An incoming parse causes a set of actions to fire which 
modify the current context. After the parse has been integrated 
into the current context, the DM examines the context to decide 
what action to take next. The DM attempts the following actions 
in the order listed: 

• Clarify if necessary  
• Sign off if all done  
• Retrieve data and present to user  
• Prompt user for required information  

The rules for deciding what to prompt for next are very 
straightforward. The frame in focus is set to be the frame 
produced in response to the user, or to the last system prompt.  

• If there are unfilled required slots in the focus frame, then 
prompt for the highest priority unfilled slot in the frame. 

• If there are no unfilled required slots in the focus frame, 
then prompt for the highest priority missing piece of 
information in the context.  

Our mechanism does not have separate “user initiative” and 
“system initiative” modes. If the system has enough information 
to act on, then it does it. If it needs information, then it asks for 
it. The system does not require that the user respond to the 
prompt. The user can respond with anything and the system will 
parse the utterance and set the focus to the resulting frame. This 
allows the user to drive the dialog, but doesn’t require it. The 
system prompts are organized locally, at the frame level. The 
dialog manager or user puts a frame in focus, and the system tries 
to fill it. This representation is easy to author, there is no separate 
dialog control specification required. It is also robust in that it 
has a simple control that has no state to lose track of. 

An additional benefit of Dialog Manager mechanism is that it is 
very largely declarative. Most of the work done by a developer 
will be the creation of frames, forms and grammars. The system 
developer creates a task file that specifies the system ontology 
and templates for communicating about nodes in the hierarchy. 
The templates are filled in from the values in the frames to 
generate output in the desired language. This is the way we 
currently generate SQL queries and user prompts. An example 
task frame specification is: 

Frame:Air 
 [Depart_Loc]+ 
    Prompt: "where are you departing from" 
    [City_Name]* 

 Confirm : "You are departing from $([City_Name]).  
    Is that correct?" 

 Sql: "dep_$[leg_num] in (select airport_code from 
 airport_codes where city like '!%' $(and state_province 
like '[Depart_Loc].[State]' ) )" 

    [Airport_Code]* 
 

This example defines a frame with name Air and slot 
[Depart_Loc]. The child nodes of Depart_Loc are are 
[City_Name] and [Airport_Code]. The “+” after [Depart_Loc] 
indicates that it is a mandatory field. The Prompt string is the 
template for prompting for the node information. The “*” after 
[City_Name] and [Airport_Code] indicate that if either of them is 
filled, the parent node [Depart_Loc] is filled. The Confirm string 
is a template to prompt the user to confirm the values. The SQL 
string is the template to use the value in an SQL query to the 
database. 

The system will prompt for all mandatory nodes that have 
prompts. Users may specify information in any order, but the 
system will prompt for whatever information is missing until the 
frame is complete.   



1.7 Database & Internet Interface  
The back-end interface consists of an SQL database and domain-
specific Perl scripts for accessing information from the Internet.  
During operation, database requests are transmitted by the Dialog 
Manager to the database server via a formatted frame. 

The back-end consists of a static and dynamic information 
component.  Static tables contain data such as conversions 
between 3-letter airport codes and the city, state, and country of 
the airport (e.g., BOS for Boston Massachusetts).  There are over 
8000 airports in our database, 200 hotel chains, and 50 car rental 
companies.  The dynamic information content consists of 
database tables for car, hotel, and airline flights.   

When a database request is received, the Dialog Manager’s SQL 
command is used to select records in local memory.  If no 
records are found to match, the back-end can submit an HTTP-
based request for the information via the Internet.  Records 
returned from the Internet are then inserted as rows into the local 
SQL database and the SQL statement is once again applied.   

1.8 Language Generation 
The language generation module uses templates to generate text 
based on dialog speech acts.  Example dialog acts include 
“prompt” for prompting the user for needed information, 
“summarize” for summarization of flights, hotels, and rental cars, 
and “clarify” for clarifying information such as departure and 
arrival cities that share the same name. 

1.9 Text-to-Speech Synthesis 
For audio output, we have developed a domain-dependent 
concatenative speech synthesizer.  Our concatenative synthesizer 
can adjoin units ranging from phonemes, to words, to phrases 
and sentences.   For domain modeling, we use a voice talent to 
record entire task-dependent utterances  (e.g., “What are your 
travel plans?”) as well as short phrases with carefully determined 
break points (e.g., “United flight”, “ten”, “thirty two”, “departs 
Anchorage at”).    Each utterance is orthographically transcribed 
and phonetically aligned using a HMM-based recognizer.   Our 
research efforts for data collection are currently focused on 
methods for reducing the audible distortion at segment 
boundaries, optimization schemes for prompt generation, as well 
as tools for rapidly correcting boundary misalignments.  In 
general, we find that some degree of hand-correction is always 
required in order to reduce distortions at concatenation points. 

During synthesis, the text is automatically divided into individual 
sentences that are then synthesized and pipelined to the audio 
server.  A text-to-phoneme conversion is applied using a 
phonetic dictionary.  Words that do not appear in the phonetic 
dictionary are automatically pronounced using a multi-layer 
perceptron based pronunciation module.  Here, a 5-letter context 
is extracted from the word to be pronounced.  The letter input is 
fed through the MLP and a phonetic symbol (or possibly epsilon) 
is output by the network.  By sliding the context window, we can 
extract the phonetic pronunciation of the word.   The MLP is 
trained using letter-context and symbol output pairs from a large 
phonetic dictionary. 

The selection of units to concatenate is determined using a hybrid 
search algorithm that operates at the word or phoneme level.  

During synthesis, sections of word-level text that have been 
recorded are automatically concatenated.  Unrecorded words or 
word sequences are synthesized using a Viterbi beam search 
across all available phonetic units.  The cost function includes 
information regarding phonetic context, pitch, duration, and 
signal amplitude.  Audio segments making up the best-path are 
then concatenated to generate the final sentence waveform.   

2. DATA COLLECTION & EVALUATION 

2.1 Data Collection Efforts 

Local Collection Effort 

The Center for Spoken Language Research maintains a dialup 
Communicator system for data collection1. Users wishing to use 
the dialogue system can register at our web site [1] and receive a 
PIN code and system telephone number. To date, our system has 
fielded over 1750 calls totaling over 25,000 utterances from 
nearly 400 registered users.  

NIST Multi-Site Data Collection 

During the months of June and July of 2000, The National 
Institute of Standards (NIST) conducted a multi-site data 
collection effort for the nine DARPA Communicator 
participants.  Participating sites included: AT&T, IBM, BBN, 
SRI, CMU, Colorado, MIT, Lucent, and MITRE.  In this data 
collection, a pool of potential users was selected from various 
parts of the United States by a market research firm.  The 
selected subjects were native speakers of American English who 
were possible frequent travelers.  Users were asked to perform 
nine tasks.  The first seven tasks consisted of fixed scenarios for 
one-way and round-trip flights both within and outside of the 
United States. The final two tasks consisted of users making 
open-ended business or vacation.   

2.2 System Evaluation 

Task Completion 

A total of 72 calls from NIST participants were received by the 
CU Communicator system.  Of these, 44 callers were female and 
28 were male.  Each scenario was inspected by hand and 
compared against the scenario provided by NIST to the subject. 
For the two open-ended tasks, judgment was made based on what 
the user asked for with that of the data provided to the user. In 
total, 53/72 (73.6%) of the tasks were completed successfully.   
A detailed error analysis can be found in [11]. 

Word Error Rate Analysis 

A total of 1327 utterances were recorded from the 72 NIST calls.  
Of these, 1264 contained user speech.  At the time of the June 
2000 NIST evaluation, the CU Communicator system did not 
implement voice-based barge-in.  We noticed that one source of 
error was due to users who spoke before the recording process 
was started.  Even though a tone was presented to the user to 
signify the time to speak, 6.9% of the utterances contained 
instances in which the user spoke before the tone.  Since all users 
were exposed to several other Communicator systems that 

                                                           
2 The system can be accessed toll-free at 1-866-735-5189 



employed voice barge-in, there may be some effect from 
exposure to those systems. Table 3 summarizes the word error 
rates for the system utilizing the June 2000 NIST data as the test 
set.  Overall, the system had a word error rate (WER) of 26.0% 
when parallel gender-dependent decoders were utilized. Since 
June of 2000, we have collected an additional 15,000 task-
dependent utterances.  With the extra data, we were able to 
remove our dependence on the CMU Communicator training 
data [12].  When the language model was reestimated and 
language model weights reoptimized using only CU 
Communicator data, the WER dropped from 26.0% to 22.5%.  
This amounts to a 13.5% relative reduction in WER. 

Table 1: CU Communicator Word Error Rates for (A) 
Speaker Independent acoustic models and June 2000 
language model, (B) Gender-dependent parallel recognizers 
with June 2000 Language Model, and (C) Language Model 
retrained in December 2000. 

June 2000 NIST Evaluation Data, 1264 
utterances, 72 speakers 

Word Error 
Rate 

(A) Speaker Indep. HMMs (LM#1) 29.8% 
(B) Gender Dependent HMMs (LM#1) 26.0% 
(C) Gender Dependent HMMs (LM#2)  22.5% 

 

Core Metrics 

Sites in the DARPA Communicator program agreed to log a 
common set of metrics for their systems. The proposed set of 
metrics was: Task Completion, Time to Completion, Turns to 
Completion, User Words/Turn, System Words/Turn, User 
Concepts/Turn, Concept Efficiency, State of Itinerary, Error 
Messages, Help Messages, Response Latency, User Words to 
Completion, System Words to Completion, User Repeats, System 
Repeats/Reprompts, Word Error, Mean Length of System 
Utterance, and Mean Length of System Turn. 

Table 2: Dialogue system evaluation metrics 
Item Min Mean Max 

Time to Completion (secs) 120.9 260.3 537.2 
Total Turns to Completion 23 37.6 61 
Response Latency (secs) 1.5 1.9 2.4 
User Words to Task End 19 39.4 105 
System Words to End 173 331.9 914 
Number of Reprompts 0 2.4 15 
 

Table 2 summarizes results obtained from metrics derived 
automatically from the logged timing markers for the calls in 
which the user completed the task assigned to them.  The average 
time to task completion is 260.  During this period there are an 
average of 19 user turns and 19 computer turns (37.6 average 
total turns).  The average response latency was 1.86 seconds.  
The response latency also includes the time required to access the 
data live from the Internet travel information provider. 

3. CU MOVE 

3.1 Task Overview 
The “CU Move” system represents our work towards achieving 
graceful human-computer interaction in automobile 

environments.  Initially, we have considered the task of vehicle 
route planning and navigation.  As our work progresses, we will 
expand our dialog system to new tasks such as information 
retrieval and summarization and multimedia access. 

The problem of voice dialog within vehicle environments offers 
some important speech research challenges. Speech recognition 
in car environments is in general fragile, with word-error-rates 
(WER) ranging from 30-65% depending on driving conditions. 
These changing environmental conditions include speaker 
changes (task stress, emotion, Lombard effect, etc.) as well as the 
acoustic environment (road/wind noise from windows, air 
conditioning, engine noise, exterior traffic, etc.).   
In developing the CU-Move system [13,14], there are a number 
of research challenges that must be overcome to achieve reliable 
and natural voice interaction within the car environment. Since 
the speaker is performing a task (driving the vehicle), the driver 
will experience a measured level of user task stress and therefore 
this should be included in the speaker-modeling phase. Previous 
studies have clearly shown that the effects of speaker stress and 
Lombard effect can cause speech recognition systems to fail 
rapidly. In addition, microphone type and placement for in-
vehicle speech collection can impact the level of acoustic 
background noise and speech recognition performance.    

3.2 Signal Processing  
Our research for robust recognition in automobile environments 
is concentrated on development of an intelligent microphone 
array.  Here, we employ a Gaussian Mixture Model (GMM) 
based environmental classification scheme to characterize the 
noise conditions in the automobile.  By integrating an 
environmental classification system into the microphone array 
design, decisions can be made as to how best to utilize a noise-
adaptive frequency-partitioned iterative enhancement algorithm 
[15,16] or model-based adaptation algorithms [17,18] during 
decoding to optimize speech recognition accuracy on the beam-
formed signal. 

3.3 Data Collection 
A five-channel microphone array was constructed using Knowles 
microphones and a multi-channel data recorder housing built 
(Fostex) for in-vehicle data collection. An additional reference 
microphone is situated behind the driver’s seat.  Fig. 3 shows the 
constructed microphone array and data recorder housing. 

      

Figure 3: Microphone array and reference microphone (left), 
Fostex multi-channel data recorder (right). 

As part of the CU-Move system formulation, a two phase data 
collection plan has been initiated. Phase I focuses on collecting 
acoustic noise and probe speech from a variety of cars and 
driving conditions. Phase II focuses on a extensive speaker 
collection across multiple U.S. sites. A total of eight vehicles 
have been selected for acoustic noise analysis. These include the 



following: a compact car, minivan, cargo van, sport utility 
vehicle (SUV), compact and full size trucks, sports car, full size 
luxury car.  A fixed 10 mile route through Boulder, CO was used 
for Phase I data collection. The route consisted of city (25 & 
45mph) and highway driving (45 & 65mph). The route included 
stop-and-go traffic, and prescribed locations where 
driver/passenger windows, turn signals, wiper blades, air 
conditioning were operated. Each data collection run per car 
lasted approximately 35-45 minutes.  A detailed acoustic analysis 
of Phase I data can be found in [13]. Our plan is to begin Phase 
II speech/dialogue data collection during spring 2001, which will 
include (i) phonetically balanced utterances, (ii) task-specific 
vocabularies, (iii) natural extemporaneous speech, and (iv) 
human-to-human and Wizard-of-Oz (WOZ) interaction with CU-
Communicator and CU-Move dialog systems. 

3.4 Prototype Dialog System 
Finally, we have developed a prototype dialog system for data 
collection in the car environment.  The dialog system is based on 
the MIT Galaxy-II Hub architecture with base system 
components derived from the CU Communicator system [1].  
Users interacting with the dialog system can enter their origin 
and destination address by voice. Currently, 1107 street names 
for Boulder, CO area are modeled.  The system can resolve street 
addresses by business name via interaction with an Internet 
telephone book.  This allows users to ask more natural route 
queries (e.g., “I need an auto repair shop”, or “I need to get to the 
Boulder Marriott”).  The dialog system automatically retrieves 
the driving instructions from the Internet using an online WWW 
route direction provider.  Once downloaded, the driving 
directions are queried locally from an SQL database.  During 
interaction, users mark their location on the route by providing 
spoken odometer readings.  Odometer readings are needed since 
GPS information has not yet been integrated into the prototype 
dialog system. Given the odometer reading of the vehicle as an 
estimate of position, route information such as turn descriptions, 
distances, and summaries can be queried during travel (e.g., 
"What's my next turn", "How far is it", etc.).  

The prototype system uses the CMU Sphinx-II speech recognizer 
with cellular telephone acoustic models along with the Phoenix 
Parser [10] for semantic parsing.  The dialog manager is mixed-
initiative and event driven.  For route guidance, the natural 
language generator formats the driving instructions before 
presentation to the user by the text-to-speech server.   For 
example, the direction,  "Park Ave W. becomes 22nd St." is 
reformatted to, "Park Avenue West becomes Twenty Second  
Street".  Here, knowledge of the task-domain can be used to 
significantly improve the quality of the output text.   For speech 
synthesis, we have developed a Hub-compliant server that 
interfaces to the AT&T NextGen speech synthesizer.   

3.5 Future Work 
We have developed a Hub compliant server that interfaces a 
Garmin GPS-III global positioning device to a mobile computer 
via a serial port link.  The GPS server reports vehicle velocity in 
the X,Y,Z directions as well as real-time updates of  vehicle 
position in latitude and longitude.  HRL Laboratories has 
developed a route server that interfaces to a major navigation 
content provider.  The HRL route server can take GPS 

coordinates as inputs and can describe route maneuvers in terms 
of GPS coordinates.  In the near-term, we will interface our GPS 
server to the HRL route server in order to provide real-time 
updating of vehicle position.  This will eliminate the need for 
periodic location update by the user and also will allow for more 
interesting dialogs to be established (e.g., the computer might 
proactively tell the user about upcoming points of interest, etc.). 
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