
University of Colorado Dialog Systems for
Travel and Navigation

B. Pellom, W. Ward, J. Hansen, R. Cole, K. Hacioglu, J. Zhang, X. Yu, S. Pradhan

Center for Spoken Language Research, University of Colorado
Boulder, Colorado 80303, USA

{pellom, whw, jhlh, cole, hacioglu, zjp, xiu, spradhan}@cslr.colorado.edu

ABSTRACT
This paper presents recent improvements in the development of
the University of Colorado “CU Communicator” and “CU-
Move” spoken dialog systems. First, we describe the CU
Communicator system that integrates speech recognition,
synthesis and natural language understanding technologies using
the DARPA Hub Architecture. Users are able to converse with an
automated travel agent over the phone to retrieve up-to-date
travel information such as flight schedules, pricing, along with
hotel and rental car availability. The CU Communicator has
been under development since April of 1999 and represents our
test-bed system for developing robust human-computer
interactions where reusability and dialogue system portability
serve as two main goals of our work. Next, we describe our more
recent work on the CU Move dialog system for in-vehicle route
planning and guidance. This work is in joint collaboration with
HRL and is sponsored as part of the DARPA Communicator
program. Specifically, we will provide an overview of the task,
describe the data collection environment for in-vehicle systems
development, and describe our initial dialog system constructed
for route planning.

1. CU COMMUNICATOR

1.1 Overview

The Travel Planning Task

The CU Communicator system [1,2] is a Hub compliant
implementation of the DARPA Communicator task [3]. The
system combines continuous speech recognition, natural
language understanding and flexible dialogue control to enable
natural conversational interaction by telephone callers to access
information from the Internet pertaining to airline flights, hotels
and rental cars. Specifically, users can describe a desired airline
flight itinerary to the Communicator and use natural dialog to
negotiate a flight plan. Users can also inquire about hotel
availability and pricing as well as obtain rental car reservation

information.

System Overview

The dialog system is composed of a Hub and several servers as
shown in Fig. 1. The Hub is used as a centralized message router
through which servers can communicate with one another [4].
Frames containing keys and values are emitted by each server,
routed by the hub, and received by a secondary server based on
rules defined in a “Hub script”.

Figure 1. Block diagram of the functional components that
comprise the CU Communicator system1.

1.2 Audio Server
The audio server is responsible for answering the incoming call,
playing prompts and recording user input. Currently, our system
uses the MIT/MITRE audio server that was provided to DARPA
Communicator program participants. The telephony hardware
consists of an external serial modem device that connects to the
microphone input and speaker output terminals on the host
computer. The record process is pipelined to the speech
recognition server and the play process is pipelined the text-to-
speech server. This audio server does not support barge-in.

Recently we have developed a new audio server that supports
barge-in using the Dialogic hardware platform. The new audio
server implements a Fast Normalized Least-Mean-Square (LMS)
algorithm for software-based echo cancellation. During
operation, the echo from the system speech is actively cancelled
from the recorded audio to allow the user to cut through while

1 This work was supported by DARPA through SPAWAR under
Grant No. N66001-002-8906. The “CU Move” system is
supported in part through a joint collaboration with HRL
Laboratories.

Language
Generator
Language
Generator

Hub

Speech
Recognizer

Speech
Recognizer

Speech
Synthesizer

Speech
Synthesizer

Semantic
Parser

Semantic
Parser

Dialogue
Manager
Dialogue
Manager

Data Base /
Backend

Data Base /
Backend

Confidence
Server

Confidence
Server

Audio ServerAudio Server

www

Language
Generator
Language
Generator

Hub

Speech
Recognizer

Speech
Recognizer

Speech
Synthesizer

Speech
Synthesizer

Semantic
Parser

Semantic
Parser

Dialogue
Manager
Dialogue
Manager

Data Base /
Backend

Data Base /
Backend

Confidence
Server

Confidence
Server

Audio ServerAudio Server

www

the system is speaking. The new audio server operates in the
Linux environment and is currently being field-tested at CSLR.
Because the server implements software-based echo cancellation,
it can work on virtually any low-cost Dialogic hardware
platform. This server will be made available to the research
community as a resource in the near future.

1.3 Speech Recognizer
We are currently using the Carnegie Mellon University Sphinx-II
system [5] in our speech recognition server. This is a semi-
continuous Hidden Markov Model recognizer with a class
trigram language model. The recognition server receives the
input vectors from the audio server. The recognition server
produces a word lattice from which a single best hypothesis is
picked and sent to the hub for processing by the dialog manager.

Acoustic Modeling

During dialog interaction with the user, the audio server sends
the acoustic samples to three Sphinx-II speech recognizers.
While the language model is the same for each decoder, the
acoustic models consist of (i) speaker independent analog
telephone, (ii) female adapted analog telephone, and (iii) cellular
telephone adapted acoustic model sets. Each decoder outputs a
word string hypothesis along with a word-sequence probability
for the best path. An intermediate server is used to examine each
hypothesis and pass the most likely word string onto the natural
language understanding module.

Language Modeling

The Communicator system is designed for end users to get up-to-
date worldwide air travel, hotel and rental car information via the
telephone. In the task there are word lists for countries, cities,
states, airlines, etc. To train a robust language model, names are
clustered into different classes. An utterance with class tagging is
shown in Fig.2. In this example, city, hour_number, and am_pm
are class names.

Figure 2. Examples of class-based and grammar-based
language modeling

Each commonly used word takes one class. The probability of
word Wi given class Ci is estimated from training corpora. After
the corpora are correctly tagged, a back-off class-based trigram
language model can be computed from the tagged corpora. We
use the CMU-Cambridge Statistical Language Modeling Toolkit
to compute our language models.

More recently, we have developed a dialog context dependent
language model (LM) combining stochastic context free
grammars (SCFGs) and n-grams [6,7]. Based on a spoken
language production model in which a user picks a set of
concepts with respective values and constructs word sequences
using phrase generators associated with each concept in
accordance with the dialog context, this LM computes the
probability of a word, P(W), as

 P(W) = P(W/C) P(C/S) (1)

where W is the sequence of words, C is the sequence of concepts
and S is the dialog context. Here, the assumptions are (i) S is
given, (ii) W is independent of S but C, and (iii) W and C
associations are unambiguous. This formulation can be
considered as a general extension of the standard class word
based statistical language model as seen in Fig. 2.

The first term in (1) is modeled by SCFGs, one for each concept.
The concepts are classes of phrases with the same meaning. Each
SCFG is compiled into a stochastic recursive transition network
(STRN). Our grammar is a semantic grammar since the
nonterminals correspond to semantic concepts instead of
syntactic constituents. The set of task specific concepts is
augmented with a single word, multiple word and a small number
of broad but unambigious part of speech (POS) classes to
account for the phrases that are not covered by the grammar.
These classes are considered as "filler" concepts within a unified
framework. The second term in (1) is modeled as a pool of
concept n-gram LMs. That is, we have a separate LM for each
dialog context. At the moment, the dialog context is selected as
the last question prompted by the system, as it is very simple and
yet strongly predictive and constraining. SCFG and n-gram
probabilities are learned by simple counting and smoothing. Our
semantic grammars have a low degree of ambiguity and therefore
do not require computationally intensive stochastic training and
parsing techniques.

Experimental results with N-best list rescoring were found
promising (5-6% relative improvement in WER). In addition, we
have shown that a dynamic combining of our new LM and the
standard class word n-gram (the LM currently in use in our
system) should result in further improvements. At the present, we
are interfacing the grammar LM to the speech recognizer using a
word graph.

1.4 Confidence Server
Our prior work on confidence assessment has considered
detection and rejection of word-level speech recognition errors
and out-of-domain phrases using language model features [8].
More recently [9], we have considered detection and rejection of
misrecognized units at the concept level. Because concepts are
used to update the state of the dialog system, we believe that
concept level confidence is vitally important to ensuring a
graceful human-computer interaction. Our current work on
concept error detection has considered language model features
(e.g., LM back-off behavior, language model score) as well as
acoustic features from the speech recognizer (e.g., normalized
acoustic score, lattice density, phone perplexity). Confidence

Original Utterance

I want to go from Boston to Portland around nine a_m

Class-Tagged Utterance

I want to go from [city:Boston] to [city:Portland]
around [hour_number:nine] [am_pm:a_m]

Concept-Tagged Utterance

[I_want: I want to go] [depart_loc: from Boston]
[arrive_loc: to Portland] [time:around nine a_m]

features are combined to compute word-level, concept-level, and
utterance-level confidence scores.

1.5 Language Understanding
We use a modified version of the Phoenix [10] parser to map the
speech recognizer output onto a sequence of semantic frames. A
Phoenix frame is a named set of slots, where the slots represent
related pieces of information. Each slot has an associated
context-free semantic grammar that specifies word string patterns
that can fill the slot. The grammars are compiled into Recursive
Transition Networks, which are matched against the recognizer
output to fill slots. Each filled slot contains a semantic parse tree
with the slot name as root.

Phoenix has been modified to also produce an extracted
representation of the parse that maps directly onto the task
concept structures. For example, the utterance

“I want to go from Boston to Denver Tuesday morning”

would produce the extracted parse:

Flight_Constraint: Depart_Location.City.Boston
Flight_Constraint: Arrive_Location.City.Denver
Flight Constraints:[Date_Time].[Date].[Day_Name].tuesday
 [Time_Range].[Period_Of_Day].morning

1.6 Dialog Management
The Dialogue Manager controls the system’s interaction with the
user and the application server. It is responsible for deciding
what action the system will take at each step in the interaction.
The Dialogue Manager has several functions. It resolves
ambiguities in the current interpretation; Estimates confidence in
the extracted information; Clarifies the interpretation with the
user if required; Integrates new input with the dialogue context;
Builds database queries (SQL); Sends information to NL
generation for presentation to user; and prompts the user for
missing information.

We have developed a flexible, event driven dialogue manager in
which the current context of the system is used to decide what to
do next. The system does not use a dialogue network or a
dialogue script, rather a general engine operates on the semantic
representations and the current context to control the interaction
flow. The Dialogue Manager receives the extracted parse. It then
integrates the parse into the current context. Context consists of a
set of frames and a set of global variables. As new extracted
information arrives, it is put into the context frames and
sometimes used to set global variables. The system provides a
general-purpose library of routines for manipulating frames.

This “event driven” architecture functions similar to a production
system. An incoming parse causes a set of actions to fire which
modify the current context. After the parse has been integrated
into the current context, the DM examines the context to decide
what action to take next. The DM attempts the following actions
in the order listed:

• Clarify if necessary
• Sign off if all done
• Retrieve data and present to user
• Prompt user for required information

The rules for deciding what to prompt for next are very
straightforward. The frame in focus is set to be the frame
produced in response to the user, or to the last system prompt.

• If there are unfilled required slots in the focus frame, then
prompt for the highest priority unfilled slot in the frame.

• If there are no unfilled required slots in the focus frame,
then prompt for the highest priority missing piece of
information in the context.

Our mechanism does not have separate “user initiative” and
“system initiative” modes. If the system has enough information
to act on, then it does it. If it needs information, then it asks for
it. The system does not require that the user respond to the
prompt. The user can respond with anything and the system will
parse the utterance and set the focus to the resulting frame. This
allows the user to drive the dialog, but doesn’t require it. The
system prompts are organized locally, at the frame level. The
dialog manager or user puts a frame in focus, and the system tries
to fill it. This representation is easy to author, there is no separate
dialog control specification required. It is also robust in that it
has a simple control that has no state to lose track of.

An additional benefit of Dialog Manager mechanism is that it is
very largely declarative. Most of the work done by a developer
will be the creation of frames, forms and grammars. The system
developer creates a task file that specifies the system ontology
and templates for communicating about nodes in the hierarchy.
The templates are filled in from the values in the frames to
generate output in the desired language. This is the way we
currently generate SQL queries and user prompts. An example
task frame specification is:

Frame:Air
 [Depart_Loc]+
 Prompt: "where are you departing from"
 [City_Name]*

 Confirm : "You are departing from $([City_Name]).
 Is that correct?"

 Sql: "dep_$[leg_num] in (select airport_code from
 airport_codes where city like '!%' $(and state_province
like '[Depart_Loc].[State]'))"

 [Airport_Code]*

This example defines a frame with name Air and slot
[Depart_Loc]. The child nodes of Depart_Loc are are
[City_Name] and [Airport_Code]. The “+” after [Depart_Loc]
indicates that it is a mandatory field. The Prompt string is the
template for prompting for the node information. The “*” after
[City_Name] and [Airport_Code] indicate that if either of them is
filled, the parent node [Depart_Loc] is filled. The Confirm string
is a template to prompt the user to confirm the values. The SQL
string is the template to use the value in an SQL query to the
database.

The system will prompt for all mandatory nodes that have
prompts. Users may specify information in any order, but the
system will prompt for whatever information is missing until the
frame is complete.

1.7 Database & Internet Interface
The back-end interface consists of an SQL database and domain-
specific Perl scripts for accessing information from the Internet.
During operation, database requests are transmitted by the Dialog
Manager to the database server via a formatted frame.

The back-end consists of a static and dynamic information
component. Static tables contain data such as conversions
between 3-letter airport codes and the city, state, and country of
the airport (e.g., BOS for Boston Massachusetts). There are over
8000 airports in our database, 200 hotel chains, and 50 car rental
companies. The dynamic information content consists of
database tables for car, hotel, and airline flights.

When a database request is received, the Dialog Manager’s SQL
command is used to select records in local memory. If no
records are found to match, the back-end can submit an HTTP-
based request for the information via the Internet. Records
returned from the Internet are then inserted as rows into the local
SQL database and the SQL statement is once again applied.

1.8 Language Generation
The language generation module uses templates to generate text
based on dialog speech acts. Example dialog acts include
“prompt” for prompting the user for needed information,
“summarize” for summarization of flights, hotels, and rental cars,
and “clarify” for clarifying information such as departure and
arrival cities that share the same name.

1.9 Text-to-Speech Synthesis
For audio output, we have developed a domain-dependent
concatenative speech synthesizer. Our concatenative synthesizer
can adjoin units ranging from phonemes, to words, to phrases
and sentences. For domain modeling, we use a voice talent to
record entire task-dependent utterances (e.g., “What are your
travel plans?”) as well as short phrases with carefully determined
break points (e.g., “United flight”, “ten”, “thirty two”, “departs
Anchorage at”). Each utterance is orthographically transcribed
and phonetically aligned using a HMM-based recognizer. Our
research efforts for data collection are currently focused on
methods for reducing the audible distortion at segment
boundaries, optimization schemes for prompt generation, as well
as tools for rapidly correcting boundary misalignments. In
general, we find that some degree of hand-correction is always
required in order to reduce distortions at concatenation points.

During synthesis, the text is automatically divided into individual
sentences that are then synthesized and pipelined to the audio
server. A text-to-phoneme conversion is applied using a
phonetic dictionary. Words that do not appear in the phonetic
dictionary are automatically pronounced using a multi-layer
perceptron based pronunciation module. Here, a 5-letter context
is extracted from the word to be pronounced. The letter input is
fed through the MLP and a phonetic symbol (or possibly epsilon)
is output by the network. By sliding the context window, we can
extract the phonetic pronunciation of the word. The MLP is
trained using letter-context and symbol output pairs from a large
phonetic dictionary.

The selection of units to concatenate is determined using a hybrid
search algorithm that operates at the word or phoneme level.

During synthesis, sections of word-level text that have been
recorded are automatically concatenated. Unrecorded words or
word sequences are synthesized using a Viterbi beam search
across all available phonetic units. The cost function includes
information regarding phonetic context, pitch, duration, and
signal amplitude. Audio segments making up the best-path are
then concatenated to generate the final sentence waveform.

2. DATA COLLECTION & EVALUATION

2.1 Data Collection Efforts

Local Collection Effort

The Center for Spoken Language Research maintains a dialup
Communicator system for data collection1. Users wishing to use
the dialogue system can register at our web site [1] and receive a
PIN code and system telephone number. To date, our system has
fielded over 1750 calls totaling over 25,000 utterances from
nearly 400 registered users.

NIST Multi-Site Data Collection

During the months of June and July of 2000, The National
Institute of Standards (NIST) conducted a multi-site data
collection effort for the nine DARPA Communicator
participants. Participating sites included: AT&T, IBM, BBN,
SRI, CMU, Colorado, MIT, Lucent, and MITRE. In this data
collection, a pool of potential users was selected from various
parts of the United States by a market research firm. The
selected subjects were native speakers of American English who
were possible frequent travelers. Users were asked to perform
nine tasks. The first seven tasks consisted of fixed scenarios for
one-way and round-trip flights both within and outside of the
United States. The final two tasks consisted of users making
open-ended business or vacation.

2.2 System Evaluation

Task Completion

A total of 72 calls from NIST participants were received by the
CU Communicator system. Of these, 44 callers were female and
28 were male. Each scenario was inspected by hand and
compared against the scenario provided by NIST to the subject.
For the two open-ended tasks, judgment was made based on what
the user asked for with that of the data provided to the user. In
total, 53/72 (73.6%) of the tasks were completed successfully.
A detailed error analysis can be found in [11].

Word Error Rate Analysis

A total of 1327 utterances were recorded from the 72 NIST calls.
Of these, 1264 contained user speech. At the time of the June
2000 NIST evaluation, the CU Communicator system did not
implement voice-based barge-in. We noticed that one source of
error was due to users who spoke before the recording process
was started. Even though a tone was presented to the user to
signify the time to speak, 6.9% of the utterances contained
instances in which the user spoke before the tone. Since all users
were exposed to several other Communicator systems that

2 The system can be accessed toll-free at 1-866-735-5189

employed voice barge-in, there may be some effect from
exposure to those systems. Table 3 summarizes the word error
rates for the system utilizing the June 2000 NIST data as the test
set. Overall, the system had a word error rate (WER) of 26.0%
when parallel gender-dependent decoders were utilized. Since
June of 2000, we have collected an additional 15,000 task-
dependent utterances. With the extra data, we were able to
remove our dependence on the CMU Communicator training
data [12]. When the language model was reestimated and
language model weights reoptimized using only CU
Communicator data, the WER dropped from 26.0% to 22.5%.
This amounts to a 13.5% relative reduction in WER.

Table 1: CU Communicator Word Error Rates for (A)
Speaker Independent acoustic models and June 2000
language model, (B) Gender-dependent parallel recognizers
with June 2000 Language Model, and (C) Language Model
retrained in December 2000.

June 2000 NIST Evaluation Data, 1264
utterances, 72 speakers

Word Error
Rate

(A) Speaker Indep. HMMs (LM#1) 29.8%
(B) Gender Dependent HMMs (LM#1) 26.0%
(C) Gender Dependent HMMs (LM#2) 22.5%

Core Metrics

Sites in the DARPA Communicator program agreed to log a
common set of metrics for their systems. The proposed set of
metrics was: Task Completion, Time to Completion, Turns to
Completion, User Words/Turn, System Words/Turn, User
Concepts/Turn, Concept Efficiency, State of Itinerary, Error
Messages, Help Messages, Response Latency, User Words to
Completion, System Words to Completion, User Repeats, System
Repeats/Reprompts, Word Error, Mean Length of System
Utterance, and Mean Length of System Turn.

Table 2: Dialogue system evaluation metrics
Item Min Mean Max

Time to Completion (secs) 120.9 260.3 537.2
Total Turns to Completion 23 37.6 61
Response Latency (secs) 1.5 1.9 2.4
User Words to Task End 19 39.4 105
System Words to End 173 331.9 914
Number of Reprompts 0 2.4 15

Table 2 summarizes results obtained from metrics derived
automatically from the logged timing markers for the calls in
which the user completed the task assigned to them. The average
time to task completion is 260. During this period there are an
average of 19 user turns and 19 computer turns (37.6 average
total turns). The average response latency was 1.86 seconds.
The response latency also includes the time required to access the
data live from the Internet travel information provider.

3. CU MOVE

3.1 Task Overview
The “CU Move” system represents our work towards achieving
graceful human-computer interaction in automobile

environments. Initially, we have considered the task of vehicle
route planning and navigation. As our work progresses, we will
expand our dialog system to new tasks such as information
retrieval and summarization and multimedia access.

The problem of voice dialog within vehicle environments offers
some important speech research challenges. Speech recognition
in car environments is in general fragile, with word-error-rates
(WER) ranging from 30-65% depending on driving conditions.
These changing environmental conditions include speaker
changes (task stress, emotion, Lombard effect, etc.) as well as the
acoustic environment (road/wind noise from windows, air
conditioning, engine noise, exterior traffic, etc.).
In developing the CU-Move system [13,14], there are a number
of research challenges that must be overcome to achieve reliable
and natural voice interaction within the car environment. Since
the speaker is performing a task (driving the vehicle), the driver
will experience a measured level of user task stress and therefore
this should be included in the speaker-modeling phase. Previous
studies have clearly shown that the effects of speaker stress and
Lombard effect can cause speech recognition systems to fail
rapidly. In addition, microphone type and placement for in-
vehicle speech collection can impact the level of acoustic
background noise and speech recognition performance.

3.2 Signal Processing
Our research for robust recognition in automobile environments
is concentrated on development of an intelligent microphone
array. Here, we employ a Gaussian Mixture Model (GMM)
based environmental classification scheme to characterize the
noise conditions in the automobile. By integrating an
environmental classification system into the microphone array
design, decisions can be made as to how best to utilize a noise-
adaptive frequency-partitioned iterative enhancement algorithm
[15,16] or model-based adaptation algorithms [17,18] during
decoding to optimize speech recognition accuracy on the beam-
formed signal.

3.3 Data Collection
A five-channel microphone array was constructed using Knowles
microphones and a multi-channel data recorder housing built
(Fostex) for in-vehicle data collection. An additional reference
microphone is situated behind the driver’s seat. Fig. 3 shows the
constructed microphone array and data recorder housing.

Figure 3: Microphone array and reference microphone (left),
Fostex multi-channel data recorder (right).

As part of the CU-Move system formulation, a two phase data
collection plan has been initiated. Phase I focuses on collecting
acoustic noise and probe speech from a variety of cars and
driving conditions. Phase II focuses on a extensive speaker
collection across multiple U.S. sites. A total of eight vehicles
have been selected for acoustic noise analysis. These include the

following: a compact car, minivan, cargo van, sport utility
vehicle (SUV), compact and full size trucks, sports car, full size
luxury car. A fixed 10 mile route through Boulder, CO was used
for Phase I data collection. The route consisted of city (25 &
45mph) and highway driving (45 & 65mph). The route included
stop-and-go traffic, and prescribed locations where
driver/passenger windows, turn signals, wiper blades, air
conditioning were operated. Each data collection run per car
lasted approximately 35-45 minutes. A detailed acoustic analysis
of Phase I data can be found in [13]. Our plan is to begin Phase
II speech/dialogue data collection during spring 2001, which will
include (i) phonetically balanced utterances, (ii) task-specific
vocabularies, (iii) natural extemporaneous speech, and (iv)
human-to-human and Wizard-of-Oz (WOZ) interaction with CU-
Communicator and CU-Move dialog systems.

3.4 Prototype Dialog System
Finally, we have developed a prototype dialog system for data
collection in the car environment. The dialog system is based on
the MIT Galaxy-II Hub architecture with base system
components derived from the CU Communicator system [1].
Users interacting with the dialog system can enter their origin
and destination address by voice. Currently, 1107 street names
for Boulder, CO area are modeled. The system can resolve street
addresses by business name via interaction with an Internet
telephone book. This allows users to ask more natural route
queries (e.g., “I need an auto repair shop”, or “I need to get to the
Boulder Marriott”). The dialog system automatically retrieves
the driving instructions from the Internet using an online WWW
route direction provider. Once downloaded, the driving
directions are queried locally from an SQL database. During
interaction, users mark their location on the route by providing
spoken odometer readings. Odometer readings are needed since
GPS information has not yet been integrated into the prototype
dialog system. Given the odometer reading of the vehicle as an
estimate of position, route information such as turn descriptions,
distances, and summaries can be queried during travel (e.g.,
"What's my next turn", "How far is it", etc.).

The prototype system uses the CMU Sphinx-II speech recognizer
with cellular telephone acoustic models along with the Phoenix
Parser [10] for semantic parsing. The dialog manager is mixed-
initiative and event driven. For route guidance, the natural
language generator formats the driving instructions before
presentation to the user by the text-to-speech server. For
example, the direction, "Park Ave W. becomes 22nd St." is
reformatted to, "Park Avenue West becomes Twenty Second
Street". Here, knowledge of the task-domain can be used to
significantly improve the quality of the output text. For speech
synthesis, we have developed a Hub-compliant server that
interfaces to the AT&T NextGen speech synthesizer.

3.5 Future Work
We have developed a Hub compliant server that interfaces a
Garmin GPS-III global positioning device to a mobile computer
via a serial port link. The GPS server reports vehicle velocity in
the X,Y,Z directions as well as real-time updates of vehicle
position in latitude and longitude. HRL Laboratories has
developed a route server that interfaces to a major navigation
content provider. The HRL route server can take GPS

coordinates as inputs and can describe route maneuvers in terms
of GPS coordinates. In the near-term, we will interface our GPS
server to the HRL route server in order to provide real-time
updating of vehicle position. This will eliminate the need for
periodic location update by the user and also will allow for more
interesting dialogs to be established (e.g., the computer might
proactively tell the user about upcoming points of interest, etc.).

4. REFERENCES

[1] http://communicator.colorado.edu

[2] W. Ward, B. Pellom, "The CU Communicator System," IEEE
Workshop on Automatic Speech Recognition and Understanding,
Keystone Colorado, December, 1999.

[3] http://fofoca.mitre.org

[4] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., Zue, V.,
“Galaxy-II: A Reference Architecture for Conversational System
Development,” Proc. ICSLP, Sydney Australia, Vol. 3, pp. 931-
934, 1998.

[5] Ravishankar, M.K., “Efficient Algorithms for Speech
Recognition”. Unpublished Dissertation CMU-CS-96-138,
Carnegie Mellon University, 1996

[6] K. Hacioglu, W. Ward, "Dialog-Context Dependent Language
Modeling Using N-Grams and Stochastic Context-Free Grammars",
Proc. IEEE ICASSP, Salt Lake City, May 2001.

[7] K. Hacioglu, W. Ward, "Combining Language Models : Oracle
Approach", Proc. Human Language Technology Conference, San
Diego, March 2001.

[8] R. San-Segundo, B. Pellom, W. Ward, J. M. Pardo, "Confidence
Measures for Dialogue Management in the CU Communicator
System," Proc. IEEE ICASSP, Istanbul Turkey, June 2000.

[9] R. San-Segundo, B. Pellom, K. Hacioglu, W. Ward, J.M. Pardo,
"Confidence Measures for Dialogue Systems," Proc. IEEE ICASSP,
Salt Lake City, May 2001.

[10] Ward, W., “ Extracting Information From Spontaneous Speech”,
Proc. ICSLP, September 1994.

[11] B. Pellom, W. Ward, S. Pradhan, "The CU Communicator: An
Architecture for Dialogue Systems", Proc. ICSLP, Beijing China,
November 2000.

[12] Eskenazi, M., Rudnicky, A., Gregory, K., Constantinides, P.,
Brennan, R., Bennett, K., Allen, J., “Data Collection and
Processing in the Carnegie Mellon Communicator,” Proc.
Eurospeech-99, Budapest, Hungary.

[13] J.H.L. Hansen, J. Plucienkowski, S. Gallant, B.L. Pellom, W. Ward,
"CU-Move: Robust Speech Processing for In-Vehicle Speech
Systems," Proc. ICSLP, vol. 1, pp. 524-527, Beijing, China, Oct.
2000.

[14] http://cumove.colorado.edu/

[15] J.H.L. Hansen, M.A. Clements, “Constrained Iterative Speech
Enhancement with Application to Speech Recognition,” IEEE
Trans. Signal Proc., 39(4):795-805, 1991.

[16] B. Pellom, J.H.L. Hansen, “An Improved Constrained Iterative
Speech Enhancement Algorithm for Colored Noise Environments,"
IEEE Trans. Speech & Audio Proc., 6(6):573-79, 1998.

[17] R. Sarikaya, J.H.L. Hansen, "Improved Jacobian Adaptation for
Fast Acoustic Model Adaptation in Noisy Speech Recognition,"
Proc. ICSLP, vol. 3, pp. 702-705, Beijing, China, Oct. 2000.

[18] R. Sarikaya, J.H.L. Hansen, "PCA-PMC: A novel use of a priori
knowledge for fast model combination," Proc. ICASSP, vol. II, pp.
1113-1116, Istanbul, Turkey, June 2000.

