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Abstract 
This paper defines a language Z~ for spe- 
cifying LFG grammars. This enables 
constraints on LFG's composite onto- 
logy (c-structures synchronised with f- 
structures) to be stated directly; no ap- 
peal to the LFG construction algorithm 
is needed. We use f to specify schemata 
annotated rules and the LFG uniquen- 
ess, completeness and coherence princip- 
les. Broader issues raised by this work 
are noted and discussed. 

1 Introduction 
Unlike most linguistic theories, LFG (see Kaplan 
and Bresnan (1982)) treats grammatical relations 
as first class citizens. Accordingly, it casts its lin- 
guistic analyses in terms of a composite ontology: 
two independent domains - -  a domain of consti- 
tuency information (c-structure), and a domain of 
grammatical function information (f-structure) - -  
linked together in a mutually constraining man- 
ner. As has been amply demonstrated over the 
last fifteen years, this view permits perspicuous 
analyses of a wide variety of linguistic data. 

However standard formalisations of LFG do not 
capture its strikingly simple underlying intuitions. 
Instead, they make a detour via the LFG con- 
s t ruc t ion  algori thm,  which explains how equatio- 
nal constraints linking subtrees and feature str.uc- 
tures are to be resolved. The main point of the 
present paper is to show that  such detours are 
unnecessary. We define a specification language 
£ in which (most of) the interactions between c- 
and f-structure typical of LFG grammars can be 
stated directly. 

The key idea underlying our approach is to 
think about LFG model theoretically. That  is, 
our first task will be to give a precise - -  and trans-  
parent  - -  mathematical  picture of the LFG onto- 
logy. As has already been noted, the basic enti- 
ties underlying the LFG analyses are composite 
structures consisting of a finite tree, a finite fea- 
ture structure, and a function that links the two. 

Such structures can straightforwardly be thought 
of as models,  in the usual sense of first order model 
theory (see Hodges (1993)). Viewing the LFG on- 
tology in such terms does no violence to intuition: 
indeed, as we shall see, a more direct mathemati-  
cal embodiment of the LFG universe can hardly 
be imagined. 

Once the ontological issues have been settled we 
turn to our ult imate goal: providing a specifica- 
tion language for LFG grammars. Actually, with 
the ontological issues settled it is a relatively sim- 
ple task to devise suitable specification languages: 
we simply consider how LFG linguists talk about 
such structures when they write grammars. Tha t  
is, we ask ourselves what kind of constraints the 
linguist wishes to impose, and then devise a lan- 
guage in which they can be stated. 

Thus we shall proceed as follows. After a brief 
introduction to LFG, 1 we isolate a class of models 
which obviously mirrors the composite nature of 
the LFG ontology, and then turn to the task of de- 
vising a language for talking about them. We opt 
for a particularly simple specification language: a 
propositional language enriched with operators for 
talking about c- and f-structures, together with a 
path equality construct for enforcing synchronisa- 
tion between the two domains. We illustrate its 
use by showing how to capture the effect of sche- 
mata  annotated rules, and the LFG uniqueness, 
completeness and coherence principles. 

Before proceeding, a word of motivation is in 
order. Firstly, we believe that  there are practical 
reasons for interest in grammatical  specification 
languages: formal specification seems important  
(perhaps essential) if robust large scale grammars 
are to be defined and maintained. Moreover, the 
essentially model theoretic slant on specification 
we propose here seems particularly well suited to 
this aim. Models do not in any sense "code" the 
LFG ontology: they take it pret ty much at face va- 
lue. In our view this is crucial. Formal approaches 

1This paper is based upon the originM formula- 
tion of LFG, that of Kaplan and Bresnan (1982), and 
will not discuss such later innovations as functional 
uncertainty. 
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to grammat ica l  theorising should reflect linguistic 
intuitions as directly as possible, otherwise they 
run the risk of being an obstacle, not an aid, to 
g r a m m a r  development. 

The approach also raises theoretical issues. The 
model theoretic approach to specification langua- 
ges forces one to think about  linguistic ontologies 
in a systematic way, and to locate them in a well 
understood mathemat ica l  space. This has at least 
two advantages. Firstly, it offers the prospect of 
meaningful comparison of linguistic frameworks. 
Secondly, it can highlight anomalous aspects of 
a given system. For example,  as we shall later 
see, there seems to be no reasonable way to deal 
with LFG's  --c definitions using the simple models 
of the present paper. There is a plausible model 
theoretic strategy strategy for extending our ac- 
count to cover =c; but the nature of the required 
extension clearly shows that  =c is of a quite diffe- 
rent character to the bulk of LFG. We discuss the 
ma t t e r  in the paper ' s  concluding section. 

2 L e x i c a l  F u n c t i o n a l  G r a m m a r  

A lexical functional g r am m ar  consists of three 
main components:  a set of context free rules anno- 
tated with schemata,  a set of well formedness con- 
ditions on feature structures, and a lexicon. The 
role of these components  is to assign two interrela- 
ted structures to any linguistic entity licensed by 
the grammar:  a tree (the c-structure) and a fea- 
ture structure (the f-structure). Briefly, the con- 
text free skeleton of the g r a m m a r  rules describes 
the c-structure, the well-formedness conditions re- 
strict f-structure admissibility, and the schemata  
synchronise the information contained in the c- 
and f-structures. 

(1) S , NP VP 
(T soB J ) = l  T= 

(2) NP , Det N 

(3) VP , V 

a 

girl 
walks 

Det, (T SPEC) ---- a, (T NUM) ---- s ing 
N, (~ PRED) ~- girl, (1" NUM) "-" sing 
V, (1" PRED) = walk( (subj) ), 
(~ TENSE) ---- pst 

Figure 1: An LFG g r a m m a r  fragment  

To see how this works, let 's run through a sim- 
ple example.  Consider the g r a m m a r  given in Fi- 
gure 1. Briefly, the up- and down-arrows in the 
schemata  can be read as follows: T Feature denotes 
the value of Feature in the f-structure associated 
with the tree node immediately  dominat ing the 

current tree node, whereas ~ Feature denotes the 
value of Feature in the f-structure associated with 
the current tree node. For instance, in rule (1) the 
NP schema indicates tha t  the f-structure associa- 
ted with the NP node is the value of the SUBJ 
feature in the f-structure associated with the mo- 
ther node. As for the VP schema, it requires tha t  
the f-structure associated with the mother  node is 
identical with the f-structure associated with the 
VP node. 

Given the above lexical entries, it is possible 
to assign a correctly interrelated c-structure and 
f-structure to the sentence A girl walks. Moreo- 
ver, the resulting f-structure respects the LFG 
well formedness conditions, namely the uniquen- 
ess, completeness and coherence principles discus- 
sed in section 5. Thus A girl walks is accepted by 
this g rammar .  

3 Modeling the LFG ontology 

The ontology underlying LFG is a composite  one, 
consisting of trees, feature structures and links 
between the two. Our first task is to ma themat i -  
cally model this ontology, and to do so as trans- 
parently as possible. Tha t  is, the mathemat ica l  
entities we introduce should clearly reflect the in- 
tuitions impor tan t  to LFG theorising - -  "No co- 
ding!", should be our slogan. In this section, we 
introduce such a representation of LFG ontology. 
In the following section, we shall present a formal  
language L: for talking about  this representation; 
that  is, a language for specifying LFG grammars .  

We work with the following objects. A mo- 
del M is a t r ipart i te  structure (7.,zoomin,J:), 
where 7- is our mathemat ica l  picture of c- struc- 
ture, 9 r our picture of f-structure, and zoomin 
our picture of the link between the two. We 
now define each of these components.  Our de- 
finitions are given with respect to a signature of 
the form (Cat, Atom, Feat), where Cat, Atom and 
Feat are non-empty,  finite or denumerably infinite 
sets. The intuition is tha t  these sets denote the 
syntactic categories, the a tomic values, and the 
features that  the linguist has chosen for some lan- 
guage. For instance, Cat could be {S, NP, VP, V}, 
Atom might  be {sg,pl, third, fem,  masc} and 
Feat might be { subj, obj, pred, nb, case, gd}. 

Firstly we define 7". As this is our ma th ema-  
tical embodiment  of c-structure ( that  is, a cate- 
gory labeled tree) we take it to be a pair (T, Vt), 
where T is a finite ordered tree and Vt is a function 
from the set of tree nodes to Cat. We will freely 
use the usual tree terminology such as mother-of,  
daughter-of, dominates,  and so on. 

Second, we take j r  to be a tuple of the form 
(W, {fa}c, EFeat, initial, Final, VI) , where W is aft-  
nite, non-empty set of nodes; f~ is a part ial  func- 
tion from W to W, for all a E Feat; initial is a 
unique node in W such tha t  any other node w'  
of W can be reached by applying a finite number  
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of fa  to initial; Final is a non-empty set of no- 
des such that  for all fa  and all w E Final, f~(w) 
is undefined; and V! is a function from Final to 
Atom. This is a standard way of viewing feature 
structures, and is appropriate for LFG. 

Finally, we take zoomin, the link between c- 
structure and f-structure information, to be a par- 
tial function from T to W. This completes our 
mathematical  picture of LFG ontology. It is cer- 
tainly a precise picture (all three components, and 
how they are related are well defined), but, just  
as importantly, it is also a faithful picture; models 
capture the LFG ontology perspicuously. 

4 A Specification Language 
Although models pin down the essence of the LFG 
universe, our work has only just begun. For a 
start, not all models are created equal. Which 
of them correspond to grammatical utterances of 
English? Of Dutch? Moreover, there is a practical 
issue to be addressed: how should we go about 
saying which models we deem 'good'?  To put in 
another way, in what medium should we specify 
grammars? 

Now, it is certainly possible to talk about mo- 
dels using natural language (as readers of this pa- 
per will already be aware) and for many purposes 
(such as discussion with other linguists) natural 
language is undoubtedly the best medium. Ho- 
wever, if our goal is to specify large scale gram- 
mars in a clear, unambiguous manner, and to do 
so in such a way that  our grammatical analyses 
are machine verifiable, then the use of formal spe- 
cification languages has obvious advantages. But 
which formal specification language? There is no 
single best answer: it depends on one's goals. Ho- 
wever there are some important  rules of thumb: 
one should carefully consider the expressive capa- 
bilities required; and a judicious commitment to 
simplicity and elegance will probably pay off in 
the long run. Bearing this advice in mind, let us 
consider the nature of LFG grammars. 

Firstly, LFG grammars impose constraints on 
7". Context free rules are typically used for this 
purpose - -  which means, in effect, that  constraints 
are being imposed on the 'daughter of'  and 'sister 
of'  relations of the tree. Secondly, LFG grammars 
impose general constraints on various features in 
2-. Such constraints (for example the completen- 
ess constraint) are usually expressed in English 
and make reference to specific features (notably 
pred). Thirdly, LFG grammars impose constraints 
on zoomin. As we have already seen, this is done 
by annotating the context free rules with equati- 
ons. These constraints regulate the interaction of 
the 'mother  of '  relation on 7", zoomin, and specific 
features in 2-. 

Thus a specification language adequate for LFG 
must be capable of talking about the usual tree re- 
lations, the various features, and zoomin; it must 

also be powerful enough to permit  the statement 
of generalisations; and it must have some mecha- 
nism for regulating the interaction between 7" and 
2-. These desiderata can be met by making use 
of a propositional language augmented with (1) 
modal operators for talking about trees (2) modal 
operators for talking about feature structures, and 
(3) a modal operator for talking about zoomin, 
together with a path equality construct for syn- 
chronising the information flow between the two 
domains. Let us build such a language. 

Our language is called Z: and its primi- 
tive symbols (with respect to a given signature 
(Cat, Atom, Feat)) consists of (1) all items in Cat 
and Atom (2) two constants, c-struct and f-struct, 
(3) the Boolean connectives (true, false, -~, A, ~ ,  
etc.), (4) three tree modalities (up), (down) and 
,,, (5) a modality (a), for each feature a E Feat, 
(6) a synchronisation modali ty (zoomin), (7) a 
path equality constructor ~,  together with (8) the 
brackets ) and (. 

The basic well formed formulas (basic wits) of £ 
are: {true, false, c-struct, f-struct}UCatUAtomU 
Patheq, where Patheq is defined as follows. Let t, 
t I be finite (possibly null) sequences of the moda- 
lities (up) and (down), and let f ,  f '  be finite (pos- 
sibly null) sequences of feature modalities. Then 
t(zoomin)f  ~ t '(zoomin)f'  is in Patheq, and no- 
thing else is. 

Tim wffs of/:: are defined as follows: (1) all basic 
wffs are wffs, (2) all Boolean combinations of wffs 
are wffs, (3) if ¢ is a wff then so is M e ,  where 
M E {(a) : a E Feat} U {(up}, (down), (zoomin)} 
and (4) if n > 0, and ¢ 1 , . . . , ¢ n  are wffs, then so 
is * (¢1 , . . . , ¢n ) -  Nothing else is a wff. 

Now for the satisfaction definition. We induc- 
tively define a three place relation ~ which holds 
between models M, nodes n and wffs ¢. Intui- 
tively, M, n ~ ¢ means that  the constraint ¢ holds 
at (is true at, is satisfied at) the node n in model 
M. The required inductive definition is as follows: 

M, n ~ true always 
M, n ~ false never 
M, n ~ c-struct iff 

n is a tree node 
M, n ~ f-struct iff 

n is a feature structure node 
M , n  ~ c iff 

Vt(n) = c, (for all e E Cat) 
M , n  ~ a iff 

Vf(n)  = a, ( for al ia  ~ Atom) 
M, n ~ -,¢ iff 

not M , n ~ ¢  
M , n ~ f A ¢  i f  

M , n ~ f f  and M , n ~ f  
M, n ~ (a)¢ iff 

f~(n) exists and M, f~(n) ~ ¢ 
(for all a E Feat) 
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M, n ~ (down)¢ iff 
n is a tree node with 
at least one daughter n' such that 
M , n ' ~ ¢  

M, n ~ (up)¢ ig 
n is a tree node with 
a mother node m and 
M,m~¢  

M, n ~ (zoomin)¢ iff 
n is a tree node, 
zoomin(n) is defined, and 
M, zoomin(n) ~ ¢ 

M , n  ~ * ( ¢ x , . . . , ¢ k )  ig 
n is a tree node with 
exactly k daughters nl . . .  nk and 
M, n I ~ ~1,. . .  ,M, nk ~ ¢k 

M, n ~ t(zoomin)f  ~, t '(zoomin)f '  iff 
n is a tree node, and there is a 
feature structure node w such that 
n(St; zoomin; Sl )w and 
n( S,, ; zoomin; S 1, )w 

For the most  part  the impor t  of these clauses 
should be clear. The constants true and false play 
their usual role, c-struct and f-struct give us 'la- 
bels'  for our two domains, while the elements of 
Cat and Atom enable us to talk about  syntactic 
categories and atomic f-structure information re- 
spectively. The clauses for --, and A are the usual 
definitions of classical logic, thus we have all pro- 
positional calculus at our disposal; as we shall 
see, this gives us the flexibility required to for- 
mulate  non-trivial general constraints. More in- 
teresting are the clauses for the modalities. The 
unary modalit ies (a),  (up), (down), and (zoomin) 
and the variable arity modal i ty  * give us access 
to the binary relations impor tan t  in formulating 
LFG grammars .  Incidentally, • is essentially a 
piece of syntactic sugar; it could be replaced by a 
collection of unary modalit ies (see Blackburn and 
Meyer-Viol (1994)). However, as the * operator  
is quite a convenient piece of syntax for captu- 
ring the effect of phrase structure rules, we have 
included it as a primitive in/3. 

In fact, the only clause in the satisfaction "de- 
finition which is at all complex is that  for ~ .  
I t  can be glossed as follows. Let St and St, be 
the pa th  sequences through the tree correspon- 
ding to t and t ~ respectively, and let S I and Sf, 
he the pa th  sequences through the feature struc- 
ture corresponding to f and f '  respectively. Then 
t (zoomin)f  ~ t '(zoomin)f '  is satisfied at a tree 
node t i f f  there is a feature structure node w that  
can be reached from t by making both the tran- 
sition sequence St;zoornin; S! and the transition 
sequence S,,;zoomin; S!,. Clearly, this construct 
is closely related to the Kasper Rounds path  equa- 
lity (see gaspe r  and Rounds (1990)); the princi- 
ple difference is that  whereas the Kasper Rounds 
enforces pa th  equalities within the domain of fea- 

ture structures, the LFG path  equality enforces 
equalities between the tree domain and the fea- 
ture structure domain.  

If  M,  n ~ ¢ then we say tha t  ¢ is satisfied in M 
at n. If  M,  n ~ ¢ for all nodes n in M then we say 
that  ¢ is valid in M and write M ~ ¢. Intuitively, 
to say tha t  ¢ is valid in M is to say tha t  the 
constraint ¢ holds universally; it is a completely 
general fact about  M.  As we shall see in the next 
section, the notion of validity has an impor tan t  
role to play in g r a m m a r  specification. 

5 Specifying Grammars 

We will now illustrate how/3 can be used to spe- 
cify grammars .  The  basic idea is as follows. We 
write down a wff ¢ a which expresses all our desi- 
red grammat ica l  constraints. T h a t  is, we state in 
/3 which trees and feature structures are admissi- 
ble, and how tree and feature based information is 
to be synchronised; examples will be given shortly. 
Now, a model is simply a ma themat ica l  embodi-  
ment  of LFG sentence structure, thus those mo- 
dels M in which ¢ a is valid are precisely the sent- 
ence structures which embody all our g rammat ica l .  
principles. 

Now for some examples.  Let 's  first consider how 
to write specifications which capture the effect of 
schemata  annotated g r a m m a r  rules. Suppose we 
want to capture the meaning of rule (1) of Figure 
1, repeated here for convenience: 

S , NP VP 
(IsuBJ) =l T=~ 

Recall that  this annotated rule licenses structures 
consisting of a binary tree whose mother  node m 
is labeled S and whose daughter nodes nl  and n2 
are labeled NP and VP respectively; and where, 
furthermore,  the S and VP nodes ( that  is, m and 
n2) are related to the same f-structure node w; 
while the NP node ( that  is, n l )  is related to the 
node w ~ in the f-structure tha t  is reached by ma-  
king a SUBJ transit ion from w. 

This is precisely the kind of structural  cons- 
traint  that  /3 is designed to specify. We do so 
as follows: 

S --* *(NP A (up)(zoomin)(subj) ~ (zoomin), 
VP A (up)(zoomin) ,~ (zoomin)) 

This formula is satisfied in a model M at any node 
m iff m is labeled with the category S, has exactly 
two daughters nx and n2 labeled with category 
NP and VP respectively. Moreover, nl must  be 
associated with an f-structure node w ~ which can 
also be reached by making a (sub j) transit ion f rom 
the f-structure node w associated with the mother  
node of m. (In other words, tha t  par t  of the f- 
structure that  is associated with the NP node is 
re-entrant with the value of the subj feature in 
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the f-structure associated with the S node.) And 
finally, n2 must  be associated with that  f-structure 
node w which m. (In other words, the part  of the 
f-structure that  is associated with the VP node is 
re-entrant with that  part  of the f-structure which 
is associated with the S node.) 

In short, we have captured the effect of an an- 
notated rule purely declaratively. There is no ap- 
peal to any construction algorithm; we have sim- 
ply stated how we want the different pieces to fit 
together. Note that  . specifies local tree admissi- 
bility (thus obviating the need for rewrite rules), 
and (zoomin), (up) and ~ work together to cap- 
ture the effect of ~ and T- 

In any realistic LFG g rammar  there will be se- 
veral - -  often many  - -  such annotated rules, and 
acceptable c-structures are those in which each 
non-terminal node is licensed by one of them. We 
specify this as follows. For each such rule we form 
the analogous £ wff Cr (just as we did in the pre- 
vious example) and then we form the disjunction 
V Cr of all such wffs. Now, any non-terminal node 
in the c-structure should satisfy one of these dis- 
junctions ( that  is, each sub-tree of c-struct must 
be licensed by one of these conditions); moreover 
the disjunction is irrelevant to the terminal nodes 
of c-struct and all the nodes in f-struct. Thus we 
demand that  the following conditional s ta tement  
be valid: 

(e-struct A (down)true) --~ V ¢~" 

This says that  if we are at a c-struct node which 
has at least one daughter ( that  is, a non-terminal 
node) then one of the subtree licensing disjuncts 
(or 'rules') must  be satisfied there. This picks pre- 
cisely those models in which all the tree nodes are 
appropriately licensed. Note that  the s ta tement  
is indeed valid in such models: it is true at all the 
non-terminal  nodes, and is vacuously satisfied at 
terminal tree nodes and nodes of f-struct. 

We now turn to the second main component  
of LFG, the well formedness conditions on f- 
structures. 

Consider first the uniqueness principle. In es- 
sence, this principle states that  in a given f- 
structure, a particular at t r ibute may have at most  
one value. In £ this restriction is 'built  in': it fol- 
lows from the choices made concerning the ma- 
thematical  objects composing models. Essenti- 
ally, the uniqueness principle is enforced by two 
choices. First, V! associates a toms only with fi- 
nal nodes of f-structures; and as V/ is a func- 
tion, the a tom so associated is unique. In ef- 
fect, this hard-wires prohibitions against constant- 
compound and constant-constant clashes into the 
semantics of £.  Second, we have modeled featu- 
res as partial  functions on the f-structure nodes 
- this ensures that  any complex valued at t r ibute 
is either undefined, or is associated with a uni- 
que sub-part  of the current f-structure. In short, 

as required, any at t r ibute  will have at most  one 
value. 

We turn to the completeness principle. In LFG, 
this applies to a (small) finite number  of  at tr ibutes 
( that  is, transitions in the feature structure). This 
collection includes the grammat ica l  functions (e.g. 
subj, obj, iobj) together with some longer transiti- 
ons such as obl; obj and to; obj. Let GF be a meta-  
variable over the modalit ies corresponding to the 
elements of this set, thus GF contains such items 
as (subj), (obj), (iobj), (obl)(obj) and (to)(obj). 
Now, the completeness principle requires that  any 
of these features appearing as an at t r ibute  in the 
value of the PRED at t r ibute  must  also appear  as 
an at t r ibute of the f-structure immediately  con- 
taining this PRED attr ibute,  and this recursively. 
The following wff is valid on precisely those mo- 
dels satisfying the completeness principle: 

(wed) GF true --* GF true. 

Finally, consider the counterpart  of the com- 
pleteness principle, the coherence principle. This 
applies to the same at tr ibutes as the completen- 
ess principle and requires that  whenever they oc- 
cur in an f-structure they must  also occur in the 
f-structure associated with its PRED attr ibute.  
This is t an tamount  to demanding the validity of 
the following formula: 

( GF true A (pred)true) ~ (pred) GF true 

6 C o n c l u s i o n  

The discussion so far should have given the reader 
some idea of how to specify LFG g rammars  using 
£ .  To conclude we would like to discuss =c defi- 
nitions. This topic bears on an impor tan t  general 
issue: how are the 'dynamic '  (or 'generative' ,  or 
'procedural ' )  aspects of g r ammar  to be reconciled 
with the ' s tat ic ' ,  (or 'declarat ive ')  model theoretic 
world view. 

The point is this. Although the LFG equations 
discussed so far were defining equations, LFG also 
allows so-called constraining equations (written 
=e). Kaplan and Bresnan explain the difference as 
follows. Defining equations allow a feature-value 
pair to be inserted into an f-structure providing 
no conflicting information is present. Tha t  is, 
they add a feature value pair to any consistent f- 
structure. In contrast, constraining equations are 
intended to constrain the value of an already exi- 
sting feature-value pair. The essential difference 
is that  constraining equations require that  the fea- 
ture under consideration already has a value, whe- 
reas defining equations apply independently of the 
feature value instantiation level. 

In short, constraining equations are essentially 
a global check on completed structures which re- 
quire the presence of certain feature values. They 
have an eminently procedural character,  and there 
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is no obvious way to handle this idea in the pre- 
sent set up. The bulk of LFG involves stating 
constraints about a single model, and /: is well 
equipped for this task, but constraining equations 
involve looking at the structure of other possible 
parse trees. (In this respect they are reminiscent 
of the feature specification defaults of GPSG.)  The 
approach of the present paper has been driven by 
the view that  (a) models capture the essence of 
LFG ontology, and, (b) the task of the linguist is 
to explain, in terms of the relations that exist wi- 
thin a single model, what grammatical structure 
is. Most of the discussion in Kaplan and Bres- 
nan (1982) is conducted in such terms. However 
constraining equations broaden the scope of the 
permit ted discourse; basically, they allow implicit 
appeal to possible derivational structure. In short, 
in. common with most of the grammatical forma- 
lisms with which we are familiar, LFG seems to 
have a dynamic residue that  resists a purely de- 
clarative analysis. What  should be done? 

We see three possible responses. Firstly, we 
note that  the model theoretic approach can al- 
most certainly be extended to cover constraining 
equations. The move involved is analogous to the 
way first order logic (a so-called 'extensional' lo- 
gic) can be extended to cope with intensional no- 
tions such as belief and necessity. The basic idea 
- -  it 's the key idea underlying first order Kripke 
semantics - -  is to move from dealing with a sin- 
gle model to dealing with a collection of models 
linked by an accessibility relation. Just as quan- 
tification over possible states of affairs yields ana- 
lyses of intensional phenomena, so quantification 
over related models could provide a 'denotational 
semantics' for =~. Preliminary work suggests that  
the required structures have formal similarities to 
the structures used in preferential semantics for 
default and non-monotonic reasoning. This first 
response seems to be a very promising line of work: 
the requisite tools are there, and the approach 
would tackle a full blooded version of LFG head 
on. The drawback is the complexity it introduces 
into an (up till now) quite simple story. Is such 
additional complexity reMly needed? 

A second response is to admit  that  there is a 
dynamic residue, but to deal with it in overtly 
computational  terms. In particular, it may be 
possible to augment our approach with an ex- 
plicit operational semantics, perhaps the evolving 
algebra approach adopted by Moss and Johnson 
(1994). Their  approach is attractive, because it 
permits a computational  t reatment  of dynamism 
that  abstracts from low level algorithmic details. 
In short, the second strategy is a 'divide and con- 
quer' strategy: treat  structural issues using model 
theoretic tools, and procedural issues with (reve- 
aling) computational  tools. It 's worth remarking 
that  this second response is not incompatible with 
the first; it is common to provide programming 

languages with both a denotational and an opera- 
tional semantics. 

The third strategy is both simpler and more 
speculative. While it certainly seems to be the 
case that  LFG (and other 'declarative' forma- 
lisms) have procedural residues, it is far from clear 
that  these residues are necessary. One of the most 
striking features of LFG (and indeed, GPSG) is 
the way that  purely structural ( that  is, model 
theoretic) argumentat ion dominates. Perhaps the 
procedural aspects are there more or less by ac- 
cident? After all, both LFG and GPSG drew on 
(and developed) a heterogeneous collection of tra- 
ditional grammar specification tools, such as con- 
text free rules, equations, and features. It  could 
be the case such procedural residues as --¢ are 
simply an artifact of using the wrong tools for tal- 
king about models. If this is the case, it might be 
highly misguided to a t tempt  to capture =¢ using 
a logical specification language. Better, perhaps, 
would be to draw on what is good in LFG and 
to explore the logical options that  arise naturally 
when the model theoretic view is taken as pri- 
mary. Needless to say, the most impor tant  task 
that  faces this third response is to get on with the 
business of writing grammars; that ,  and nothing 
else, is the acid test. 

It is perhaps worth adding that  at present the 
authors simply do not know what the best re- 
sponse is. If nothing else, the present work has 
made very clear to us that  the interplay of sta- 
tic and dynamic ideas in generative grammar  is 
a delicate and complex mat ter  which only further 
work can resolve. 
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