
NEW FRONTIERS BEYOND CONTEXT-FREENESS:
DI-GRAMMARS AND DI-AUTOMATA.

Peter Staudacher
Institut for Allgemeine und Indogermanische

Sprachwissenschaft
Universitat Regensburg

Postfach 397
8400 Regensburg 1

Germany

Abstract

A new class of formal languages will be defined
the Distributed Index Languages (DI-lan-

guages). The grammar-formalism generating the
new class - the DI-grammars - cover unbound
dependencies in a rather natural way. The place
of DI-languages in the Chomsky-hierarchy will
be determined: Like Aho's indexed Languages,
DI-languages represent a proper subclass of
Type 1 (contextsensitive languages) and prop-
erly include Type 2 (context-free languages), but
the DI-class is neither a subclass nor a super-
class of Aho's indexed class. It will be shown
that, apart from DI-grammars, DI-languages can
equivalently be characterized by a special type of
automata - DI-automata. Finally, the time com-
plexity of the recognition-problem for an inter-
esting subclass of DI-Grammars will approxi-
mately be determined.

I Introduction

It is common practice to parse nested Wh-dependen-
cies, like the classical example of Rizzi (1982) in (1),

(1) Tuo fratello, [a cui]l mi domando [che storie]2
abbiano raccontato t 2 t 1, era molto preoccupato

(Your Brother, [to whom] 1 I wonder [which sto-
ries] 2 they told t 2 t 1 was very troubled)

using a stack mechanism. Under the binary branching
hypothesis the relevant structure of (1) augmented by
wh-stacks is as follows:

(2)
[a cui] 1 mi dornando
Lpush ---tit 11--~ i--push ---~[t2,tll--- 1

[che storie]2abbiano V2[t2,tl]
/ \

vlIt21 PPItll
/ \

V~I] NP.It2I pop
IP°P]

raccontato t 2 t 1

Up to now it is unclear, how far beyond context-
freeness the generative power of a Type 2 grammar
formalism is being extended if such a stack mechanism
is grafted on it (assuming, of course, that an upper
bound for the size of the stack can not be motivated).

Fernando Pereira's concept of Extraposition Gram-
mar (XG), introduced in his influential paper (Pereira,
1981; 1983; cf. Stabler, 1987) in order to delimit the
new territory, can be shown to be inadequate for this
purpose, since it is provable that the class of languages
generable by XGs coincides with Type 0 (i,e. XGs have
the power of Turing machines), whereas the increase of
power by the stack mechanism is not even enough to
generate all Type 1 languages (see below).

In (2) an additional point is illustrated:
the stack [t2,tl] belonging to V 2 has to be divided into
the substacks [t2] and [tl], which are then inherited by
the daughters V l and PP. For the PP-index tlis not dis-
charged from the top of the V2-stack [t2,tl]. Generaliz-
ing to stacks of unlimited size, the partition of a stack
among the inheriting subconstituents K 1 and K 2 of a
constituent K 0 is as in (3)
(3) K0 It 1,...,tj,tj+l,...,tk]

/ \

Klltl,...,tjl K2ltj+l,...,tkl

358

If the generalization in (3) is tenable, the extension of
context-free grmnmars (Vijay-Shanker and Weir, 1991,
call the resulting formalism "linear indexed granunar"
(LIG)) discussed by Gazdar in (Gazdar, 1988), in
which stacks are exclusively passed over to a single
daughter (as in (3.1)), is too weak.

(3.1) a)K0[tl, . . , , tk] b) KoItl,....,tk]
/ \ / \

Kl[tl , . . . , t k] K 2 K1 K2[tl,...,tk]

Stack-transmission by distribution, however, as in (3)
suggests the definition of a new class of grammars
properly containing the context-free class.

2 D l=Grammars and DI- languages

A DI-grammar is a 5-tupel G = (N,T,F,P,S), where
N,T,S are as usual, F is a alphabet of indices, P is a set
of rules of the following form

1) (a) A --> o~ (b)A-->aBf~ (c)Af->o~,
(A, BeN; o~, Be(N~T)*;feF)

The relation "= > " or "directly derives" is defined as
follows:

2)o~ = > 1)
if either i)

= 5A/ndex ?, 8,y e (NF*uT)*, indexeF*, AeN,
A --) BIB2...B n is a rule of form 1)(a)
8 = 8BlindexlB2index2...BnindexnT

or ii)
o~ = 8A/ndex y, 8,T e (NF*wT)*, index eF*, AeN,
A --) B 1..Bkf.. .B n is a rule of form 1)(b), fEF
B = 5Blindexl...Bkfindexk...Bnindexn7

or iii)
ct = 8Afindex y ,8 ,? e (NF*vT)*, index eF*, AeN,
Af --* B1B2...B n is a rule of form 1)(c), f e F
B = 8BlindexlB2index2...Bnindexny

(*) and index = indexlindex2...index n,
and for B i e T: index i = ~ O.e. the empty word)
(o~a)

The reflexive and transitive closure *=> of => is de-
fined as usual.

Replacing (*) by"mdex i = index for Bie N, index i =
for B i e T", changes the above definition into a defini-
tion of Aho's well known indexed grammars. How in-
dex-percolation differs in indexed and Di-grammars is
illustrated in (4).

(4) Index-Percolation
(i) in (ii) in

Aho 's Indexed-Grammars Dl-Grammars
M f l f 2f 3f4 M f l f 2 f 3f4

/ \ / \

Lflf2f3f4 Rflf2f3f4 L f l f2 Rf3f4

i.e:index multiplication vs. index distribution

The region in the Chomsky hierarchy occupied by the
class of DI-languages is indicated in (5)

(5)

Ty~,-o

. I 2

J

A h o ' s Indexed

Languages

Type-l

.L4

. U

Type-2
¢ontexffxee

. I 3

DI-Languagm

where
(5.1) L 1 = {anbncn; n_>_> 1 }
(5.2) L 2 = {a k, k = 2 n, 0 < n}

(5.3) L 3 = {WlW2...WnZlWn...ZnWlZn+lm(wn)m(Wn. 1)
...m(w2)m(wl); n.~l & wie{a,b} + (1.~i~n) &

ZlZ2...ZnZn+ 1 e D 1 }
m(y) is the mirror image of y and D 1 is the
Dyck language generated by the following

CFG G k (DI=L(Gk)), G k = ({S},{[,I},R k, S),
where R k = {S -~ [S], S ~ SS, S -~ ~}

(5.4) L 4 = {ak; k = n n, n.~>l}; (L 4 is not an indexed
language, s. Takeshi Hayashi (1973)).

By definition (see above), the intersection of the class
of indexed languages and the class of DI-languages in-
cludes the context-free (err) languages. The inclusion is
proper, since the (non-cfr) language L 1 is generated by
G 1 = ({S,A,B}, {a,b,c}, {f,g}, R 1, S), where R 1 = {S
-+ aAfc, A --, aAgc, A --, B, Bg --, bB, Bf -+ b}, and
G 1 obviously is both a DI-gratmnax and and an indexed
grammar,-

Like cfr. languages and unlike indexed languages,
DI-languages have the constant growth property (i.e.
for every DI-grammar G there exists a keN, s.th. for
every weL(G), s.th. [wl>k, there exists a sequence w 1

359

(--w), w2,w3,...(wi•L(G)) , such that Iwnl < IWn+ll <
(n+l)xlwl for every member w n of the sequence). Hence
L2, and afortiori L4, is not a DI-language. But L2 is an
indexed language, since it is generated by the indexed
grammar G 2 =({S,A,D}, {a}, {f,g}, R 2, S), where R 2
= {S --~Ag, A ---> Af, A ---> D, Df--~ DD, Dg --~ a}.

L 3 is a DI-language, since it is generated by the DI-
grammar G3 -- ({S,M,Z},{a,b,[,]},{f,g},R3,S) where
R3 = { S ~ aSfa, M ~ [M], Z f ~ Za, Zg ~ Zb,
S---~bSgb, M---~MM, Zf --~ a, Zg --~ b
S ---> M, M--~ Z }
e.g, abb[b[ab]]bba (• L3) is derived as follows:

S ~ aSfa ~ abSg/ba ~ abbSgg/bba ~ abbMgg/bba

abb[Mgg]]bba = abb[MgMg/]bba (here the index "ggf'

has been distributed) ~ abb[ZgMgl]bba

abb[bMg/]bba ~ abb[b[Mg/]]bba ~ abb[b[Zg/]]bba

abblb[Zfo]]bba ~ abblb[ab]]bba.

2.1 DI-Grammars and Indexed Grammars

Considering the well known generative strength of in-
dexed grammars, it is by no means obvious that L 3 is
not an indexed language. In view of the complexity of
the proof that L3 is not indexed, only some important
points can be indicated - referring to the 3 main parts
of every word x • L 3 by Xl, [Xm],Xr,aS illustrated in the
example (6):
(6)

ab abb abbb abbbb[[abbbb[[abbb]abb]]ab]bbbbabbbabbaba
LWIJ I.-W2J l.~3J L.w4.--I L-~4--I I.~,3.--I LW2J l-wIJ
' x 1,- J, [Xm] i i Xr i

= x

Assume that there is a indexed grammar GI=
(N,T,F,P,S) such that L3=L(GI):
1. Since G I can not be contextfree, it follows from the
intercalation (or "pumping") lemma for indexed gram-
mars proved by Takeshi Hayashi in (Hayashi, 1973)
that there exists for G I an integer k such that for any x
• L 3 such that Ixl>k a derivation can be found with the
following properties:

S =*=> zAfr/z'=*=> ZSlAf/.tfr/s I "z"
=*=> zslrlAf#frirl 'Sl'Z'=*=>zslrlBf#frlrl 'Sl" z,
=*=> zslrtlBfr/t l ' r ' s 1 'z" =*=> x,
(zz', r l r 1"• T*, Sltlt l ' s 1" • T +, f • F, ~t, r I • F*)

By intercalating subderivations which can effectively
be constructed this derivation can be extended as fol-
lows

S =* => zAfqz'=*=>zs 1Af# fqs 1 "z"
=*=> zs 1...snA0C#')nfr}sn...s 1 "z"
=*=> zs l...SnrnB(f# 3nfqrn'Sn... s 1 'z"
=*=> ZSl...Snrntn...tlBfr/t l '...tn'rn'sn'.., s 1 'z'
=*=> ZSl...Snrntn...tlwt 1 "...tn'rn'Sn'... s 1 "z"

The interdependently extendible parts of x Sl...s n,
tn...t 1, t l '...tn', rnrn', and Sn'... s 1", can not all be sub-
words of the central component [Xm] of x (or all be
subwords of the peripheral components XlXr), else,
[Xm] (or XlXr) could be increased and decreased inde-
pendently of the peripheral components x 1 and x r (or of
[Xm], respectively) of x , contradicting the assumption
that x • L 3. Rather, the structure of x necessitates that
.Sl...s n and Sn'...s 1' be subwords of XlX r and that the
"pumped" index (f# 3 n be discharged deriving the cen-
tral component [Xm]. Thus, we know that for every/>0
there exists an index IX • F +, a x • L3, and a subword
[Xm"] of the central part [Xm] of x such that [Xm']>l
and M~t=*=>[Xm"] (M=B or the nonterminal of a de-
scendant of A(f# 3nfo). To simplify our exposition we
write Ix m'] instead of [Xm] and have

(7) MIx =*=> [Xm]

with the structure of x I and x r being encoded and stored
in the index IX.
2. The balanced parentheses of [Xm] can not be en-
coded in the index Ix in (7) in such a manner that [Xm]
is a homomorphic image of Ix. For the set I={Ix';
S=*=>XlMIx'x r =*=>Xl[Xm]X r • L 3 } of all indices which
satisfy (7) is regular (or of Type 3), but because of the
Dyek-strueture of [Xm] , LM={[Xm];Xl[Xm]Xr•L3} is
not regular but essentially context-free or of Type 2.
3. In the derivation underlying (7) essential use of
branching rules of the type A--~B1B2...B k (k_>.2) has to
be made in the sense that the effect of the rules can not
be simulated by linear rules. Else the central part [Xm]
could only have linear and not trans-linear Dyck-struc-
ture. Without branching rules the required trans-linear
parenthetical structure could only be generated by the
use of additional index-introducing rules in (7), in or-
der to "store" and coordinate parentheses, which, how-
ever, would destroy the dependence of [x m] from x I and

x r •

4.For every n_>_> 1, L 3 contains words w of the form
(8)
Wl..WkIIl..lIllwkllWk.lllllwk.211wk_alll..llll..lllm(wk)..m(w 1)

t - .n+l~ t-.n+l--a

360

where k=2 n, wie {a,b} + for l<i_<2n; m(w i) is the mirror
image of wf
i.e the central part [Xm] of such a word contains
2n+l ' l pairs of parentheses, as shown in (9) for n=3:

(9) [[[[wsl[w7l][[w6l[w5lll[[[w4l[w3ll[[w2][Wl]]]]

According to our assumption, G I generates all words
having the form (8). Referring to the derivation in (7),
consider a path from MIx to any of the parenthesized
parts w i of [Xm] in (8). (Ignoring for expositional pur-
poses the possibility of "storing" (a constant amount of)
parentheses in nonterminal nodes,) because of 2. and 3.
an injective mapping can be defined from the set of
pairs of parentheses containing at least two other (and
because of the structure of (8) disjunct) pairs of paren-
theses into the set of branching nodes with (at least)
two nonterminal daughters. Call a node in the range of
the mapping a P-Node. Assuming without loss of gen-
erality that each node has at most two nonterminal
daughters, there are 2n-1 such P-nodes in the subtree
rooted in MIx and yielding the parenthesized part [Xm]
of (8). Furthermore, every path from MIx to the root W i
of the subtree yielding [wi] contains exactly n P-nodes (
where 2n=-k in (8)).

Call an index-symbol f ins ide the index-stack ix a w i-

index i f f is discharged into a terminal constituting a
parenthesized w i in (8) (or equivalently, if f encodes a
symbol of the peripheral Xl..Xr).

Let ft be the first (or leflmos0 wi-index from above in
the index-stack Ix, and let w t be the subword of [Xm]
containing the terminal into which ft is discharged, i.e
all other wi-indices in Ix are only accessible after ft has
been consumed. Thus, for Ix=alto we get from (7)

Mafto-=+=>uBt [v.t fto]v=+=>utWt [~fto]vt and
Wt[ffto]ffi+=>wt

The path Pt from Mix to w t contains n B-nodes, for
k=2 n in (8). For every B-node Bj (0_<j<n) of Pt we ob-
tain because of the index-multiplication effected by no-
terminal branching:

Bjt jft J= > Ljt jgtolRjt ft] and
Lj [xjfta] =* = > u j + 1Bj+ l[%j+lfto]vj + 1

(Bj,Bj + 1,Lj,Rj ~ N, xj,xj+ 1,(IeF*,ft EF,u j + 1,vj + I e {a,
b,[,]}*)

Every path Pj branching off from Pt at Bj[xjfto] leads
to a word wj derived exclusively by discharging wi-in-

dices situated in Ix below (or on the right side of) ft.
Consequently, ft has to be deleted on every such path
Pj, before the appropriate indices become accessible,
i.e. we get for every j with 0< j<n:

ajE'jft"] = >ujRjt j t,,Jyj =* = > yjqtfto] ,
(Bj,Rj,Cj eN,xj,o F*,ft

Thus, for n>lN[in (8) (INI the cardinality of the non-
terminal alphabet N of G I, ignoring, as before the con-
stant amount of parenthesis-storing in nonterminals)
because of [{Cj;0<j<n}l=n the node-label Cj[fto] occurs
twice on two different paths branching off from Pt , i.e.
there exist p, q (0_<p<q<n) such that:

Mnftcr = + = > UpRp[xpftO]vqRq[Xq fto]y and
= = > ypC[fto]z p = + = > ypZZp Rp[xpfto] *

Rq[zqftO] = * = > yqC[fto]_Zo = + = > yqZZq, .
(/a=xf~, ao ,xa ,oeF ,ft~F; M,Ru,Ra,C~r~;

t . 1 , * ~

Up,Vq,y,yq,yp,Zp,Zq,Z~T) +
where z~{ZlWl...ZrWrZr+l; wi~{a,b} & Zl...Zr+l~D 1
(= the Dyck-language from (5.3)}.
I.e. G I generates words w" =Xl"[Xm"]Xr", the central
part of which contain a duplication (of "z" in
[Xm"]=ylzY2zy 3) without correspondence in Xl" or Xr",
thus contradicting the general form of words of L 3.
Hence L 3 is not indexed.

2.2 DI-Grammars and Linear Indexed Grammars I

As already mentioned above, Gazdar in (Gazdar, 1988)
introduced and discussed a grammar formalism, after-
wards (e.g. in (Weir and Joshi, 1988)) called linear in-
dexed granunars (LIG's), using index stacks in which
only one nonterminai on the right-hand-side of a rule
can inherit the stack from the left-hand-side, i.e. the
rules of a LIG G=(N,T, F, P, S) with N,F,T,S as above,
are of the Form

i. A[..] ~A1U...Ai[..]..~I n
ii. A[..] -~AI[]...Ai[f..]...A n
iii. A [f..]-~A 1 []...Ai[..]...An
iv. All ~ a

whereA 1,...,AneN, feF, and aeT~{e}. The "derives"-
relation => is defined as follows

o(A [fl.. fn] ~=>o~ i H...A [fl.. fn]..-~n[] ~
if A[..] -~A l[]...Ai[..]..,4n~P

IThanks to the anonymous referees for suggestions for this
section and the next one.

361

cxA [/'1 .. fn] 13=>~-//1 []...A [ffl.. fn]...A n[] 13
ff A[..] ---)A l[]..Ai[f..]...AneP

~4 [ffl.. fn]13=>aA 1 [1..-/1 Ill.. fn].. ~ln[]13
ff A[f..] -+A l[]...Ai[..]...AneP

c~,4 []13=>~al3
if A[] --+aeP

=*---> is the reflexive and transitive closure of =>, and
L(G)={w; weT* & S[]=*=>w}.
Gazdar has shown that LIGs are a (proper) subclass of
indexed grammars. Joshi, Vijay-Shanker, and Weir
(Joshi, Vijay°Shanker, and Weir, 1989; Weir and Joshi,
1988) have shown that LIGs, Combinatory Categorial
Grammars (CCG), Tree Adjoinig Grammars (TAGs),
and Head Grammars (HGs) are weakly equivalent.
Thus, ff an inclusion relation can be shown to hold be-
tween DI-languages (DIL) and LILs, it simultaneously
holds between the DIL-class and all members of the
family.

To simulate the restriction on stack transmission in a
LIG GI=(N1,T , FI, P1, S1) the following construction of
a DI-grammar G d suggests itself:
Let G d =(N, T, F, P, S) where N-{S}={X'; XeN1},
F={f'; fEF1}~{#}, and P={S--+SI'#}

u{A'--~A l'#...Ai'...An'#; A[..] ---~A 1 []..Ai[..]...An~PI}
~{A'-+A 1 "#...Ai'f'... An'#;A [..] ---~A 1 [].-Ai[f..].-An~P1}
u { A ' f ' ~ A I'#...Ai'...An'#;A[f..]-~A l[].-Ai[..]'tlnePl}
~{A'#---~a; A[] --~a~Pl}
It follows by induction on the number of derivation
steps that for X'eN, X~NI, tt'~F*, tt~Fi*, and w ~T*
(10) X'tt'#=*o=>w if and only if X[~t]=*Gl=>w
where X'=h(X) and ~t'=h(10 (h is the homomorphism
from (NIwFI)* into (NuF)* with h(Z)=Z'). For the
nontrivial part of the induction, note that A'#~t" can not
be terminated in G.
Together with S=>S 1 "# (I0) yields L(GI)=L(G).

The inclusion of the LIG-class in the DI-class is
proper, since L 3 above is not a LIG-language, or to
give a more simple example:
Lw= {analnla2nlbln2b2n2b n [n = nl + n2} is accord-
ing to (Vijay-Shanker, Weir and Joshi, 1987) not in
TAL, hence not in LIL. But (the indexed langauge) L w
is generated by the DI-Grammar
Gw=({ S,A,B },{a,b,al,a2,b 1,b2 },{ S--~aSIb, S--~AB,Af---~
a 1Aa2,Bf--~b 1Bb2,Af--+ala2,Bf-+b lb2,A-+e,B"+e},S).

2.3 Generalized Composition and Combinatory
Categorial Grammars

The relation of DI-granunars to Steedman's Combina-
tory Categorial Grammars with Generalized Composi-

tion (GC-CCG for short) in the sense of (Weir and
Joshi, 1988) is not so easy to determine. If for each n~_>l
composition rules of the form

(x/y) (...(Yllzll)12....Inzn)--, (...(XllZll)12....Inzn) and
(...(YllZll)12....Inzn) (x\y)~ (...(XllZll)12....Inzn)

are permitted, the generative power of the resulting
grammars is known to be stronger than TAGs (Weir
and Joshi, 1988).

Now, the GC-CCG given by
f(~)={#} f(al)={SDU#, SDG#, #/X/#,#/X~#}
f(a)={A,XkA} fCol)={S/Y/#, S/Y~#, #/YI#,#/~#}
f(b)={B, YxB} f(D ={K} f(])={#/#kK, ~#~Z}

generates a language Lc, which when intersected with
the regular set

{ a,b}+{ [,],a 1,b 1 }+{a,b} +

yields a language Lp which is for similar reasons as L 3
not even an indexed language. But Lp does not seem to
be a DI-language either. Hence, since indexed lan-
guages and DI-languages are closed under intersection
with regular sets., L c is neither an indexed nor (so it
appears) a DI-language.

The problem of a comparison of DI-grammars and
GC-CCGs is that, inspite of all appearances, the com-
bination of generalized forward and backward com-
position can not directly simulate nor be simulated by
index-distribution, at least so it seems.

3 DI-Automata

An alternative method of characterizing DI-languages
is by means of DI-automata defined below.

Dl-automata (dia) have a remote resemblance to
Aho's nested stack automata (nsa). They can best be
viewed as push down automata (pda) with additional po-
wer: they can not only read and write on top of their
push down store, but also travel down the stack and
(recursively) create new embedded substacks (which can
be left only after deletion), dia's and nsa's differ in the
following respects:
1. a dia is only allowed to begin to travel down the
stack or enter the stack reading mode, if a tape,symbol
A on top of the stack has been deleted and stored in a
special stack-reading-state qA, and the stack-reading
mode has to be terminated as soon as the first index-
symbol f from above is being scanned, in which case
the index-symbol concerned is deleted and an embed-
ded stack is created, provided the transition-function
gives permission. Thus, every occurrence of an index-
symbol on the stack can only be "consumed" once, and

362

only in combination with a "matching" non-index-sym-
bol.

A nsa, on the other hand, embeds new stacks behind
tape symbols which are preserved and can, thus, be
used for further stack-embeddings. This provides for
part of the stack multiplication effect.
2. Moving through the stack in the stack reading mode,
a dia is not allowed to pass or skip an index symbol.
Moreover, no scanning of the input or change of state is
permitted in this mode.

A nsa, however, is allowed both to scan its input and
change its state in the stack reading mode, which, to-
gether with the license to pass tape symbols repeatedly,
provides for another part of the stack multiplication ef-
fect.
3. Unlike a nsa, a dia needs two tape alphabets, since
only "index symbols" can be replaced by new stacks,
moreover it requires two sets of states in order to di-
stinguish the pushdown mode from the stack reading
mode.

Formally, a di-automaton is a 10-tuple D ={q, Q17 T,F,
Z~,z~s,¢,#) ,
where q is the control state for the pushdown mode,
QI-={qA; A e,/"} a finite set of stack reading states,
T a finite set of input symbols,
/ ' a finite set of storage symbols,
I a finite set of index symbols where Ir-d"=~,
ZoeFis the initial storage symbol,
$ is the top-of-stack marker on the storage tape,
¢ is the bottom-of embedded stack marker on the

storage tape,
marks the bottom o f the storage tape,

where $,¢,# f~F~ T~I,
Dir = {-1,0,1} (for "1 step upwards","stay","l step

downwards", respectivly,
E = {0,1} ("halt input tape", "shift input tape", respec-
tively),
T'= T u {#}, l ' = F u {¢},
d~is a mapping
1) in the push down mode:

from {q} x T' x SFinto finite subsets of
{q} x O x $1"((FuI) *)

2) in the stack reading mode: for everyA ~/"
(a)from {qA} x 7" x 1-" into subsets of {qA} x {0} x {1}

(for walking down the stack)
(b)from {q} xT' x $(A} into subsets of (qA} x (0} x {1}

(for initiating the stack reading mode)
(c) from {q} x T' x {,4} into subsets of {q} x {0} x (-1}

(for climbing up the stack)
3) in the stack creation mode:

from QFx T' x I into finite subsets of
{q} x {0} x $F((l"u1) *)¢, and from Q F x T' x $1 into
finite subsets of {q} x {0} x $$F((F~l)*)¢ (for re-

placing index symbols by new stacks, preserving the
top-of-stack marker $)

4) in the stack destruction mode:
from {q} x T' x {$¢} into subsets of {q} x {0}.

As in the case of Aho's nested stack automaton a confi-
guration of a DI-automaton D is a quadruple
(P,al....an#,i,X1...AXj...Xm),
where
1. p e {q}UQF is the current state of D;
2. al...a n is the input string, # the input endmarker;
3. i (l<i<n+l) the position of the symbol on the input
tape currently being scanned by the input head (=ai);
4. x1...^Xi...x m the content of the storage tape where
for m>l XI=$A, AeF, Xm=#, X2...Xm. 1 e (F~
Iw{$,¢})*; Xj is the stack symbol currrently being read
by the storage tape head. If m=l, then Xm--$#.
As usual, a relation I'D representing a move by the au-
tomaton is defined over the set of configurations:
(i)(q, al...an#,i,oc$^AYI3)

~)(q, al...an#,i+d,oc$^Z1...ZkYI3),
if (q,d,$Z1...Zk) ES(q, ai,$A).
(ii)(P,al...an#,i,X1...^Xj...Xm)

I'D(qA, al...an#,i,X1..Xi^Xj+l...Xm),
if, (qA, O, 1) eS(P, ai,Xj) , where either Xj=$A and p=q, or
Xj*SA (Aer) and P=qA;
(iii)(q, al...an#,i,Xl...̂ Xj...Xm) ~D
(q,al...an#,i,Xl...Xj_lO$^Al ...AkCXj+ l...Xm),
if (q,0,$Al...Ak¢)eS(q, ai,Xj), where XjeI and O=e, or
Xj=SF (FeI) and 0=$;
(iv)(q,al".an#,i,Xl.--Xj-l$̂ ¢Xj+l...Xm) I'D
(q,al...an#,i,X l...̂ Xj.IXj+l...Xm),
if (q,0) eS(q, ai,$^¢).

I'D* is the reflexive and transitive closure of ~'D.. N(D)
or the language accepted by empty stack by D is defined
as follows

N(D)={w; weT* & (q,w#,l,$^Z0 #)
I'D* (q,w#,lwl+l,$ ̂ #)

To illustrate, the DI-automaton DI 3 accepting L 3 by
empty stack is specified:
DI 3 = (q (state for pda-mode), (QF =) {q~qM, qz, q$}
(states for stack reading mode),('/'=) {a,b,[,]} (---input
alphabet), (G=){S,M,Z,a,b,[,],} (--tape symbols for Ixta-
mode),(l=){f,g} (--tape symbols representing indices),
5,S,S,¢,#)
where for every x e T:

8(q,x,$S) = {(q, O, SaSfa), (q, O,$bSgb), (q, O, CM),),
(for the G3-ndes: S --~ aSfa, S ~bSgb, S ~ M)

8(q,x,$M) = ((q, O,S[MJ), (q, O, SMM), (q, O, SZ),},

363

(for: M-+[M], M-+MM, M---~Z)
8(q,x,$x) = {(q,1,$)}

(i.e.: if input symbol x = "predicted" terminal symbol
x, then shift input-tape one step ("1") and delete suc-
cessful prediction" (replace Sx by $))

8(q,x,$Z) contains {(qz, 0,$)},
(i.e.: change into stack reading mode in order to find
indices belonging to the nonterminal Z)

5(qz, x,$Y) = 5(qz, x,Y) contain {(qz, O,1)} (for every x
T, Y ~ /)

(i.e.seek first index-symbol belonging to Z inside the
stack)

5(qz, x, $J9 = {(qz, o, $$Za¢), (qz, O, $$a¢)),
5(qz, x, Sg) = {(qz, O, SSZb¢),(qz, 0,$$b¢)},
5(qz, xJ) = {(q,x, $Za¢), (q,x, SAC)},
5(qz, x,g) = {(q,x, SZb¢), (q,x, Sb¢)},

(i.e. simulate the index-rules Zf~Za, Z f ~ a by
creation of embedded stacks)

5(q,x,S¢) = {(q, O)},
(i.e. delete empty sub-stack)

8(q,x,Y) = {(q,O,-1)} (forx ~ T, Y ~ G-~g})
(i.e. move to top of (sub-)stack).

The following theorem expresses the equivalence of DI-
grammars and DI-automata

(11) DI-THEOREM: L is a Dl-language (i.e. L
is generated by a Dl-grammar) i f and only i f L
is accepted by a Dl-automaton.

Proof sketch:
I. "only irk(to facilitate a comparison this part follows
closely Aho's corresponding proof for indexed gram-
mars and nsa's (theorem 5.1) in (Aho, 1969))
If L is a DI-language, then there exists a DI-grammar
G=(N,T,F,P,S) with L(G)=L. For every DI-grammar an
equivalent DI-grammar in a normal form can be con-
structed in which each rule has the form A---~BC, A-~a,
A---~Bf or Af---~B, with A•N; B,C•(N-{S}), a•T, f~F;
and e • L(G), only if S---~e is in P. (The proof is com-
pletely analogous to the corresponding one for indexed
grammars in (Aho, 1968) and is therefore omitted).
Thus, we can assume without loss of generality that G
is in normal form.
A DI-automaton D such that N(D)=L(G) is constructed
as follows:
Let D=(q, Q17T, IS, l,d,,Z~$,¢,#), with T=N~T~{$,¢,#},
QI~{qA;Ae2-~, I=F, Zo=S where ~ is constructed in
the following manner for all a•T:

. (q,O,$BC)•e~(q,a,$A), ifA---~BC e P,
(q,O,$b) • ~(q,a,$A), ifA-+b • P,

.

3.
4.
5.

.

7.
8.

(q,O,$BJ) ~ ~(q,a,$A), ifA--~Bf e P
(q,1,$) ~ 8(q,a, Sa)
(qA, O,$) • d(q,a,$A) for all A • F,
(qA, O,1) • 8(qA, a,B) for all A • F and all B•F,
i.(q,O,$B¢) • 8(qA,a,J) and
ii.(q,O,$$B¢) • 8(qA, a,$J) for all A • F with
Af-+B • P,
(q,O) • d(q,a,$¢)
(q,O,-1) e 8(q,a,B) for all B • F~{¢}
(q,O,$) e 8(q,#,$S) ffand only ff S ~ s is in P.

LEMMA 1.1
If

(i) Afl...fk =n=> al...a m
is a valid leflmost derivation in G with 1~0, n~>l and

AeN, then for n,~.l, Zl31...l~ke(N~{¢})*, o~
(N~{$,¢}) ,~t~(N~F~{¢}) :
(ii) (q, al...am#, 1,o~$^AZI5 lfl...lSkfklt#)

[-D*(q, al...am#,m+l,o~$^Z151...15k~t#).

Proof by induction on n (i.e. the number of derivation
steps):

If n=l, then (i) is of the form A=>a where acT and
k=0, since only a rule of the form A--+a can be applied
because of the normal form of G and since in
DI-grammars (unlike in indexed grammars) unconsu-
med indices can not be swallowed up by terminals. Be-
cause of the construction of 5, (ii) is of the form
(q,a#, 1,~$^AZ~ 1...[3k~t#) = (q,a#, 1,~$^AZlx#)

[-D(q,a#, 1,ot$AaZ~t#)
[-D(q,a#,2,ot$^ZIx#)
=(q,a#,2,°t$^ZI 31...13k~t#)

Suppose Lemma 1.1 is true for all n<n' with n'> 1.
A lethnost derivation Afl...f k =n'=> al...a m can have
the following three forms according as A is expanded
in the first step:
1)Af l . . .~+ 1...fk =>Bfl.:.~Cfi+ 1...fk

=tll=>al...aiC~+l..-fk
=n2=>al...aiai+l...a m

with nl<n' and n2<n"
2)Afl...fk-~Bffl...fk=nl=>a i ...am with n l<n'.
3)Afl...fk--+Bf2...fk =nl=>al. . .am
with nl<n' and (Afl-+B)eP.

From the inductive hypothesis and from 1.-8. above, it
follows
1')
(q, al...am#,l,o~S^AZI31fl...13j~13j+l~+l...13kfk~t#)
I'D(q, al ...am#, 1,°~$^BCZI3 l f l "''lSjl~13j+ 17+ l'"lSkfk} x#)
~D*(q,a 1..am#,i+ 1,ot$^CZI5 l132...13jlSj+ l~+l...13kfk~ t#)

I-D*(q, al...am#,m+l,~$^ZI31...13jl~j+ 1...13klX #)

364

2')(q,a 1...am#, 1,<z$^AZI 3 lfl...Okfklt#)

I'D (q, al...am#, 1,c~$^BfZ~ lfl... ~kfk~t#)

I'D* (q, al...am#,m+l,~$^ZOl.-.~kl t#)
3 ')(q,a 1...am#, I,aS^AZI~ lfl... OkfkU#)

I'D (qA,al...am#, 1,~$^ZO lfl...Okfklt#)

I'D* (qA, al...am#,l,~$Zl31^fl...~kfkg #)

I'D (q,al...am#, 1,~$Z~ 1 $^B¢ ~2f2...13kfkll#)
I'D* (q,al...am#,m+l,~$Z~l$^¢~2...[~kl t#)
~D (q, al...am#,m+l,c~$Z~^X[}2...[~k) t#)
~D* (q,al...am#,m+ 1,o~$^Z~X~2..-~kU#)
where oX=~ 1.

LEMMA 1.2
If for Z~l...~ke,(N~{¢})* , ~x~(N~{$,¢})*, and

m_~>l, lt~(NuF~{¢})"
(q,al...am#,l,o~S^AZI3 lfl...13kfkll#)

}'D* (q,al...am#,m+ 1,°~$^Z~ 1...13kl~#)
then for all ~ 1

Af 1 . ..fk=*=>al ...a m .
The proof (by induction on n) is similar to the proof of
Lcmma 1.1 and is, therefore, omitted.

II.("iP)
If L is accepted by a DI-automaton D=(q, Q F Z F
d,L,Z6$,¢,#), then we can assume without loss of gen-
erality
a) that D writes at most two symbols on a stack in ei-
filer the push down mode or the stack creation mode (it
follows from the Di-automaton definition that the first
one of the two symbols cannot be a index symbol from
I) ,
b) that T and F are disjunct.

A DI-grammar G with L(G)=N(D)=L can be con-
structed as follows:
Let G=tN,F,T,P,S) with N=F, F=I, S=Z 0. P contains
for all aeT, A,B,CeN, and feF the productions
(da=a, if d=1, else da=6)

I. A--+daBC , if
2. A-+daBf , if
3. A->daB , if
4. A=-)da, if
5. Af-)BC, if

6. Af--,B, if

(q,d,$BC)eigq, a,$A),
(q.a.$BsO e #(q.a.$A),
(q,d,$B) eS(q,a,$A),
(q, a, $) e ,~q, a, $A) ,
(q, O, $ B C ¢) e 6(qA, a,J) or
(q, O,$$BC¢) e d(qA,a,$./)
(q, O, $ B ¢) ~ d(qA,a,j9 or
(q, O,$$B¢) ~ d(qA, a,$f)

For all n~.l, m~l,]31...13ke(NuJ{¢})* , ¢ze(N~{$,¢})*,
* *

fl,f2,....,fk~F, AeN, lie(NuFv{¢}) , and al...am~T
II.1 and II.2 is true:

II. 1: If (q,a 1...am#, 1,~$^A[3 lfl... ~kfkl~#)
I'D n (q, al .--am#,m+l,~x$^~ 1 ..-~k~ t#)

then in G the derivation is valid

Afl...fk=*=>al . ..a m .

II.2: If

Af 1...fk=n=->al ...a m-
is a lefanost derivation in G, then the following transi-
tion of D is valid

(q, al...am#,l,o~$^A[3 lfl...~kfklt#)
i'D* (q, al...am#,m+l,~$^l~l...13k~t#)

The proofs by induction of 1.1 and H.2 (unlike the
proofs of the corresponding lemmata for nsa's and in-
dexed grammars (s.Aho, (1969)) are as elementary as
the one given above for I. 1 and are omitted.

The DI-automaton concept can be used to show the
inclusion of the class of DI-languages in the class of
context-seusitive languages. The proof is strucuraUy
very similar to the one given by Aho (Aho, 1968) for
the inclusion of the indexed class in the context-sensi-
tive class: For every DI-automaton A, an equivalent DI-
automaton A" can be constructed which accepts its in-
put w ff and only i ra accepts w and which in addition
uses a stack the length of which is bounded by a linear
function of the length of the input w. For A" a linear
bounded automaton M (i.e the type of automaton char-
acteristic of the context-sensitive class) can be con-
structed which simulates A : For reasons of space the
extensive proof can not be given here.

Some Remarks on the Complexity of
DI-Recognition

The time complexity of the recognition problem for DI-
grammars will only be considered for a subclass of DI-
grammars. As the restriction on the form of the rules is
reminiscent of the Chomsky normal form for context-
free grammars (CFG), the grammars in the subclass
will be called DI-Chomsky normal form (DI-CNF)
grammars

A DI-grammar G=(N,T,F,P,S) is a DI-CNF grammar
ff and only ff each rule in P is of one of the following
forms where A,B,C~N-{S}, feF, aeT, S--,a, ff 6~
L(G),

(a) A--,BC, (b)A-BfC, (c) A-+BCf,
(d) Af--)BC, (e)Af--,a, (0 A->a

The question whether the class of languages generated
by DI-CNF grammars is a proper or improper subclass
of the DI-languages will be left open.

In considering the recognition of DI-CNF grammars
an extension of the CKY algorithm for CFGs (Kasami,
1965; Younger, 1967) will be used which is essentially

365

inspired by an idea of Vijay-Shanker and Weir in
(Vijay-Shanker and Weir, 1991).

Let the n(n+l) /2 cells of a CKY-table for an input
of length n be indexed by i and j (l~_<j_~.n) in such a
manner that cell Z i,j builds the top of a pyramid the ba-
se of which consists-of the input ai...aj.

As in the case of CFGs a label E of a node of a deri-
vation tree (or a code of E) should be placed into cell
Zi, j only if in G the derivation E=*=>ai...a j is valid.
Since nonterminal nodes of DI-derivation tr6es are la-
beled by pairs (A,~t) consisting of a nonterminal A and
an index stack B and since the number of such pairs
with (AdO =*=> w can grow exponentially with the
length of w, intractability can only be avoided if index
stacks can be encoded in such a way that substacks
shared by several nodes are represented only once.

Vijay-Shanker and Weir solved the problem for lin-
ear indexed grammars (LIGs) by storing for each node
K not its complete label Aflf2...fn, but the nonterminal
part A together with only the top fl of its index stack
and an indication of the cell where the label of a de-
scendant of K can be found with its top index f2 conti-
nning the stack of its ancestor K. In the following this
idea will be adopted for DI-grammars, which, however,
require a supplementation.

Thus, if the cell Z i ; of the CKY-table contains an
entry beginning with ~l<A,fl, (B,f2,q,p),..>", then we
know that

Att=*=>ai_.a j with tt--fltt 1 eF*
is valid, and further that the top index symbol f2 on
Bl(i.e. the continuation o f f l) is in an entry ofceU Zp~q
beginning with the noterminal B. If, descending in
such a manner and guided by pointer quadruples like
"<B,f2,p,q>" , an entry of the form <C,fn,-,..> is met,
then, in the case of a LIG-table, the bottom of stack
has been reached. So, entries of the form
<A,fl,(B,f2,p,q)> are sufficient for LIGs.

But, of course, in the case of DI-derivatious the bot-
tom of stack of a node, because of index distribution,
does not coincide with the bottom of stack of an arbitr-
ary index inheriting descendant, cf.

(13)
LIG-Percolation vs. DI-Percolation

Aflf2...f n Af l f2 . . .~+l . . . f n

/ \ / \

Bf2...f n B 2 Bf2f3... ~ B2ft+l...fn
I I ^

Df3,..fj I
I / I
Cf n (bottom of Cf t t

I \ stack) / \ (stack continuation)

Rather, the bottom of stack of a DI-node coincides with
the bottom of stack of its rightmost index inheriting de-
scendant. Therefore, the pointer mechanism for DI-en-
tries has to be more complicated. In particular, it must
be possible to add an "intersemital" pointer to a sister
path. However, since the continuation of the unary
stack (like of Cf t in ()) of a node without index inher-
iting descendants is necessarily unknown at the time its
entry is created in a bottom up manner, it must be pos-
sible to add an intersemital pointer to an entry later on.

That is why a DI-entry for a node K in a CKY-ceU
requires an additional pointer to the entry for a descen-
dant C, which contains the end-of-stack symbol of K
and which eventually has to be supplemented by an in-
tersemital continuation pointer. E.g. the entry

(14) < Bl,f2,(D,f3,p,q),(C,ft,r,s) > in Z i,j

indicates that the next symbol f3 below f2 on the index
stack belonging to B 1 can be found in cell ZO q in the
entry for the nonterminal D; the second ~l{~druple
(C,f t r,s) points to the descendant C of Blcarrying the
last ~ndex ft of Bland containing a place where a con-
tinuation pointer to a neighbouring path can be added
or has already been added.

To illustrate the extended CKY-algorithm, one of
the more complicated cases of specifying an entry for
the cell Zi, j is added below which dominates most of
the other cases in time complexity:

FOR i:=n TO 1 DO
FORj:=i TO n DO

FOR k:=i TO j-1 DO

For each rule A ~ AlfA2:
if <Al,f,(Bl,fl,Ploql),(C 1,f3,sl,tl)>eZi,k

for some B1, CleN,f l , f3eF,
Pl, ql (i-<Pl<ql~k), Sl,tl (i-<Pl<Sl-<tl ~&)

and <A2,fo-,-> eZk+l, j for some fceF
then 1. if

<B 1,fl, (B2,f2,P2,q2), X>eZpl ,q l for
some B2,eN, f2eF, P2, q2
with i~.p2<q2<_k, and if ql<P2, then
X=- , else X=(C,f t, u,v) for some
CEN, fteF, u,v (Pl<UgVg ql)

then
Zi,j :=Zi,jw{<A,fl,(B2,f2,P2,q3),

(A2,fok+l,j) >}
else

if <Bl,fl,-,-> eLpl ,q l
Zij:=Zijw{<A, fl,(A~,fc,k+ 1,j),

(A 2,fc,k + I d)> }
2. if

<Cl,f3,-,->¢Lsl,tl

366

then

Zsl,tl :=
Zsl,tlw{ <C l,f3,(A 2,fc,k + l j),-> }

The pointer (A2,fc,k+lj) in the new entry of Zij points
to the cell of the node where the end of stack of the
newly created node with noterminal A can be found.
The same pointer (A2,fc,,k+lj) appears in cell Zsl,t 1
as "supplement" in order to indicate where the stack of
A is continued behind the end-of-stack of A 1. Note that
supplemented quadruples of a cell Zi, j are uniquely
identifiable by their form <N,fl,(C,f2,r,s),->, i.e. the
empty fourth component, and by the relation
j<_r~s. Supplemented quadruples cannot be used as en-
tries for daughters of "active" nodes, i.e. nodes the en-
tries of which are currently being constructed.

Let al...a n be the input. The number of entries of the
form <B,fl,(D,f2,p,q),(C,f3,r,s)> (fl,f2,f3eF, B,C, D~
N, l<i,p,q,r, sj_~a) in each cell Zi, iwill then be bounded
by a polynomial of degree 4, i.e ~. O(n4). For a fixed
value of ij,k, steps like the one above may require
O(n 8) time (in some cases O(n12)). The three initial
loops increase the complexity by degree 3.

References

[Aho, 1968] A. V. Aho. Indexed Grammars,
J~4ss.Comput.Mach. 15, 647-671, 1968.

[Aho, 1969] A. V. Aho. Nested Stack Automata,
J.Ass.Comp.Mach. 16, 383-, 1969.

[Gazdar, 1988] G. Gazdar. Applicability of Indexed
Grammars to Natural Languages, in: U.Reyle and
C.Rohrer (eds.)Natural Language Parsing and Lin-
guistic Theories, 69-94, 1988.

[Joshi, Vijay-Shanker, and Weir, 1989] A. K. Joshi, K.
Vijay-Shanker, and D. J. Weir. The convergence of
mildly context-sensitive grammar formalisms. In T.
Wasow and P. Sells (EAs.), The processing of lin-
guistic structure. MIT Press, 1989.

[Kasami, 1965] T. Kasami. An efficient recognition
and syntax algorithm for context-free lan-
guages.(Tech. Rep. No. AF-CRL-65-758). Bedford,
MA: Air Force Cambridge Research Laboratory,
1965.

[Pereira, 1981] F. Pereira. Extraposition Grammars, in:
American Journal of ComputationalLinguistics,7,
243-256, 1981.

[Pereira, 1983] F. Pereira. Logic for Natural Language
Analysis, SRI International, Technical Note 275,
1983.

[Rizzi, 1982] L. Rizzi. Issues in Italian Syntax,
Dordrecht, 1982.

[Stabler, 1987] E. P Stabler. Restricting Logic Gram-
mars with Government-Binding Theory, Computa-
tionalLinguistics, 13, 1-10, 1987.

[Takeshi, 1973] Hayaski Takeshi. On Derivation Trees
of Indexed Grammars, PubI.RIMS, Kyoto Univ., 9,
61-92, 1973.

[Vijay-Shanker, Weir, and Joshi, 1986] K. Vijay-
Shanker, D. J. Weir, and A. K. Joshi. Tree adjoining
and head wrapping. 11th International Conference
on Comput. Ling. 1986.

[Vijay-Shanker, Weir, and Joshi, 1987] K. Vijay-
Shanker, D. J. Weir, A. K. Joshi. Characterizing
structural descriptions produced by various gram-
matical formalisms. 25th Meeting Assoc.Comput.
Ling., 104-111. 1987.

[Vijay-Shanker and Weir, 1991] K. Vijay-Shanker and
David J. Weir. Polynomial Parsing of Extensions of
Context-Free Grammars. In: Tomita, M.(ed.) Cur-
rent lssues in Parsing Technology, 191-206, London
1991.

[Weir and Joshi, 1988] David J. Weir and Aravind K.
Joshi. Combinatory Categorial Grammars: Genera-
tive power and relationship to linear context-free re-
writing systems. 26th Meeting Assoc.Comput. Ling.,
278-285, 1988.

[Younger, 1967] D. H. Younger. Recognitio_n and
parsing context-free languages in time n 3. lnf Con-
trol, 10, 189-208.

367

