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Abstract  

This paper investigates the complexity of 
the satisfiability problem for feature logics 
strong enough to code entire grammars un- 
aided. We show that feature logics capable 
of both enforcing re-entrancy and stating 
linguistic generalisations will have undecid- 
able satisfiability problems even when most 
Boolean expressivity has been discarded. 
We exhibit a decidable fragment, but the 
restrictions imposed to ensure decidability 
render it unfit for stand-alone use. The im- 
port of these results is discussed, and we 
conclude that  there is a need for feature log- 
ics that  are less homogeneous in their treat- 
ment of linguistic structure. 

1 Introduct ion  

This paper investigates decidability and undecidabil- 
ity in stand-alone feature logics, that  is, feature logics 
strong enough to express entire grammars without 
the assistance of a phrase-structure backbone. Our 
results are predominately negative and seem appli- 
cable to most existing stand-alone formalisms. We 
strengthen a result of [Blackburn and Spaan 1991, 
1992] to show that  the ability to express re-entraney 
and the ability to express generalisations about fea- 
ture structures interact in ways that  lead to unde- 
cidability even if most Boolean expressivity has been 
dropped from the logic. Even our positive results 
have a negative flavour. We exhibit a decidable frag- 
ment, but the restrictions imposed to attain decid- 

ability render it incapable of encoding interesting 
grammars unaided. 

But what is the import of such results? This is 
the question we turn to in the last section of the 
paper. Basically, we regard such results as a sign 
that existing feature logics treat linguistic structure 
too homogeneously. What  is needed are feature log- 
ics which are more sensitive to the fine structure of 
linguistic theorising. 

The paper is relatively self contained, nonetheless 
the reader may find it helpful to have [Kasper and 
Rounds 1986, 1990] and [Blackburn and Spaan 1991, 
1992] to hand. 

2 Prel iminaries  

Feature logics are abstractions from the unifica- 
tion based formalisms of computational linguistics. 
Originally feature logics embodied just one compo- 
nent of unification based formalisms. Early unifica- 
tion formalisms such as GPSG [Gazdar et al. 1985] 
and LFG [Kaplan and Bresnan 1982] have impor- 
tant phrase structure components in addition to their 
feature passing mechanisms, and the study of feature 
logic was originally intended to throw light only on 
the latter. These early unification formMisms are 
thus highly heterogeneous: they are architectures 
with roots in both formal language theory and logic. 

In recent years this picture has changed. For ex- 
ample, in HPSG [Pollard and Sag 1987] the feature 
machinery has largely displaced the phrase struc- 
ture component. Indeed in HPSG the residue of the 
phrase structure component is coded up as part of 
the feature system. Logic has swallowed formal lan- 
guage theory, and in effect the entire HPSG formal- 
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ism is a powerful feature logic, a stand-alone formal- 
ism, capable of encoding complex grammars without 
the help of any other component. 1 

In this paper we are going to investigate the com- 
putational complexity of the satisfiability problem 
for such stand-alone feature logics. This is an impor- 
tant problem to investigate. Natural language gram- 
mars are expressed as logical theories in stand-alone 
formalisms, and sentences are represented as wffs. 
This means that  the problem of deciding whether or 
not a sentence is grammatical reduces to the problem 
of building a model of the sentence's logical represen- 
tation that  conforms to all the constraints imposed 
by the logical encoding of the grammar. In short, 
the complexity of the satisfiability problem is essen- 
tially the worst case complexity of the recognition 
problem for grammars expressed in the stand-alone 
formalism. 

We will tackle this issue by investigating the com- 
plexity of the satisfiability problem for one partic- 
ular stand-alone formalism, namely L K R o .  This is 
the language of Kasper Rounds logic augmented with 
the strict implication operator. L KRm possesses two 
of the most fundamental properties of stand-alone 
formalisms: the ability to express re-entrancy, and 
the ability to express generalisations about feature 
structures. It is important  to note that L K R ~  is 
actually a fairly minimal  language with these prop- 
erties; many feature logics can express a lot more 
besides (for example, set values), thus the negative 
results for L KR=~ we present are rather strong: they 
extend straightforwardly to richer formalisms. 

So let's begin by defining L K R ~ .  By a signature 
(£, S) is meant a pair of non-empty sets L: and S, the 
set of arc labels and the set of sorts respectively. Syn- 
tactically, the language L KR=~ (of signature (£:, S)) 
contains the following items: an S indexed collec- 
tion of propositional symbols (or sort symbols); all 
the standard Boolean operators; 2 an £ indexed col- 
lection of distinct unary modalities (that is, features); 
a binary modality ==~; and two special symbols 0 and 
,~. We use ~., to make path equations: given any non- 
empty sequences A and B consisting of only unary 
modalities and O, then A ~ B is a path equation. 

1 See [Johnson 1992] for fur ther  discussion of the distinction 
between stand-alone formalisms and formalisms with a phrase 
s t ructure  backbone. 

2That  is, we have the symbols True (constant true), False 
(constant  false), ~ (negation), v (disjunction), A (conjunc- 
tion), --* (material  implication) and 4--* (material  equivalence). 
For the purposes of the present paper  it is sensible to assume 
tha t  all these operators are primitives, as in general we will be 
working with various subsets of the full language and it would 
be tedious to have to pay attention to trivial issues involving 
the interdefinability of the Boolean operators in these weaker 
fragments. 

Intuitively A ~ B says that making the sequence of 
feature transitions encoded by A leads to the same 
node as making the transition sequence coded by B. 
The symbol 0 is a name for the null transition. The 
strict implication operator =~ will enable us to ex- 
press generalisations about feature structures. 

We make the wffs of L K R ~  as follows. First, all 
propositional symbols, all path equations and True 
and False are wffs. Second, if ¢ and ¢ are wits then 
so are all Boolean combinations of ¢ and ¢~ so is 
(1)¢ (for a l l l  E £)  and so is ¢ =~ ¢. Third, noth- 
ing else is a wff. If a wff of L KR:* does not contain 
any occurrences of ==~ then we say it is an L KR wff. 
Apart from trivial notational changes, the negation 
free fragment of L KR is the language defined and 
studied by Kasper and Rounds. 3 That  is, the L KR 
wffs are essentially a way of writing the familiar At- 
tribute Value Matrices (AVMs) in linear format. For 
example, the following L KR wff: 

<NUMBER)pluralA (CASE)(nom V gen V acc) 

is essentially the following AVM: 

CASE nora or gen or acc 

To interpret L K R o  we use feature structures M 
of signature (/~,S). A feature structure is a triple 
(W, {Rt}tez:, V), where W is a non-empty set (the 
set of nodes); each Rz is a binary relation on W 
that  is also a partial function; and V (the valua- 
tion) is a function which assigns each propositional 
symbol p E S a subset of W. Note that as we have 
defned them features structures are merely multi- 
modal Kripke models, 4 and we often refer to feature 
structures as models in what follows. 

Now for the satisfaction definition. As the sym- 
bol 0 is to act as a name for the null transition, in 
what follows we shall assume without loss of gener- 
ality that 0 ¢ £,  and we will denote the identity re- 
lation on any set of nodes W by R0. This convention 
somewhat simplifies the statement of the satisfaction 

3Computer  scientists may have met L KR in another  guise. 
The language of Kasper Rounds logic is a fragment of (de- 
terministic) Propositional Dynamic Logic (PDL) with intel~ 
section (see [Harel 1984]). An L lea pa th  equation A ,~ B is 
written as ( A n  B) True in PDL with intersection. 

4 For fur ther  discussion of the modal perspective ol* feature 
logic, see [Blackburn and Spaan 1991, 1992]. 
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definition: 

M ~ pa[w] iff w e V(pa) 
M ~ (ll)-..(lk) iff Bw'(wRt,...Rz~w' 

( l l ) . . .  (l-)[~] ~ ~R~ ...  R~-~') 
M ~ --¢[w] iff M ~ ¢[w] 
M ~ eVe[w] iff M ~ ¢[w] or 

M ~ ¢[w] 
M ~ (l)¢[w] iff qw'(wRtw' and 

M ~ ¢[w']) 
M ~ ¢ =v ¢[w] iff Vw'(M ~ ¢[w'] 

implies M ~ ¢[w']) 

The satisfaction clauses for True, False, A, --. and 
*-* have been omitted; these symbols receive their 
standard Boolean interpretations. If M ~ ¢[w] then 
we say that  M satisfies ¢ at w, or ¢ is true in M at 
w (where w E W). 

The key things to note about this language is that  
it has both the ability to express re-entrancy (the 
Kasper Rounds path equality ~ achieves this) and 
the ability to express generalisations about feature 
structures (note that  ¢ ::~ ¢ means that  at every 
node where ¢ is true, ~b must also be true). Thus 
L KR~ can certainly express many of the conditions 
we might want to impose on feature structures. For 
instance, we might want to impose a sort hierarchy. 
As a simple example, given sorts list and nelist (non- 
empty list) we might wish to insist that every node 
of sort nelist is also of sort list. The wff 

nelist ~ list 

forces this. As a second example, we might want 
to insist that  any node from which it is possible to 
make a CONSTITUENT-STRUCTURE transition must 
be of sort phrasal. That  is, if a node has constituent 
structure, it is a phrasal node. The wff 

( C O N S T I T U E N T - S T R U C T U R E )  True ~ phrasal 

forces this. Indeed quite complex demands can be 
imposed using L KR. For example the following wff 
embodies the essence of the constraint known as the 
head feature convention in HPSG: 

phrasal ~ (HEAD) ~,~ (HEAD-DTR)(HEAD). 

This wff says that  at any node of sort phrasal in 
a feature structure, it is possible to make a ilEAl) 
transition and it is also possible to make a HEAD-  

D T R  transition followed by a HEAD transition, and 
furthermore both transition sequences lead to the 
same node. In view of such examples it doesn't seem 
Wholly unrealistic to claim that L KR has the kind of 
expressive power a stand-alone feature logic needs. 

However L T M  has crossed a significant com- 
plexity boundary: it has an undecidable satisfiabil- 
ity problem. This was proved in [Blackburn and 
Spaan 1991, 1992] using a tiling argument, s Now, 
the result for the full L t':n=~ language is not partic- 
ularly surprising (undecidability results for related 
feature logics, can be found in the literature; see 
[Carpenter 1992] for discussion) but  it does lead to 
an important  question: what can be salvaged? To 
put it another way, are there decidable fragments of 
L KR that  are capable of functioning as stand-alone 
feature logics? The pages that  follow explore this 
question and yield a largely negative response. 

3 Decidability 

To begin our search for decidable fragments we will 
take our cue from Kasper and Rounds' original work. 
Kasper and Rounds' system was negation free, so the 
first question to ask is: what happens if we simply 
remove negation from L KR:~? Of course, if this is 
all we do we trivialise the satisfiability problem: it is 
immediate by induction on the structure of negation 
free wffs ¢, that  every negation free L KR~ wff is sat- 
isfied in the following model: M = ({w}, {Rt}tec, V) 
where Rz = {(w,w)} for a l l / E / ~ ,  and Y(p)  = {w} 
for all propositional variables p. So we have regained 
decidability, but in a very uninteresting way. 

Now, what made the results of Kasper and Rounds 
interesting was that  not only did they consider the 
negation free fragment (of LKR), they also imposed 
certain semantic restrictions. Only extensional mod- 
els without constant-constant or constant-compound 
clashes were considered. 6 Will imposing any (or all) 
of these restrictions make it easier to find decidable 
fragments of L KR~ ? In fact demanding extensional- 
ity ( that  is, working only with models in which each 
atomic symbol is true at at most one node), does 
make it easy to find a decidable fragment. 

The fragment is the following. We consider wffs of 
the following form: 

Here ¢ is a metavariable over L Kn wffs ( that  is, ¢ 
contains no occurrences of =¢,); the ai (1 < i < n) 

SThese  pape r s  take  the  un ive r sa l  m o d a l i t y  [] as p r imi t ive  
r a t h e r  t h a t  =¢,, as  it  is s o m e w h a t  easier  to work wi th  u n a r y  
moda l i t i e s .  In  t he  p resence  of full  Boo lean  express iv i ty  I:3 a n d  
:=~ axe in te rdefmable :  Elf is True :=~ ¢, a n d  ::~ is 1:3(¢ --. ~b). 
However in wha t  follows we will work wi th  f r a g m e n t s  w i thou t  
e n o u g h  Boolean  express iv i ty  to in terdef ine  these  opera to r s .  As 
:¢, is the  ope ra to r  we are  real ly in t e re s t ed  in we have  chosen 
it  as  ou r  p r imi t ive  here.  

SAs K a s p e r  a n d  R o u n d s  showed,  i n t r o d u c i n g  th is  l imi ted  
fo rm of nega t i on  fai lure r e su l t s  in a n  NP  comple t e  sat isf iabi l i ty  
p rob lem.  
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are metavariables over combinations of sort symbols 
containing only V and A as logical operators; and the 
ai (1 < i < n) are metavariable over L KR wits. 

Note the general form of the wffs of this fragment. 
We have an L KR wff ¢ conjoined with n general con- 
straints o~i :2z tq. 7 The ¢ can be thought of as the 
AVM associated with some particular natural  lan- 
guage sentence, while the wffs of the form c~i ::~ ~i 
can be thought of as encoding the generalisations 
embodied in our grammatical  theory. Looking for a 
satisfying model for a wff from this fragment is thus 
like asking whether the analysis of some particular 
string of symbols is compatible with a grammar .  

The proof that  this fragment has a decidable sat- 
isfiability problem is straightforward. We're going to 
show that  given any wff@ belonging to this fragment,  
there is an upper bound on the size of the models that  
need to be inspected to determine whether or not (I) 
is satisfiable. The fact that  such an upper bound 
exists is a direct consequence of three lemmas which 
we will now prove. 

The first l emma we need is extremely obvious, but 
will play a vital role. 

L e m m a  3.1 Let a be any wff containing no logical 
connectives apart from V and A. Then in any ex- 
tensional model, c~ is satisfied at at most m nodes, 
where m is the number of distinct sort symbols in a. 

P r o o f :  By induction on the construction of a .  [] 

The importance of this l emma is that  it gives us 
an upper bound on the number  of nodes at which 
the antecedents ai  of the constraints permit ted in 
our fragment  can be satisfied. 

Next we need a similar result for the L KR wffs of 
the fragment; that  is, for the ¢ and the consequents 
~i of the constraints. As the next two lemmas es- 
tablish, given any L KR wff C which is satisfiable at 
a node w in some model M,  we can always manu- 
facture a very small model MInodes(C , w) which also 
satisfies 4. How we go about  defining MInodes(C, w) 
is suggested by the following observation: when eval- 
uating a formula in some model, only certain of the 
model 's  nodes are relevant to the truth or falsity of 
the wff; all the irrelevant nodes can be thrown away. 
What  the following two lemmas essentially tell us is 
that  we can manufacture the small models we need 
by discarding nodes. 

The nodes that  are relevant when evaluating an 
L KR wff C at a node w in a model M are the nodes 
selected by the function nodes : W F F  x W , 
P ow( W)  that  satisfies the following conditions: 

; 'In what  follows we refer to the cq as the antecedents  of 
the constra ints ,  and the ai as the consequents.  

n o d e s ( p , w )  = {w}  
nodes(",C,w) = nodes(C,w) 
nodes(C V O, w) = nodes(C, w) U nodes(O, w) 
nodes((i)¢, ) = {w}  u nodes(C, 

One aspect of the definition of nodes may be both- 
ering the reader: there is no clause for the path equa- 
tions. In fact to give such a clause is rather messy, 
and it seems better  to proceed as follows. Given a wff 
C of L Ks  we define C* to be the result of replacing 
every subformula of the form 

i n C b y  

( l l ) - . .  (Ik) ( l l ) - . .  q ' )  

(l ,)  . . - ( tk)  ( t l ) . . .  (i' ,)  
^ (ll)...(lk)Tr e 
^ (tl) • • • (i' ,)  Tr e. 

Clearly ¢ is satisfiable at any node in any model iff 
4" is (all we've done is make the node existence de- 
mands encoded in the path equalities explicit). The 
usefulness of this t ransformation is simply that  the 
two new conjuncts make available to the simple ver- 
sion of nodes defined above all the information hid- 
den in the path equations. From now on we'll assume 
that  all the L KR wffs we work with have been trans- 
formed in this fashion. 

With these preliminaries out of the way we are 
ready to proceed. Given a model M,  an L KR wff ¢ 
and a node w we form Mlnodes(C , w) in the obvious 
way: the nodes of the model are nodes(C, w), and the 
relations and valuation are the restriction of those of 
M to this subset. As the following simple lemma 
shows, nodes indeed picks out the correct nodes: 

L e m m a  3.2 ( S e l e c t i o n  L e m m a )  For all models 
M,  all nodes w of M and all L h 'R~ wffs g'. 

M ~ C[w] iff Mlnodes(¢, w) ~ ¢[u,]. 

P r o o f :  By induction on the structure of ¢,. (Note 
that  it follows from the definition of nodes that  w E 
nodes(C,w). Once this is observed the induction is 
straightforward.) D 

The selection l emma is a completely general fact 
about  modal languages. It  doesn' t  depend on any 
special assumptions made in this paper, and in par- 
ticular it doesn' t  make any use of the fact that  we are 
only working with models in which each of the Rt is 
a partial function. Once this additional fact is taken 
into account, however, we see that  M[nodes(~,, w) i s  
pleasingly small: there can only be one more node in 
M[nodes(¢, w) than there are occurrences of modal- 
ities in ¢. Tha t  is, we have: 
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L e m m a  3.3 (Size  L e m m a )  Let W be an L KR wff, 
and let mod(W) be the number of occurrences of 
modalities in W. Then for all models M and all nodes 
w in M we have that Inodes(W,w)\{w}l < ,nod(W). 

Proof: By induction on the structure of ~b. Cl 

We now have all the pieces we need to establish the 
decidability result. Using these lemmas we can show 
that  given any wff (I) of our fragment it is possible 
to place an upper bound on the size of models that 
need to be checked to determine whether or not (I) is 
satisfiable. So, suppose (b is a wff of the form 

^ (41 ~ ~1) ^ . . .  ^ ( - .  ~ ~n) 

that  is satisfiable. Tha t  is, there is a model M and 
a node w in M such that M ~ ~[w]. Now, simply 
forming M[nodes(q~,w) is not a process guaranteed 
to make a smaller model satisfying (I). The problem 
is that  while this model certainly satisfies ~, in the 
course of selecting all the needed nodes we may be 
forced to select a node that  verifies an antecedent 
ai of one of the general constraints, but we have no 
guarantee that  we have selected all the nodes needed 
to make the matching consequent t¢i true. 

But this is easy to fix. We must not only form 
Mlnodes(e~, w), but in addition, for all i (1 < i < n) 
we must form Mlnodes(cq ^ ai, s), where s ranges 
over all the nodes in M that  satisfy c~i. More pre- 
cisely, we define a new model M'  by taking as nodes 
all the nodes in all these models ( that  is, we take the 
union of all the nodes in all these models) and we 
define the M '  relations and valuation to be the re- 
striction of the relations and valuation in M to this 
subset. 

The new model M'  has two nice properties. 
Firstly, it is clear that  it makes ~ true at w and more- 
over, whenever it makes one of the ai  true it makes 
the corresponding ~i true also. (This follows because 
of our choice of the nodes of M';  essentially we're 
making multiple use of the selection lemma here.) 
Secondly, it is clear that  M '  is finite, for its nodes 
were obtained as a finite union of finite sets. Indeed 
by making use of lemma 3.1 and the size lemma we 
can give an upper bound on the size of M'  in terms 
of the number of symbols in (I). (This is just a mat- 
ter of counting the number of general constraints in 
(I), the number of distinct propositional variables in 
the c~i, and the number of modal operators in the 
and tzi; we leave the details to the reader.) Thus the 
decidability result follows: given a wff if) of our frag- 
ment, bounded search through finite models suffices 
to determine whether or not (I) is satisfiable. 

Alas, this is not a very powerful result. The frag- 
ment simply is not expressive enough to function as 

a stand-alone formalism. Its Achilles heel lies in the 
strong condition imposed on the ai.  There are two 
problems. First, because the ai cannot contain oc- 
currences of features or path equations, many impor- 
tant constraints that  stand-alone feature might have 
to impose cannot be expressed. Second, it is far from 
clear that  the restriction to extensional models is re- 
alistic for stand alone formalisms. Certainly if we 
were trying to capture the leading ideas of HPSG it 
would not be; the freedom to decorate different nodes 
with the same sortal information plays an important  
role in HPSG. 

Can some of the restrictions on the ai be dropped? 
As the proof of the result shows, there is no obvious 
way to achieve this: as soon as we allow features 
or path equations in the (~i, the assumption of ex- 
tensionality no longer helps us find an upper bound 
on the number of satisfying nodes, and the proof no 
longer goes through. Essentially what is needed is 
a way of strengthening lemma 3.1, but it is hard to 
find a useful way of doing this. Even imposing an 
acyclicity assumption on our models doesn't seem to 
help. As the results of the next section show, this is 
no accident. The combination of ~ and =* is intrin- 
sically dangerous. 

4 U n d e c i d a b i l i t y  

The starting point for this section is the undecidabil- 
ity result for the full L KR=~ language (see [Blackburn 
and Spaan 1991, 1992]) which was proved using re- 
duction from a certain undecidable tiling problem. 
We're going to strengthen this undecidability result, 
and we're going to do so by using further tiling ar- 
guments. As the use of tiling arguments seem to be 
something of a novelty in the computational linguis- 
tics literature, we include a little background discus- 
sion of the method. 

Tiling arguments are a well known proof tech- 
nique in computer science for establishing com- 
putability and complexity results. (In fact, tiling 
arguments are used to introduce the basic concepts 
of complexity, decidability and undecidability in 
[Lewis and Papadimitriou 1981], one of the standard 
introductions to theoretical computer science.) They 
are also a popular method for analysing the complex- 
ity of logics; both [Harel 1983] and [Hard 1986] are 
excellent guides to the versatility of the method for 
this application. 

One of the most attractive aspects of tiling prob- 
lems is that  they are extremely simple to visualise. 
A tile T is just  a 1 × 1 square, fixed in orientation, 
that has coloured edges right(T), left(T), up(T), and 
down(T) taken from some denumerable set. A tiling 
problem takes the following form: given a finite set 7" 
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of tile types, can we cover a certain part of Z × Z (Z 
denotes the integers) using only tiles of this type, in 
such a way that  adjacent tiles have the same colour 
on the common edge, and such that the tiling obeys 
certain constraints? For example, consider the fol- 
lowing problem. Suppose 7- consists of the following 
four types of tile: 

Can an 8 by 4 rectangle be tiled with the fourth 
type of tile placed in the left hand corner? The an- 
swer is 'yes' - -  but we'll leave it to the reader to work 
out how to do it. 

There exist complete tiling problems for many 
complexity classes. In the proof that follows we make 
use of a certain II ° complete tiling problem, namely 
the problem of tiling the entire positive quadrant of 
the plane, that  is, the problem of tiling N × N where 
N is the set of natural numbers. 

We begin with the following remark: by inspection 
of the undecidability proof for L KR~ in [Blackburn 
and Spaan 1991, 1992], it is immediate that  we still 
have undecidability if we restrict the language to for- 
mulas that consist of a conjunction of formulas of the 
form ¢1 ::~ ~b2, where ¢1 and ¢2 are L KR formulas 
with negations applied to atoms only, and ¢2 is sat- 
isfiable. (The stipulation that  ¢2 must be satisfiable 
prevents it from playing the role of False and thus 
smuggling in illicit negations.) Call this language 
L - .  Let's see if we can strengthen this result fur- 
ther. 

So, suppose we look at L -  formulas with V as the 
only binary boolean connective in ¢1 and ¢2. In this 
case, we show that the corresponding satisfiability 
problem is still undecidable by constructing another 
reduction from N × N tiling. 

Let 7- = {7"1,.. . ,Tk} be a set of tiles. We con- 
struct a formula ¢ such that: 

7" tiles N x N iff ¢ is satisfiable. 

First of all we will ensure that,  if ¢ is satisfiable 
in a model M, then M contains a gridlike structure. 
The nodes of M (henceforth W), play the role of 
points in a grid, R,  is the right successor relation, 
and Ru is the upward successor relation. Define: 

¢9ri d = (TrUe ~ (,)(U) ~,~ (u)(r)) .  

Clearly ¢arid forces gridlike models. 

Next we must tile the model. To do this we use 
propositional variables t l , . - . ,  tk, such that  ti is true 
at some node w, iff tile Ti is placed at w. To force a 
proper tiling, we need to satisfy the following three 
requirements: 

1. There is exactly one tile placed at each node. 

k 

~l=(True=~ Vt i )  A A (ti=~-~tj) 
i=1 l<i<j<_k 

2. If T/ is the tile at w, and 7) is a tile such that 
right(Ti) • lefl(Tj), then tj should not be true 
at any Rr successor of w: 

¢2 = A it, ( r ) - t j )  
righ~TO# lef-l(Tj) 

3. Similarly for up successors: 

= A ( ' ,  
up(Ti)# down(T D 

Let ¢ be earid A ¢1 A ¢2 A ¢3. It is not too difficult to 
prove that ¢ is satisfiable iff T tiles N x N,  which im- 
plies that the satisfiability problem for our fragment 
of L -  is undecidable. 

Are there weaker undecidable fragments? Yes: we 
can remove True from ¢. We do this by using a 
new propositional variable PT which plays the role of 
True. Insisting that 

PT ^ (Pr [r]pr) ^ (pr Mpr) 

ensures that PT behaves like True. 
Are even weaker fragments undecidable? Yes: we 

can ensure that V occurs at most once in each clause. 
In fact we only have to rewrite part of ¢1 (namely, 

k True =~ Vi=l ti), for this is the only place in ¢ where 
V occurs. We use new variables b2 . . . . .  bk-1 for this 
purpose and we ensure that bi is true iff [j is true for 
some j _< i. We do this as follows: 

(b2 =~ t~ v t2 )  A 
(ba v ta) A 

A (bk-1 ::~ bk-2 V lk-2) 
(True =~ bk-1 V tk) 

Clearly this has the desired effect. 

5 D i s c u s s i o n  

The results of this investigation are easy to sum- 
marise: the ability to express both re-entrancy and 
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generalisations about feature structures lead to algo- 
rithmically unsolvable satisfiability problems even if 
most Boolean expressivity is dropped. What are the 
implications of these results? 

Stand-alone feature formalisms offer (elegant) ex- 
pressive power in a way that is compatible with 
the lexically driven nature of much current linguis- 
tic theorising. One of their disadvantages (at least 
in their current incarnations) is that they tend to 
hide computationally useful information. For exam- 
ple, as [Johnson 1992] points out, it is difficult even 
to formulate such demands as offiine parsability for 
existing stand-alone formalisms; the configurational 
information required is difficult to isolate. The prob- 
lem is that stand-alone formalisms tend to be too 
homogeneous. It is certainly elegant to treat infor- 
mation concerning complex categories and configu- 
rational information simply as 'features'; but unless 
this is done sensitively it runs the risk of 'reducing' 
a computationally easy problem to an uncomputable 
one. 

Now, much current work on feature logic can be 
seen as attempts to overcome the computational 
bluntness of stand-alone formalisms by making vis- 
ible computationally useful structure. For exam- 
ple, recent work on typed feature structures (see 
[Carpenter 1992]) explicitly introduces the type in- 
heritance structure into the semantics; whereas in 
[Blackburn et al. 1993] composite entities consisting 
of trees fibered across feature structures are con- 
strained using two distinct 'layers' of modal lan- 
guage. What is common to both these examples is 
the recognition that linguistic theories typically have 
subtle internal architectures. Only when feature log- 
ics become far more sensitive to the fine grain of lin- 
guistic architectures will it become realistic to hope 
for general decidability results. 
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