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ABSTRACT

This paper describes the application of
markovian learning methods to the infer-
ence of word transducers. We show how
the proposed method dispenses from the
difficult design of hand-crafted rules, al-
lows the use of weighed non deterministic
transducers and is able to translate words
by taking into account their whole rather
than by making decisions locally. These ar-
guments are illustrated on two examples:
morphological analysis and grapheme-to-
phoneme transcription.

INTRODUCTION

Several tasks associated with elec-
tronic lexicons may be viewed as transduc-
tions between character strings. This may
be the decomposition of words into mor-
phemes in morphology or the grapheme-to-
phoneme transcription in phonology. In the
first case, one has for example to decom-
pose the French word “chronométrage” into
the sequence of affixes “chrono+meétre+er+-
age”. In the second, “abstenir” should be
translated into “abstenir” or “apstenir"!,

Most of the proposed methods in the

IThese two tasks are in fact closely related
in that (1) the correct phoneme transcription
may mirror an underlylng morphological struc-
ture, like for “asoctal” whose phonemic form is
“asosjal” rather than “azosjal” due to the de-
composition “a+social”, and (2) the surface form
of a derived word may depend on the pronunci-
ation of its component morphemes, like for
“dé+harnacher” which results In “déharnacher”
and not “déshamacher”.
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domain (Catach 1984; Danlos et al. 1986;
Koskenniemi 1983; Laporte 1988; Ritchie
et al. 1987; Tufis 1989; Véronis 1988) are
based on the availability of local rules
whose combination, either through direct
interpretation or by being compiled, form
the target transducer.

Although these methods make it pos-
sible — at least in theory - to design suitable
transducers, provided that the rule de-
scription language has the right expressive
power, they are complex to use because of
the difficulty of writing down rules. More-
over, for a given rule language, there may
not exist an algorithm for compiling rules
into a form better suited to the translation
process. Lastly, in numerous cases, the
translation procedures are improperly de-
terministic as shown by the example of “ab-
stenir” so that it 1s not possible to consider
several competing hypotheses in parallel
not to speak of ranking them according to
some certainty factor.

We have designed a program which
allows to construct transducers without re-
taining the above shortcomings. It is no
longer necessary to write down translation
rules since the transducer is obtained as
the result of an automatic learning over a
set of examples. The transducer is repre-
sented into the language of probabilistic fi-
nite state automata (Markov models} so
that its use is straightforward. Lastly, it
produces results which are assigned a
probability and makes it possible to list
them by decreasing order of likelihood.

After stating the problem of character
strings translation and defining the few



central notions of markovian learning, this
paper describes their adaptation to the
word translation problem in the learning
and translating phases. This adaptation is
fllustrated through two applications: mor-
phological analysis and grapheme-to-pho-
neme transcription.

THE TRANSDUCTION PROBLEM

In the context of character strings
transduction, we look for an application f:
C* - C™* which transforms certain words
built over the alphabet C into words over
the alphabet C’. For example, in the case of
grapheme-to-phoneme transcription, C is
the set of graphemes and C’ that of pho-
nemes.

It may be appropriate, for example in
morphology, to use an auxiliary lexicon
(Ritchie et al. 1987; Ritchie 1989) which al-
lows to discard certain translation resuits.
For example, the decomposition “sage” —
“ser+age” would not be allowed because
“ser” is not a verb in the French lexicon, al-
though this is a correct result with respect
to the splitting of word forms into affixes.
The method we propose in this paper is only
concerned with describing this last type of
regularities leaving aside all non regular
phenomena better described on a case-by-
case basis such as through a lexicon.

MARRKOV MODELS

A Markov model is a probabilistic fi-
nite state automaton M= (S, T, A, s, sp, £
where S is a finite set of states, A is a finite
alphabet, s; € S and sy € S are two distin-
guished states called respectively the tnitial
state and the final state, T is a finite set of
transitions, and g is a function g:te T—
{Oft), D{t), S(t), p(t)) € SxSxAx[0, 1] such
that

VY(se S), P pt) =1
{t] O®)= s}

where p(t) is the probability of reaching
state D(t) while generating symbol S(tf)
starting from state O(t).

In general, the transition probabili-
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ties p(t) are mutually independent. Yet, in
some contexts, it may be useful to have
thetr values depend on others transitions.
In this respect, it 18 possible to define a one-
to-one correspondence T__, {t1ot)=s) -
{t | Oft) = s) such that pt) is equal to
plt s.(t)). States s and s’ are then said to be
tied.

For every word w = a,; ... a,, € A*, the
set of partial paths compatible with w till {,
Path,(w), is the set of sequences of 1 transi-
tions t, ... Y such that O(tl) = g, D(t) =
O(tj“), forj=1, ..., 1-1and S(tj) =ay, or
=1, .., 1

The set of complete paths compatible
with w, Path(w), is in turn the set of ele-
ments in Pathwl(w), where Iwl = n, the
length of word kv such that D(tn) = 8p.

The probability for the model M of
emitting the word w is

Proby (m) = p 1 et
path ¢ Path(w) te path

A Markov model for which there exist
at most one complete path for a given word
is said to be unifilar. In this case, the above
probability is reduced to

ProbM(w) = JI p®, tfPath(w)=path
te path
ProbM(w) =0, ifPath(w)=0

Thus the probability Py,(w) may be
generally computed by adding the probabil-
ities observed along every path compatible
with w. In practice, this renders computa-
tionally expensive the algorithm for com-
puting Py,(w) and it is tempting to assume
that the model is unifilar. Practical studies
have shown that this sub-optimal method
is applicable without great loss (Bahl et al.
1983).

Under this hypothesis, the probabili-
ty Pp4(w) may be computed through the Vit-
erbi dynamic programming algorithm. In-
deed, the probability Py(w, 1, s), maximal
probability of reaching state s with the i
first transitions in a path compatible with w



is

1
Py (w, 1, 8) = max n p(tj), it=1..n
J=1
where (pathe {t,..t e Pathl(w)| D(t) = s})

Pyw,0,8) =1
Pp(w, 0,8) =0, if (s 8,)

therefore

Py(w,1+1,8) = max ., (B(t, , 1) Pp(W. 1, D(t,)
where pathe {t,..t, e Path‘_._l(w)l D(t,, ,) =8}

whereby

Ppy(w, 1+ 1, 8) = max, (p(t)- Ppy(w, 1, O()))
where (te {tD(t) = sand S(t) = a,_ ,})

with

Prob,(w) = Pp(w, |w|,8p) = I1 p(t
t € MaxPath(w)

It is therefore possible to compute
Py(w. 1, s) recursively for i = 1, ..., n until
Prob, ,(w).

Automatic learning of Markov
models

Given a training set TS made of words
in A* and a number N > 2 of states, that is
the set S, learning a Markov model consists
in finding a set T of transitions such that
the joint probability P of the examples in
the training set

PTS) = [ Pyw
we TS

is maximal.

In general, the set T is composed a
priori of all possible transitions between
states in S producing a symbol in A. The de-
termination of probabilities p associated
with these transitions is equivalent to the
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restriction of T to elements with non null
probability which induces the structure of
the associated automaton. In this case, the
model is said to be hidden because it is
hard to attach a meaning to the states in S.
On the contrary, it is possible to force those
states to have a clear-cut interpretation by
defining them, for example, as n-grams
which are sequences of n elements in A
which encode the last n symbols produced
by the model to reach the state. It is clear
that then only some transitions are mean-
ingful. In dealing with problems like those
studied in the present paper it is preferable
to use hidden models which allow states to
stand for arbitrarily complex predicates.

The learning algorithm (Bahl et al.
1983) is based upon the following remark:
given a model M whose transitions proba-
bilities are known a priori, the a posteriori
probability of a transition t may be estimat-
ed by the relative frequency with which t is
used on a training set.

The number of times a transition t is
used on TS is

freqy= Y ) 8(t, t')

weTS t' e MaxPath(w)
where 8(t, t')=1 ift=t’, O otherwise

The relative frequency of using t on
TSis

freq(t)

rel-freq(t) =
( freq(t’)
{t'] (OE)=0t)}

The learning algorithm consists then
in setting randomly the probability distri-
bution p(t) and adjusting iteratively its val-
ues through the above formula until the ad-
justment is small enough to consider the
distribution as stationary. It has been
shown (Bahl et al. 1983) that this algorithm
does converge towards a stationary value of
the p(t) which maximizes locally! the prob-
ability P of the training set depending on
the initial random probability distribution.

n order to find a global optimum, we used
a kind of simulated annealing technique (Kirk-
patrick et al. 1983) during the learning process.



The stationary distribution defines the
Markov model induced from the examples
in TS!.

TRANSDUCTION MODEL

To be applied in both illustrative ex-
amples, the general structure of Markov
models should be related, by means of a
shift in representation, to the problem of
strings translation. The model of two-level
morphological analysis (Koskenniemi 1983)
suggests the nature of this shift. Indeed,
this method, which was successfully ap-
plied to morphologically rich natural lan-
guages (Koskenniemi 1983), is based upon
a two-level rule formalism for which there
exist a way to compile them into the lan-
guage of finite state automata (FSA) (Ritchie
1989). This result validates the idea that
FSAs are reasonable candidates for repre-
senting transduction rules, at least in the
case of morphology?

The shift in representation is de-
signed so as to define the alphabet A as the
set of pairs c:~ or —i¢c' wherece Candc e
C’, — standing for the null character, - ¢ C,
— ¢ C'. The mapping between the transduc-
er f and the associated Markov model M is
now straightforward:

lIn practice, the number N = Card(S) of
states for the model to be learned on a training
set is not known. When N is small, the model
has a tendency to generate much more charac-
ter strings that were in TS due to an overgener-
alization. At the other end of the spectrum, when
N is large, the learned model will describe the ex-
amples in TS and them only. So. it is among the
intermediate values of N that an optimmum has to
be looked for.

2Ritchie (1989) has even shown that the
generative power of two-level morphological an-
alyzers is strictly bound by that of finite state
automata. He proved that all languages £. gener-
ated by these analyzers are such that whenever

E; and E\E,E,E, belong to L, then E E,
alzso belongs to L. Ntﬁough this point was not
considered in the present study, we may sup-
pose that constraining the learned automaton to
respect this last property. for example by means
of tying states, would improve the overall results
by augmenting in a sound way the generaliza-
tion from examples.
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w' € flw) iff

3x=x;..x,€ (CuUlh,

Yy=Y¥;..yp€ C U

such that

x,y; is of the form —:¢’ or c:-,
- fori=1,..,n,

Probp(x, 1y, ... x,7y,) 20,

w = delete(x) and w' = delete(y)

where the function delete is defined as

delete(d) = A, (A is the empty string),
delete(-Z) = delete(Z) and
delete(zZ) = z.delete(Z) if ze Corze C

Given a training set TS = (<w, w'> | w
€ C*, w' € C™}, the problem is thus to find
the model M that maximizes the probability

P= max Prob (x,:y,..x_:y )
(w,wl'-;e TS xy) M( 1°71 n'In
where delete(x) = w and delete(y) = w

This formula makes it clear what is
the new difficulty with this type of learning,
namely the indetermination of words x and
y, that is of the alignment induced by them
between w and its translation w'. The no-
tions of partial and complete compatible
paths should thus be redefined in order to
take this into account.

The partfal paths compatible with w
and w' till 1 and J are now the set of se-
quences t, Path J(w w’) such that
Of(ty) = sy, D(tk) 'b(tkﬂ) for k=1, ..., 14—
1, S{t) = XY for k=1, ., i+j dele-
te(x;.. Xy +) =W,..w; and delete(yl Vi) =
W';...w',. A partial path is also complete as
soon asi=|wj, j = leandD(tMHW,l)-sp

As before, we can define the probabil-
ity Py(w, 1, W', §, s) of reaching state s along
a partial path compatible with w and w’ and
generating the first i symbols in w and j first
symbols In w'.

PM(w, i, w',},8) = max

g, 0

" ik <+
‘+JE {Pathl J(W,W)I D(tl-}j) = 8})

t P(tk)
where (t,.
(w o,w',0,s ) =1

PM(w, 0,w',0,8)=0, {f s» 8,



Here again, thls probability is such
that Prob (w w') =P, (w, wl, W, |, sp) and
may be computed mrough dynamiec pro-
gramming according to the formula

Ppy(w,1+1,w',]+1,8) =

maxthM(w, Lw,}+1,0 (tl))
max
maxtzPM(w, 1+1, w',j, (o] (t2))

where (1, € {te T|D(t) = 5 et S(t)—w'_” -})

and (t,e {teT|IXt) =8 et S(t) = — _|+l})

It is now possible to compute for every
training example the optimal path corre-
sponding to a given probability distribution
plt). This path not only defines the crossed
states but also the alignment between w
and w'. The learning algorithm applicable to
general markovian models remains valid for
adjusting iteratively the probabilities p(t).

EXPERIMENTS

Morphological analysis

As a preliminary experiment, the
morphological analysis automaton was
learned on a set of 738 French words end-
ing with the morpheme “isme” and associ-
ated with their decomposition into two mor-
phemes, the first being a noun or an
adjective. For example, we had the pair
<"athlétisme" " athléte+isme”>. With a 400
states only automaton, the correct decom-
position was found amongst the 10 most
probable outputs for 97.6% of the training
examples!.

Grapheme-to-phoneme
transcription

The case of grapheme-to-phoneme
transcription is a straightforward applica-
tion of the transduction model. String w is
the graphemic form, e.g. “abstenir” and w’

IWe are aware that a more precise assess-
ment of the method would use a test set different
from the training set. We plan to perform such a
test in the near future.
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is its transcription into phonemes, e.g. "ap-
steniR” or "absteniR”. Here the training
set may feature such pairs as <w, w'> and
<w, w'> where w' # w",

The automaton was learned on a set
of 1170 acronyms assoclated to their pho-
nemic form which was described in a
coarse phonemic alphabet where, for exam-
ple, open or closed /o/ are not distin-
guished. Acronyms raise an interesting
problem in that some should be spelled let-
ter by letter (“‘ACL") whereas others may be
pronounced (“COLING"). This experiment
was thus intended to show that the model
may take into account its input as a whole.
With a 400 states only automaton, more
than 50% of the training examples were
correctly transcribed when only the most
probable output was considered. This fig-
ure may be improved by augmenting the
number of states in which case the learning
phase becomes much longer.

CONCLUSION

We have proposed a method for learn-
ing transducers for the tasks of morpholog-
ical analysis and grapheme-to-phoneme
transcription. This method may be favor-
ably compared to others solutions based
upon writing rules in the sense that it does
not oblige to identify rules, it provides a re-
sult which is directly usable as a transduc-
er and it allows to list translations accord-
ing to a decreasing order of probability. Yet,
the learned automaton does not lend itself
to an interpretation in the form of symbolic
rules — provided that such rules exist -.
Moreover, some leaming pararneters are
set only as the results of empirical or ran-
dom choices: number of states, initial prob-
ability distribution, etc. Yet, other advan-
tages weigh for the proposed method. The
automaton may take into account the
whole word to be translated rather than a
limited part of it — this justifies that a set of
equivalent symbolic rules is hard to obtain
-. For example, the grapheme-to-phoneme
transcription may recognize the original
language of a word while translating it
(Oshika et al. 1988): the “French” nouns
“meeting” and “carpacclo” have kept respec-
tively their original English and Italian form



and pronunciation, etc. The learned autom-
aton is symmetrical, thus it is also revers-
ible. In other words, the morphological
analysis automaton may also be used as a
generator and the grapheme-to-phoneme
automaton may become a phoneme-to-
grapheme transducer. Another remark is in
order: since the automaton is reversible, it
may be composed with its inverse to form,
for example, a grapheme-to-grapheme
translator that keeps the phonemic form
constant without actually computing it.
Now, it has been shown elsewhere (Reape
and Thompson 1988) that the transducer
that would result is also describable in the
formalism of finite state automata and that
its number of states has a upper bound
which is the square of the number of states
in the base automaton. (Reape and Thomp-
son 1988) also describes an algorithm for
computing the resulting automaton. Lastly,
other functions than morphological analy-
sis or grapheme-to-phoneme transcription
may be envisioned like, for example, the de-
composition of words into syllables or the
computation of abbreviations by contrac-
tion,
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