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A B S T R A C T  

A purely functional implementat ion of LR-parsers is 
given, together with a simple correctness proof. It is 
presented as a generalization of the recursive descent 
parser. For non-LR grammars  the t ime-complexity of 
our parser is cubic if the functions that  consti tute the 
parser are implemented as memo-functions, i.e. func- 
tions that  memorize the results of previous invocations. 
Memo-functions also facilitate a simple way to construct  
a very compact  representation of the parse forest. For 
LR(0) grammars,  our algorithm is closely related to the 
recursive ascent parsers recently discovered by Kruse- 
man Aretz [1] and Roberts [2]. Extended CF grammars  
(grammars with regular expressions at the right hand 
side) can be parsed with a simple modification of the 
LR-parser for normal CF grammars.  

1 I n t r o d u c t i o n  

In this paper we give a purely functional implementa- 
tion of LR-parsers, applicable to general CF  grammars.  
It will be obtained as a generalization of the well-known 
recursive descent parsing technique. For LR(0) gram- 
mars, our result implies a determinist ic parser that  is 
closely related to the recursive ascent parsers discovered 
by Kruseman Aretz [1] and Roberts [2]. In the gen- 
eral non-deterministic case, the parser has cubic time 
complexity if the parse functions are implemented as 
memo-functions [3], which are functions that  memorize 
and re-use the results of previous invocations. Memo- 
functions are easily implemented in most programming 
languages. The notion of memo-functions is also used 
to define an algorithm tha t  constructs  a cubic represen- 
tation for the parse forest, i.e. the collection of parse 
trees. 

It has been claimed by Tomita  that  non-deterministic 
LR-parsers are useful for natural  language processing. 
In [4] he presented a discussion about  how to do non- 
determinist ic LR-parsing, with a device called a graph- 
s tructured stack. With  our parser we show that  no ex- 
plicit stack manipulat ions are needed; they can be ex- 
pressed implicitly with the use of appropria te  program- 
ming language concepts. 

Most textbooks on parsing do not include proper 
correctness proofs for LR-parsers, mainly because such 
proofs tend to be rather involved. The theory of LR- 
parsing should still be considered underdeveloped, for 

this reason. Our presentation, however, contains a sur- 
prisingly simple correctness proof. In fact, this proof is 
this paper ' s  major contribution to parsing theory. One 
of its lessons is tha t  the CF grammar  class is often the 
natural  one to proof parsers for, even if these parsers are 
devoted to some special class of grammars.  If the gram- 
marl is  restricted in some way, a parser for general CF 
grammars  may have propert ies  tha t  enable smart  imple- 
mentat ion tricks to enhance efficiency. As we show be- 
low, the relation between LR-parsers and LR-grammars 
is of this kind. 

Especially in natural  language processing, s tandard 
CF grammars  are often too limited in their strong gen- 
erative power. The extended CF grammar  formalism, 
allowing rules to have regular expressions at the right 
hand side, is a useful extension, for tha t  reason. It is not 
difficult to generalize our parser to cope with extended 
grammars,  although the application of LR-parsing to 
extended CF grammars  is well-known to be problematic 
[5]. 

We first present the recursive descent recognizer in 
a way that  allows the desired generalization. Then we 
obtain the recursive ascent recognizer and its proof. If 
the grammar  is LR(0) a few implementat ion tricks lead 
to the recursive ascent recognizer of ref. [1]. Subse- 
quently, the time and space complexities of the recog- 
nizer are analysed, and the algorithm for constructing 
a cubic representation for parse forests is given. The 
paper  ends with a discussion of extended CF grammars.  

2 R e c u r s i v e  d e s c e n t  

Consider CF grammar G, with terminals VT and non- 
terminals V/v. Let V = VN U VT. A well-known top- 
down parsing technique is the recursive descent parser. 
Recursive descent parsers consist of a number of pro- 
cedures, usually one for each non-terminal.  Here we 
present a variant that  consists of functions, one for each 
item (dotted rule). We use the unorthodox embracing 
operator  [.] to map each i tem to its function: (we use 
greek letters for arbi t rary  elements of V*) 

[ A  - ~  a . ~ ]  : N - - .  2 N 

where N is the set of integers, or a subset (0...nm~x), 
with nma= the maximum seutence length. The functions 
are to meet the following specification: 

[A --, a. l(0 = {Jl  - * "  
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with x~...xn the sentence to be parsed. A recursive im- 
p lementa t ion  for these funct ions  is given by (b • VT, B • 
v,,) 

[A --* a.]( i)  = {i} 

[a  --* a.b-r](i) = {jib = z i+,  ^ j E [A ~ ab.-r](i + 1)} 

[A ---, a .B-r](i)  = 

{Jl~ • [B ~ .~ ] ( i )^ j  • [A - ;  ~a.-r](~)} 
We keep to the cus tom of omi t t ing  existential  quantif i-  
cation (here for k,/f) in def in i t ions  of this kind. 

The  proof is e lementary  and ba#ed on 

3~(3 = x~+a-r A -r ~ *  zi+~...~:s)V 
3B-~$k(3 = B-r ^ B --~ 8 A 8 --;* z i+a . . . x~^  
-r --~* 2;k+l...2~j) 

If we add a g r a m m a r  rule S '  --* S to G, with S '  ([ V 
then S --** x~...xn is equivalent  to n • [S' --* .S](0). 

The  recursive descent  recognizer works for any CF  
g rammar  except for g rammars  for which ~ A ~ ( A  ---* 
aAcr --** A3) .  For such left-recursive g rammars  the rec- 
ognizer does not  te rminate ,  as execution of [A --* .a](i)  
will lead to a call of itself. The  recognit ion is not  a l inear  
process in general:  the funct ion calls [A --- a.B3"](i) lead 
to calls [B --* ./i](i) for all values of ~ such tha t  B ---, 
is a g rammar  rule. 

3 T h e  a s c e n t  r e c o g n i z e r  

One way to make the recognizer more determinis t ic  is by 
combining  funct ions corresponding to a number  of com- 
pe t ing  i tems into one funct ion.  Let the set of all i tems 
of G be given by I n .  Subsets  of I6; are called states,  and 
we use q to be an arb i t ra ry  state,  lWe associate to each 
s ta te  q a funct ion,  re-using the above operator  [.], 

[q] : N ~ 2 I °×N 

tha t  meets the specification 

[q](i) ---- {(A - -  a . 3 , j ) l  A --. a . 3  • q ^ 3 --*" zi+~.. .xi} 

As above, the funct ion reports  which par ts  of the sen- 
tence can be derived. But  as the funct ion is associated 
to a set q of i tems, it has to do so for each i tem in 
q. If we define the ini t ial  s ta te  q0 = {S'  --* .S}, now 
S --," x l . . .xn  is equivalent  to (S '  ---* .S ,n )  • [q0](0). 
Before proceeding, we need a couple of definitions. 

Let in i (q)  be the set of ini t ia l  i tems for s ta te  q, tha t  
are derived from q by the closure operat ion:  

in i (q)  = { B --* .AIB - .  A ^ A --* a . 3  • q A 3 = ¢  B-r}. 

The  double  arrow =¢, denotes  a lef t -most-symbol  rewrit- 
ing B a  =e~ Cf la ,  using a non-e rule B ---, Cfl. The  
t rans i t ion  funct ion goto is defined by (B • V) 

goto(q, B)  = {A  -* a B . 3 ] A  --* a . B 3  • (q U in i (q) )}  

Also define 

pop(A ---, a B . 3 )  = A --', a . B 3  

l h s ( A  --* a. f l )  = A 

f i n a l ( A  --. a . 3 )  = (131 = 0) 

with B E V, and 1/31 the number  of symbols  in 3 (with 
H = 0). A recursive ascent recognizer may be obta ined  
by relat ing to each s ta te  q not  only the above [q], bu t  
also a function__ tha t  we take to be the result  of applying 
opera tor  [.] to the state:  

[q] : V x N --* 2 I°  xN 

I t  has the specification 

[q](B,i)  = {(A --* a . 3 , j ) l A  --* a .3  e qA 
3 =~* B - r A T  ---,* xi+a. . .x j}  

For i >.nn (n is the sentence length)  it  follows tha t  
[q](i) = [q](B,i)  = $, whereas for i _< n the funct ions 
are recursively implemented  by 

[q](i) = [q](x,+l, i + 1 ) u  

{(1, j ) I B  --* .e e i n i ( q ) A  ( l ,  j )  E - ~ ( B ,  i)}U 
{ ( l , i ) l I  • q ^ f i n a l ( l ) }  

[q](B, i) = { (pop(l ) ,  J)l 
(1,j) • [ooto(q, B)](i)^ pop(l) • q}U 
{(I,4)1(J, k) • [goto(q, B ) I ~ ^  
pop(J)  • in i (q)  ^ (1, j )  • [q](lhs(S),  k)} 

Proof: 
Firs t  we notice tha t  

/8 "** xi+l . . -x j  
3~(3 ~ *  z i + l ' t  ^ 7 ~ "  z ,+2 . . . z j )v  
3B~(3 ~ "  B-r ^ B ~ c ^ -y --." z ,+~ . . . z j )v  
( ~ = ~ ^ i = j )  

Hence 

[q](i) = 
{(A --* a.3,J) l (A --* a . 3 ,  j )  • r ~ ( z , + ~ ,  i +  1)}u 
{(A --, ,~.3, J)l 
B -.-. e A ( A  --, a . 3 , j )  • [q] (B , i ) }u  
{(A --~ a . , i ) l a  --* a.  • q} 

This  is equivalent  to the earlier version because we may 
replace the clause B ~ e by B ---, .e • ini(q) .  Indeed, 
if s ta te  q has i tem A --* a . f l  and if there is a left-most- 
symbol  der iva t ion /3  =~* B-r then all i tems B --* .A are 
included in ini(q) .  

For establ ishing the correctness of [q--] notice tha t  
3 ~ *  B3" either conta ins  zero steps, in which case 
3 = B'r ,  or it conta ins  at least one step: 

3.y (3  =~* B3" A 3' --*" xi+a ...zs) = 
3~(3 = B-r ^ -r - - "  x i+ l . . . z j )V  
3ce.~k(~8 :=~* C - r A G  --* B~S A~5 -.*" xi+ l . . .x~,A -r -'** 
xk+l ...x j )  

Hence [q](B, i) may be wri t ten  as the un ion  of two sets, 
[q](B, i) = So USa:  

So = {(A --~ a.B3",j)]  
A ---. ct.B3" • q A - r  ---** x s+l . . . x j }  

S~ = { ( a  --. a . 3 , j ) l A  --* a .3  • q ^ 3 =~" C-r^ 
C ---* B~ ^ $ --** zi+l . . .xk ^ 3' --*" zk+l . . . z i} .  

By the defini t ion of goto, if A ---, a .B- r  • q then  A --, 
aB.-r  • goto(q, B) .  t lence,  with the specification of [q], 
So may be rewri t ten as 

So = {(A --. a .B-r , j ) IA  --. a.B-r • q^  
(A ---* aB.3" , j )  • [goto(q, B)](i)} 
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The set $1 may be rewrit ten using the specification of 
[q](C, k): 

S1 : { (A -'~ a . ~ , j ) l ( A  -~ a . ~ , j )  E [q](C,k)A 
C --* B6 A 6 --," xi+,. . .xk}. 

Also, as before, ~ =~* C'r implies that  all i tems C ~ .g 
are in ini(q), and the existence of C -* .B~ in ini(q) 
implies C ~ B.~ E goto(q, B): 

Sx = {(A ~ a . ~ , j ) l ( A  ~ ~ .B , j )  E [q](C, k)A 
C --~ .B~ E ini(q)A 
(C --. B.6, k) ~ [goto(q, B)](i)}. 

n 

In the computat ion of [q0](0), functions are needed 
only for states in the canonical collection of LR(0) states 
[6] for G, i.e. for every s tate  that  can be reached from the 
initial s ta te  by repeated application of the goto function. 
Note tha t  in general the s ta te  ¢ will be among these, and 
that  both [¢](i) and [g](B, i) are empty sets for all i _> 0 
and B E V. 

4 D e t e r m i n i s t i c  variants  

One can prove that ,  if the grammar  is LR(0), each rec- 
ognizer function for a canonical LR(0) s ta te  results in 
a set with at most one element. The functions for non- 
empty q may in this case be rephrased as 

[q](i): 

if, for some I ,  I E q A f i n a l ( l )  t__hen return {(I, i)} else 
if B --. .e E ini(q) then ret__.urn [q](B, i) 
else if i < n then return [q](xi+~, i + 1) 
else return 
fi 

[q](B,i): 

if [9oto(q, B)](i) = ¢ then return ~ else 
let (I ,  j )  be the unique element of [goto(q, B)](i).  Then: 

if pop(I) E q then return {(pop(l), j ) }  
else return [q](Ihs(l), j )  
fl 

fi 

Reversely, the implementat ions of [q](i) and [q](B,i) of 
the previous section can be seen as non-deterministic 
versions of the present formulation, which therefore pro- 
vides an intuitive picture that  may be helpful to under- 
s tand the non-deterministic parsing process in an oper- 
ational way. 

Each function can be replaced by a procedure that ,  
instead of returning a function result, assigns the result 
to a global (set) variable. As this set variable may con- 
tain at most one element, i t  can be represented by three 
variables, a boolean b, an item R and an integer i. If 
a function would have resulted in the set { ( I , j ) } ,  the 
global variables are set to b = T R U E ,  R = I and i = j .  
A function value ~ is represented by b = F A L S E .  Also 
the arguments of the functions are superfluous now. The  

rble of argument i can be played by the global variable 
with the same na__.rne, and l h s (R )can  be used instead of 
argument B of [q]. Consequently, procedure [¢] becomes 
a s ta tement  b := F A L S E ,  whereas for non-emp.~, q one 
gets the procedures (keeping the names [q] and [q], trust- 
ing no confusion will arise): 

[q] : 

if, for some I ,  I E q A f i n a l ( l )  then R :=  I 
else if B --..¢ E ini(q) then R := B - -  e.; [q] __ 
else if i < n t h e n  R :=  xi+a - -  xi+l . ;  i :=  i + 1; [q] 
else b := F A L S E  
fi 

N 

M: 

[goto(q, Ihs(R))l;  
if b. then 

if pop(R) E q then R := pop(R) 
.else [q] 
f i  

fi 

Note that  these procedures do not depend on the details 
of the right hand side of R. Only the number of sym- 
bols before the dot  is relevant for the test "pop(R) E q". 
Therefore, R can be replaced by two variables X E V 
and an integer I, making the following substi tut ions in 
the  previous procedures: 

R : = A - - * a .  =~ X : = A ; I : = I c r l  
R : = p o p ( R )  =~ l := l - 1  
pop(R) E q =~ l # l v X = S' 
lhs( R) =~ X 

After these substi tutions,  one gets close to the recursive 
ascent recognizer as it was presented in [1]. A recognizer 
that  is virtually the same as in [ l ~ s  obtained by replac- 
ing the tail-recursive procedure [q] by an i terative loop. 
Then one is left with one procedure for each state. While 
parsing there is, at  each instance, a s tack of activated 
procedures tha t  corresponds to the stacks that  are ex- 
plicitly maintained in conventional implementat ions of 
determinist ic  LR-parsers. 

5 C o m p l e x i t y  

For LL(0) grammars  the recursive descent recognizer is 
determinist ic and works in linear time. The same is 
true of the ascent recognizer for LR(0) grammars.  In 
the general, non-deterministic,  case the recursive de- 
scent and ascent recognizers need exponential  t ime un- 
less the functions are implemented as memo-functions 
[3]. Memo-functions memorize for which arguments they 
have been called. If a function is called with the same 
arguments as before, the function returns the previous 
result without recomputing it. In conventional program- 
ming languages memo-functions are not available, but  
they can easily be implemented. Devices like graph- 
s t ructured stacks [4], parse matrices [7], or welbformed 
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substring tables [8], are in fact low-level realizations of 
the abstract notion of memo-functions. The complex- 
ity analysis of the recognizers is quite simple. There are 
O(n) different invocations of parser functions. The func- 
tions call at most O(n) other functions, that all result 
in a set with O(n) elements (note that there exist only 
O(n) pairs (I, j )  with I E IG, i _< j _< n). Merging these 
sets to one set with no duplicates can be accomplished in 
O(n 2) time on a random access machine. Hence, the to- 
tal time-complexity is O(na). The space needed for stor- 
ing function results is O(n) per invocation, i.e. O(n 2) 
for the whole recognizer. 

The above considerations only hold if the parser ter- 
minates. The recursive descent parser terminates for all 
grammars that  are not left-recursive. For the recursive 
ascent parser, the situation is more complicated. If the 
gra_m.mmar has a cyclic derivation B -** B, the execution 
of [q](B, i) leads to a call of itself. Also, there may be a 
cycle of transitions labeled by non-terminals that derive 
e, e.g. if goto(q, B) = q A B ---, e, so that the execution 
of [q](i) leads to a call of itself. There are non-cyclic 
grammars that suffer from such a cycle (e.g. S --* SSb, 
S --* e). Hence, the ascent parser does not terminate if 
the grammar is cyclic or if it leads to a cycle of transi- 
tions labeled b_.~ non-terminals that derive e. Otherwise, 
execution of [q](B, i) can only lead to calls of [p](i) with 
p ~ q and to calls of [q](C,k), such that either k > i 
or C--** B A C  ~ B. As there are only finitely many 
such p, C, the parser terminates. Note that both the re- 
cursive descent and ascent recognizer terminate for any 
grammar, if the recognizer functions are implemented 
as memo-functions with the property that  a call of a 
function with some arguments yields $ while it is under 
execution. For instance, if execution of [q](i) leads to 
a call of itself, the second call is to yield ~. A remark 
of this kind, for the recursive descent parser, was first 
made in ref. [8]. The recursive descent parser then be- 
comes virtually equivalent to a version of the standard 
Earley algorithm [9] that  stores items A ---* a./~ in parse 
matrix entry Ti i if/~ ---,* xi+l. . .xi ,  instead of storing it 
if a --*° x ~ + l . . . x j .  

The space required for a parser that also calculates 
a parse forest, is dominated by this forest. We show 
in the next section that  it may be compressed into a 
cubic amount of space. In the complexity domain our 
ascent parser beats its rival, Tomita 's  parsing method 
[4], which is non-polynomial: for each integer k there 
exists a grammar such that the complexity of the Tomita 
parser is worse than n k. 

In addition to the complexity as a function of sen- 
tence length, one may also consider the complexity as 
a function of grammar size. It is clear that  both time 
and space complexity are proportional to the number of 
parsing procedures. The number of procedures of the 
recursive descent parser is proportional to the number 
of items, and hence a linear function of the grammar 
size. The recursive ascent parser, however, contains two 
functions for each LR-state and is hence proportional to 
the size of the canonical collection of LR(0) states. In 
the worst case, this size is an exponential function of 

grammar size, but in the average natural language case 
there seems to be a linear, or even sublinear, dependence 
[4] .  

6 Parse  forest  

Usually, the recognition process is followed by the con- 
struction of parse trees. For ambiguous grammars, it 
becomes an issue how to represent the set of parse trees 
as compactly as possible. Below, we describe how to 
obtain a cubic representation in cubic time. We do so 
in three steps. 

In the first step, we observe that ambiguity often 
arises locally: given a certain context C[-], there might 
be several parse subtrees tl...tk (all deriving the same 
substring xi+l...xj from the same symbol A) that fit 
in that  same context, leading to the parse trees C[tl], 
eft2] . . . . .  c[th] for the given string zl . . .zn.  Instead of 
representing these parse trees separately, repeating each 
time the context C, we can represent them collectively 
as C[{~1, ..., tk}]. Of course, this idea should be applied 
recursively. Technically, this leads to a kind of tree-llke 
structure in which each child is a set of substructures 
rather than a single one. 

The sharing of context can be carried one step further. 
If we have, in one and the same context, a number of 
applied occurrences of a production rule A ---, a/~ which 
share also the same parse forest for a, we can represent 
the context of A ---* a~  itself and the common parse 
forest for a only once and fit the set of parse forests for 
fl into that. Again this idea has to be applied recursively. 
Technically, this leads to a binary representation of parse 
trees, with each node having at most two sons, and to 
the application of the context sharing technique to this 
binary representation. 

These two ideas are captured by introducing a func- 
tion f with the interpretation that f(f3, i , j )  represents 
the parse forest of all derivations from /~ E V* to 
zi+~...x~, for all i , j  such that 0 < i < j < n. The 
following recursive definitions fix the parse forest repre- 
sentation formally: 

f(~, i , j )  ={[l[ i  = J}, 
f (a ,  i, j)  = {alj = i + 1 ^ x,+l = a}, for all a e liT, 

f ( A , i , j )  = {(A,f(ot ,  i , j ) ) lA  ~ aA 
a .---*" xi+l...x~}, for all A E VN, 

f (AB/3,  i, j )  = {(f(A, i, k), f ( B # ,  k, J))l 
i < k < j A A  ---," xi+l...Xk ^ B/~ --~" xk+l.. .xj}, for 
all A, B E V. 

The representation for the set of parse trees is then just  
f ( S ,  0, n). 

We now come to our third step. Suppose, for the mo- 
ment, that the guards a ---,* xi+l...xj and the like, oc- 
curring above, can be evaluated in some way or another. 
Then we can use function f to compute the representa- 
tion of the set of parse trees for sentence xl.. .xn. If we 
make use of memo-functions to avoid repeated compu- 
tation of a function applied to the same arguments, we 
see that there are at most O(n 2) function evaluations. 
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If we represent function values by re]erences to the set 
representations rather than by the sets themselves, the 
most complicated function evaluation consumes an ad- 
ditional amount of storage that is O(n): for j - i + 1 
values of k we have to perform the construction of a 
pair of (copies of) two references, costing a unit  amount 
of storage each. Therefore, the total amount of space 
needed for the representation of all parse trees is O(n3). 

The evaluation of the guards ct ---." xi+l...xj etc. 
amounts exactly to solving a collection of recognition 
problems. Note that a top-down parser is possible 
that merges the recognition and tree-building phases, 
by writing 

f ( A , i , j )  = {(A,f(ot ,  i , j ) ) lA  -., a A f ( a , i , j )  # ~}, for 
all A E VN, 

I (AB/ i ,  i, j )  = {(f(A, i, k ) , / (B / i ,  k, J))l 
i < k < j A f ( A , i , k )  # ¢ A f ( B / i , k , j )  # ~}, 
for all A, B E V, 

the other cases for f being left unchanged. Note the sim- 
ilarity between the recognizing part of this algorithm 
and the descent recognizer of section 2. Again, this 
parser is a cubic algorithm if we use memo-functions. 

Another approach is to apply a bottom-up recognizer 
first and derive from it a set P containing triples (/i, i , j )  
only if/3 ---'" xi+l...xj, and at least those triples (/i, i , j )  
for which the guards/3 ---** xi+a ...xj are evaluated dur- 
ing the computation of f (S ,  O, n) (i.e., for each deriva- 
tion S ---." xl . . .xkAxj+l. . .Zn "-* Xl...XkOl/iXj+l...Xn "-'** 
zl . . .xi f lzj+l. . .xn "~" xl. . .xn, the triples ( / i , i , j )  and 
( A , k , j )  should be in P). The simplest way to obtain 
such P from our recognizer is to assume an implementa- 
tion of memo-functions that enables access to the mem- 
oized function results, after executing [q0](O). Then one 
has the disposal of the set 

{(/i, i,j)l[q](i ) was invocated and 
(A --* a./i, j )  e [q](i)} 

Clearly, ( / i , i , j )  is only in this set if /i --+" xi+l...x i. 
Note, however, that no pairs (A --~ . / i , j )  are included 
in [q](i) (except if A = S'). We remedy th__is with a 
slight change of the specifications of [q] and [q], defining 

~ q U ini(q): 

[q](i) = 
{(A --.* a.3, j ) lA  --~ c~./~ E ~ A / i  ---** xi+l.. .xj} 

[q](B,i) = {(a ---* a. / i , j ) lA ---* a./i E "~A 
t3 ~ *  BT A 7 ""* Xi+l"'Xj} 

A recursive implementation of the recognition functions 
now is 

[q](i) = {(I,Y)l(I , j)  e [q](~+~, i + l[}.p 
{ ( l , j ) l  B -- . . ,  e ini(q) A ( I , j )  E [q](B,i)}U 
{(I, i)lI E ~ A final(l)} 

[q](B, i) = {(pop(I) ,  J ) l ( l ,  J) E [goto(q, B ) ] ( i ) l u  
{(I, j ) l (J ,  k} e [goto(q, B)I~}A 
pop(J) E ini(q) A ( I , j )  e [q](lhs(J),k)} 

If we define, for this revised recognizer, 

P = {(3, i, j)l[q](i) was invocated and 
(A - . . . ~ ,  j )  e [q](i)}u 
{(A, i, j)l[q](i) was invocated and 
( a  --, .~, j )  e [q](i)}u 
{ ( x ~ + ~ , i , i +  DI0 < i < n} ,  

it contains all triples that are needed in f (S ,  O, n), and 
we may write the forest constructing function as 

f ( A , i , j )  = { ( a , f ( a , i , j ) ) l A  --, a ^  (a , i , j )  E P}, for 
all A E V~, 

f(AB/i, i, j) ---- {(I(A, i, k), f(B/3, k, J))l 
(A, i, k) e P A (Bit, k, j )  e P}, for all A, B e V, 

the other cases for f being left unchanged again. There 
exists a representation of P in quadratic space such that 
the presence or absence of an arbitrary triple can be de- 
cided upon in unit  time. As a result, the time complexity 
of f (S ,  O, n) is cubic. 

7 E x t e n d e d  CF g r a m m a r s  

An extended CF grammar consists of grammar rules 
with regular expressions at the right hand side. Every 
extended CF grammar can be translated into a normal 
CF grammar by replacing each right hand side by a 
regular (sub)grammar. The strong generative power is 
different from CF grammars, however, as the degree of 
the nodes in a derivation tree is unbounded. To apply 
our recognizer directly to extended grammars, a few of 
the foregoing definitiovs have to be revised. 

As before, a grammar rule is written A --, a,  but with 
a now a regular expression with Na symbols (elements 
of V). Defining T + = 1...N,, and Ta = 0...Na, regular 
expression tr can be characterized by 

1. a mapping ¢~ : T~ + ~ V associating a grammar 
symbol to each number. 

2.. a function succo : To --* 2 T+ mapping each num- 
ber to its set of successors. The regular expression 
can start with tile symbols corresponding to the 
numbers in succo(O). 

3. a set a,~ E 2 7̀ 0 of numbers of symbols the regular 
expression can end with. 

Note that 0 is not associated to a symbol in V and is not 
a possible element of succ,,(k). It can be element of a,~ 
though, in which case there is an empty path through 
the regular expression. 

We define an item as a pair (A --, a ,k) ,  with the 
interpretation that number k is ' just before the dot'. 
The correspondence with dotted rules is the following. 
Let a = B1...Bt, then a is a simple regular expression 
characterized by ~ba(k) = Bk, succa(k) = {k + 1} if 
0 < k < l, succo(l) = {~, and a,, = {I}. Item (A ---. a ,0 )  
corresponds to the initial item A ---* .a and (A ---* a, k) 
to the dotted-rule item with the dot just  after Bk. 

The predicate final for the new kind of items is defined 
by 

f ina l ( (A  ---* a, k)) = (k E an) 

Given a set q of items, we define 
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ini(q) = {(A - -  a , 0 ) l ( B  ---* fl, l) • qA 
k • s . c c , ( 0  ^ ¢a(k)  ~ "  A~}  

The function pop becomes set-valued and the transit ion 
function can be defined in terms of it  (remember: ~ = 
q U ini(q)): 

pop((A ~ a ,  l ) )  = { ( a  --. a ,  k)ll • succ.(k)} 

goto(q, B) = { ( a  ---, a,  k ) l * . ( k )  = B a I • ~A 
I • pop((a --* a, k))} 

A recursive ascent recognizer is now implemented by 

[q](i) = [q](~ci+l, i + 1)U 
{(I, j ) l J e  ini(q) ^ f inal (J)A 
( I , j )  • [q](lhs(J), i)}U 
{ ( I ,  i)ll • q ^ f inal([))  

[q](B,i) = {J, j ) lJ  • q ̂  J • pop(I)^ 
(1, j) • [goto(q, B ) ] ( i ) } U  
t ( I , j ) l ( J ,  k) • [goto(q,B)](i) A K • ini(q)^ 
K • pop(J )^  ( l , j )  • [q](lhs(J), k)} 

The initial s ta te  q0 is {(S'  ---* S, 0)}, and a sentence 
x l . . . x ,  is grammatical  if ( (S '  --* S, 0), n) • [qo](O). The 
recognizer is determinist ic  if 

1. there is no shift-reduce or reduce-reduce conflict, 
i.e. every state has at most one final item, a n d  in 
case it has a final i tem it has no i tems (A --, ~ , j )  
with k e succ,~(j) A ~b,~(k) • VT. 

2. for all reachable states q, q N ini(q) = ~, and for all 
I there is at most one J • ~ such that  J E pop(I). 

In the determinist ic  case, the analysis of section 4 can be 
repeated with one exception: extended grammar  items 
can not be represented by a non-terminal and an integer 
that  equals the number of symbols before thc dot,  as this 
notion is irrelevant in the case of regular expressions. In 
s tandard  presentations of determinist ic LR-parsing this 
leads to almost unsurmountable problems [5]. 

8 C o n c l u s i o n s  

We established a very simple and elegant implementa- 
tion of LR(0) parsing. It is easily extended to LALR(k) 
parsing by lett ing the functions [q] produce pairs with 
final i tems only after inspection of the next k input  sym- 
bols. 

The functional LR-parser provides a high-level view of 
LR-parsing, compared to conventional implementations. 
A case in point is the ubiquitous stack, that  simply cor- 
responds to the procedure stack in the functional case. 
As the proof of a functional LR-parser is not hindered 
by unnecessary implementation details, it can be very 
compact.  Nevertheless, the functional implementation 
is as efficient as conventional ones. Also, the notion of 
memo-functions is an impor tant  primitive for present- 
ing algorithms at a level of abstract ion that  can not 
be achieved without them, as is exemplified by this pa- 
per 's  presentation of both the recognizers and the parse 
forests. 

For non-LR grammars,  there is no reason to use 
the complicated Tomita  algorithm. If indeed non- 
determinist ic LR-parsers beat  the Earley algorithm for 

some natural  language grammars,  as claimed in [4], this 
is because the number of LR(0) states may be smaller 
than the size of IG for such grammars.  Evidently, for the 
grammars  examined in [4] this advantage compensates 
the loss of efficiency caused by the non-polynomiality 
of Tomita 's  algorithm. The present algorithm seems to 
have the possible advantage of Tomita 's  parser, while 
being polynomial.  
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