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Abstract 

In this paper we address the problem of 
choosing the best solution(s) from a set 
of interpretations of the same object (in 
our case a segment of text). A notion of 
preference is stated, based on pairwise 
comparisons of complete interpretations in 
order to obtain a partial order among the 
competing interpretations. An experimental 
implementation is described, which uses 
Prolog-like preference statements. 

1. Introduction 

In this paper we address the problem of 
choosing the best solution(s) from a set 
of interpretations of the same text seg- 
ment (For the sake of brevity, throughout 
this text we use the term interpretation, 
where in fact we should write representa- 
tion of an interpretation). Although 
developed in the context of a machine 
translation system (the Eurotra project, 
Arnold 1986, Arnold and des Tombe 1987), 
we believe that our approach is suited to 
many other fields of computational 

linguistics and even outside (pattern 
recognition, etc.). 

After a brief overview of the problem 
(section 2), we suggest a general method 
to deal with preference (section 3) and 
then describe a possible implementation 
(section 4). An appendix gives actual 
examples of preference statements. 

2. What is preference? 

In the computational linguistics 
literature, the term 'preference' has been 
used in different contexts. We shall men- 
tion a few, selectively, (in section 2.1 
which may be skipped) and then state our 
own view (in section 2.2). 

2.1. Various approaches 

Preference strategies have often been 
used for dealing with the problem of ill- 
formed input (a particular case of robust- 
ness, cf below section 2.2) (AJCL 1983, 
Charniak 1983). Following Weischedel and 
Sondheimer (1983) we distinguish the cases 
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where preference is part of the particular 
computation being performed (Wilks 1973, 
Fass and Wilks 1983, Pereira 1985) from 
the case where it is a separate process, 
run after the results of the computation 
have been obtained (Jensen et al 1983, 
Weischedel and Sondheimer 1983). 

A frequent approach to preference is 
scoring. A numeric score is calculated, 
independently, for each competing 
interpretation and is then used to rank 
the interpretations. The best interpreta- 
tions are then chosen. The score can be 
the number of constraints satisfied by the 
interpretation (Wilks 1973, Fass & Wilks 
1983), where these constraints might be 
assigned relative weights by the linguist 
(Robinson 1982, Charniak 1983, Bennett and 
Slocum 1985) or calculated by the computer 
(Papegaaij 1986). Such techniques have 
been used extensively for speech recogni- 
tion (Paxton 1977, Walker et al 1978) and 
in the field of expert systems (such as 
Mycin, Buchanan & Shortliffe 1984), where 
the calculation of both score and ranking 
become quite complex with probabilities 
and thresholds. 

The problem with scoring is that it 
seems quite unnatural for a linguist to 
associate a score (or weight or probabil- 
ity) to a particular rule or piece of data 
when the knowledge being encoded is in 
fact qualitative. Furthermore, combining 
the scores based on different types of 
reasoning to calculate a global score for 
a representation seems a rather arbitrary 
procedure. Such a uniform metric, even if 
it can model actual linguistic knowledge, 
forces the grammar writer to juggle with 
numbers to get the behaviour he wants, 
thus making the preference process 
obscure. 
A further disadvantage of this approach is 
that the score is often based on the way 
interpretations are built, rather than on 
the properties of the interpretations 
themselves. 

Preference is also mentioned in a 
linguistic controversy started by Frazier 
and Fodor (1979) with their principles of 
right association and minimal attachment 
(Schubert 1984). There the problem is to 
disambiguate many readings (or interpreta- 
tions) of a sentence in order to find the 
good (preferred) one(s). Various contribu- 
tions on that issue have in common that 
bad interpretations are abandoned before 
being finished, during computation 
(Shieber 1983, Pereira 1985). Although 
this method speeds up the computation, 
there is a risk that a possiblity will be 
abandoned too early, before the relevant 
information has been found. This is shown 
by Wilks et al (1985) who claim to have 
the ideal solution in Preference Seman- 
tics, which uses as part of its computa- 
tion scoring and ranking. 

2.2. Our notion of preference 

Our approach, although stemming from 
earlier work in the Eurotra project 
(McNaught et al 1983, Johnson et al 1985), 
is, we believe, new and original. 

We make the following assumptions: 

i the relation 'translation of' between 
texts as established by a machine 
translation system has to be one to one 
(1-1)? 

ii There is apriori no formal or linguis- 
tic guarantee that this will be the 
case for the relation as a whole or for 
the translation steps between inter- 
mediate levels of representation. (An 
attempt to formalize this can be found 
in Krauwer and des Tombe 1984 or in 
section 4 of Johnson et al 1985). 

The problem we want to address here is the 
following: 
Given the fact that one to many (l-n) 
translations do occur, how do we ensure 
that the final result is still I-1. 

This problem is not restricted to machine 
translation: 
Often a program (for example a parser or a 
text generator) produces many interpreta- 
tions of the same object (usually a text 
segment) when in the ideal case only one 
is wanted. In the following we refer to a 
'l-n translation' for this general 
phenomenon. 

We see two types of solutions to this 
problem, each of them applicable to 
specific classes of cases: 

i Spurious results can be eliminated on 
the basis of their own individual pro- 
perties (e.g. well-formedness, com- 
pleteness); for this we will use the 
term 'filtering'. 

ii Spurious results can be eliminated via 
comparison of competing representa- 
tions, where only the best one(s) will 
have the right to survive; for this we 
will use the term 'preference'. 

It is important to note that we res- 
trict ourselves to reducing l-n transla- 
tions to (ideally) i-i. We will assume 
that the 'good' translation is one of the 
candidates. The problem of forcing the 
system to come up with at least 1 transla- 
tion (i.e. do something about possible 1-0 
cases) will not be addressed here. In 
order to avoid confusion we will use the 
term 'robustness' to refer to this type of 
problem. We are aware of the fact that we 
deviate slightly from the standard use of 
the term preference. 
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There are two main types of l-n -ness: 

i linguistically motivated (i.e. real 
ambiguity in analysis, or true synonymy 
in generation). 

ii accidental, caused by overgeneration of 
the descriptive devices that define the 
resulting (or intermediate) interpreta- 
tions. 

Note that overgeneration and ambiguity or 
synonymy may hide cases of undergeneration 
(cf the robustness problem). 

We define the application of preference 
as the selection of the best element(s) 
from a set of competing interpretations of 
the same object. 

According to this definition the scor- 
ing and ranking mechanism described in the 
previous section is a case of preference. 

In the rest of this paper we will 
describe a preference device that is dif- 
ferent from the scoring and ranking 
mechanism in the sense that it is not 
based on the way interpretations are 
built, but rather on linguistic properties 
Of the objects themselves. Its main 
characteristics are that: 

it applies to complete and sound (well 
formed) interpretations only. That is, 
all the other modules of construction, 
transformation and filtering have been 
applied (Ex: parsing, Wh-movement, 
etc). Thus, for these modules all com- 
peting representations are equivalent, 
and all the information needed for com- 
paring them has been found. 

ii it is based on pairwise comparison 
between alternative (competing) 
interpretations of the same object. 

The problem can then be stated as fol- 
lows: 
How do we make use of the linguistic 
knowledge in order to insure a i-i trans- 
lation? 
It is our basic belief that it is impossi- 
ble for the linguist to know the exact 
nature of a class of competing interpreta- 
tions in advance. This implies that he 
cannot in general formulate one single 
rule that picks out the best one. 

3. The proposed method 

3.1. Basic idea 

Our proposal is the following: 

- It should be possible to make 
(linguistic) statements of the type: if 
representation A has property X, and B 
property Y, then A is to be preferred over 
B (e.g. 'in law texts declarative sen- 

tences are better than questions', or 
'sentences with a main verb are better 
than sentences without one'). 

- On the basis of a set of such statements 
it should be possible to establish a par- 
tial order over the set of competing 
representations. 

- And in that case the number of candi- 
dates can be reduced by, for example, let- 
ting only the maximal elements survive, or 
discarding the minimal ones. 

3.2. Problems with the method 

The first (but least serious) problem 
is that it is not certain that linguists 
will always be able to make such state- 
ments (we will call them 'preference 
statements') over pairs of representa- 
tions. Experimentation is necessary. 

The second one is more serious: it 
would be highly unrealistic to expect that 
the result of applying of the preference 
statements will be a linear order, in fact 
there is not even a guarantee that the 
order will be partial. In general the out- 
come will be a directed graph. There are 
three ways of tackling this problem: 

The linguist should try to make the set 
of preference statements homogeneous 
and constrained, and should have con- 
trol over the way in which they are 
applied, so that he can avoid contrad- 
ictory statements. 

ii One tries to make a formal device that 
checks whether contradictions can 
Occur. 

iii One tries to compare pairs of competi- 
tors in a specific order such that it 
can be guaranteed that the result is 
always a partial order. 

At the moment (iii) is the most feasible, 
(ii) the most ambitious, and (i) the most 
desirable solution. Currently we envisage 
a combination of (i) and (iii). 

The third problem is that of the maxi- 
mal elements. Ideally there would be just 
one maximal element, i.e. the preferred 
representation. This cannot be guaranteed 
to be true. 

The problems sketched here are by no 
means trivial. That is why we want to 
experiment with a first implementation of 
this method, to identify the various 
relevant parameters in the specific con- 
text of Eurotra. 

4. The proposed implementation 

The implementation proposed here is 
described in very general terms, and can 
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be adapted for a wide range of applica- 
tions. We give in the appendix some com- 
mented examples specific to our particular 
context. 

4.1. Preference rules 

Preference statements are expressed by 
the user in the form of rules (preference 
rules). There are three types of prefer- 
ence rules: simple rules, Dredefined rules 
and composite rules. A preference rule 
applied to two representations of 
interpretation tries to decide which one 
is better than the other (preferred to the 
other). It is not guaranteed that a rule 
can always take a decision. 

A simple preference rule is of the form 
p = (Patternl > Pattern2) 

The name of the rule is p, and Patternl 
and Pattern2 are current patterns. When 
given two arguments (two representations 
or subparts) A and B (written p(A,B)) the 
system will try to match Patternl with A 
and Pattern2 with B. If this succeeds then 
A is better than B (or A is preferred to B 
or A>B). If it fails then the system will 
try to match A with Pattern2 and B with 
Patternl. If this succeeds then B is 
better than A. 

Predefined rules are provided for the 
cases where simple rules cannot express 
some useful basic preference statement. 
For example, in our actual implementation 
(cf appendix), two Dredefined rules say 
that a tree structure with fewer (more) 
branches than the other is to be preferred 
to one with more (fewer) branches. This 
cannot be expressed with the particular 
language for patterns. 

A composite preference rule is of 
form 

p = (Patternl,Pattern2) 
=> (pl($V,$W), 

p2 ($X, $Y), 
.-.) 

the 

Identifiers p, pl, p2, ... are rule names, 
Patternl and Pattern2 are actual patterns, 
and SV, $W, $X, $Y, ... are variable iden- 
tifiers, that should also occur in Pat- 
ternl ($V,$X) and Pattern2 ($W,$Y) where 
they identify sub-parts of the interpreta- 
tions. When given two arguments A and B, 
the system tries to match A with Patternl 
and B with Pattern2. If this succeeds, the 
variables SV,$X,.. occurring in Patternl 
and SW,$Y .... occurring in Pattern2 are 
instantiated to sub-parts of A and B 
respectively. Then the system tries each 
preference rule of the list, with the 
instantiated arguments, till one rule can 
decide. In this case the relationship 
holding between A and B is the same as 
that holding between the sub-part of A and 
the sub-part of B. If no rule of the list 

can decide then preference is not decided. 
If the initial match doesn't succeed, then 
an attempt will be made to match A with 
Pattern2 and B with Patternl. If this 
succeeds the system tries the rules of the 
list in the same way as above. Composite 
preference rules allow recursion. 

This formalism is very much inspired by 
the programming language Prolog: a prefer- 
ence rule is analogous to a three argument 
predicate (two interpretations and the 
resulting relationship), a simple rule to 
an assertion, and a composite rule to a 
clause with sub-goals. 

4.2. General algorithm 

Initially, all competing objects are in 
the set of non ordered objects N and the 
set of ordered objects O is empty. Then, 
the following is repeated until N is 
empty: an object is removed from N and is 
compared to each object of O (if any), 
then it is added to O. 

This algorithm does not ensure that the 
resulting directed graph of preference 
relationships among the competing objects 
has no cycle. Anyway, maximal (minimal) 
elements can be defined in the following 
way: 

An object E is a maximal (minimal) ele- 
ment if no competing object is better 
(worse) than E. 

Thus an object in a cycle of the graph 
cannot be maximal (minimal). 

To give the user control of how rules 
are tried on the competing objects, only 
one distinguished rule is applied to each 
competing pair. In the general case it 
should be a composite rule that just 
passes its two arguments to the rules of 
the list, thus ensuring that only these 
rules are tried and in that order. 

The pattern matching mechanism of com- 
posite rules is quite powerful. (see also 
the appendix): It allows some preferences 
rule to be applied only to selected 
objects (satisfying a precondition). It 
also allows (recursive) exploration of 
sub-parts of representations (a derivation 
tree for example), in parallel or not. 
Finally it enables the user to give prior- 
ity to some preference rules over some 
others. 

4.3. Problems with the implementation 

Although we decided that this model is 
good enough for preliminary experimenta- 
tion, certain problems are already 
apparent: 

- The system takes arbitrary decisions in 
the case of a contradiction, that is if 
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some rule can be applied to a pair of 
arguments in both orders (if p(A,B) and 
p(B,A) are both possible). In particular a 
preference decision should not be taken 
between identical objects. 
- Infinite recurs!on can occur with ctmpo- 
site preference rules. 
- Maximal (minimal) elements may not exist 
in the resulting graph of preference rela- 
tionships (for example if all elements are 
in a cycle). 
- Arbitrary decisions may be taken if the 
patterns allow multiple matches: the 
current model will stop with the first 
match that produces a decision. 

Currently it is the user's responsibil- 
ity to avoid these problems by writing 
"sensible" rules. In the next section we 
sketch some possible solutions that are 
considered for a future implementation. 

5. Future directions 

The implementation of this preference 
model has been written in Prolog. To 
facilitate experimentation, a mechanism is 
provided for tracing the preference rules 
application to observe their behaviour. 

The model described above is very flex- 
ible. We are currently studying the imple- 
mentation of variants of the basic com- 
parison algorithm: 

We are investigating algorithms that 
would: 
- reduce the number of comparisons, by 
aiming at extracting only the maximal 
(minimal) elements, without trying to 
order all elements. 
- calculate the transitive closure of the 
directed graph, and then remove all con- 
tradictory relationships, thereby removing 
all cycles. This amounts to saying that 
two interpretations are not comparable if 
their comparison leads to contradictory 
decisions. 
- compare the competing interpretations 
stepwise, that is all comparisons are per- 
formed with the first rule in a list, then 
only the pairs for which there is no deci- 
sion yet are compared with the second 
rule, and so on. 
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APPENDIX 

In the current framework of EUROTRA 
(Arnold and des Tombe 1987), representa- 
tion of interpretations are derivation 
trees, containing at each node a set of 
attribute-value pairs. Here is a very 
sketchy and intuitive description of the 

syntax used in the patterns: 
- The identifiers s, np, vp etc. are 

values of the distinguished attribute 
of the node (in these examples, the 
syntactic category). 

- Curly brackets delimit a set of condi- 
tions to be satisfied by a node. For 
example (s,f=declarative} indicate the 
required conditions on the node for the 
distinguished attribute (should have 
value s) and for an f attribute (should 
have value declarative). 

- SA, SB, etc. are variable identifiers. 
- s.[np,vp] indicates a tree with root s 

and two daughters np and vp. 
- ? or (?) indicates an unspecified node. 
- * indicates a list of unspecified 

nodes. 
- SAiPattern indicates that the variable 

$A is instantiated to the sub-tree that 
matches Pattern 

- $more branches (and $1ess_branches) is 
a predefined preference rule that 
prefer the argument that has more 
(less) branches than the other. 

- The first rule declared becomes the 
distinguished rule applied to the com- 
peting interpretations. 

Example 1 

p0 = ($A!(?),$B!(?) 
=> (pI($A,$B), 

p2($A,$B)), 

pl = ((s,f=declarative) 
> {s,f=interrogative}), 

p2 = (s.[np,v,$A]s,*], 
s.[np,v,$B!s,*]) 
=> (pI($A,$B), 

p2($A,$B)) 

This set of preference rules will 
explore, in parallel, two trees, from top 
to bottom, always taking the 's' branch, 
and prefer the tree in which it finds a 
declarative sentence (opposed to an 
interrogative).If one inverts the order of 
pl and p2 in the distinguished composite 
rule p0 the trees would be explored from 
bottom to top. 

Rule p0 just passes its arguments to pl or 
p2~ 
Rule pl prefers a declarative s over an 
interrogative s. 
Rule p2 identifies the embedded s in each 
argument and passes them to pl or p2. 

Example 2 

p0 = (s.[np,vp.[*,$A!(?)]], 
s.[np,vp.[*,$B!(?)]]) 

=> (pI($A,$B), 
p2 ($A, SB), 
p3 ($A, $B) ), 

pl = (np.[*,pp] > pp), 
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p2 = (np.[*,$A!np] , $B!pp) 
=> (pl($A,$B), 

p2($A,$B), 
p3($A,$B)), 

p3 = (np.[*,$A!(?)], 
np.[*,$B!(?)]) 

=> (pI($A,$B), 
p2($A,$B), 
p3($A,$B)). 

Given two sentences, this set of rules 
will prefer the one that has the pp 
attached deeper in the structure than the 
other (right attachment). This example is 
restricted to explore only embedded nps. 

For both arguments, rule p0 identifies the 
last daughters of the vp of a sentence s, 
and passes them to preference rules pl or 
p2 or p3. 
Rule pl will prefer a pp attached under an 
np to a pp (which was attached higher in 
the structure). 
Rule p2 will be tried only if pl was not 
applicable. It is there for the case the 
pp is imbedded deeper in the np. 
Rule p3 is similar to rule p0, except that 
it takes the last daughters of a np. It is 
tried only if pl and p2 are not applica- 
ble. 
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